
Incremental Class Representation
Learning for Face Recognition

Degree’s Thesis
Audiovisual Systems Engineering

Author: Eric Presas Valga
Advisors: Elisa Sayrol, Josep Ramon Morros

Universitat Politècnica de Catalunya (UPC)
2016 - 2017

Abstract

Image classification is one of the most active challenging problems in computer vision field. Taking this
to Deep Neural Networks with systems that are able to deal with large data sets as it can be ImageNet.
Large Convolutional Networks as VGG-16 used in this work have recently demonstrated impressive clas-
sification performances.

This work is focused on novel techniques for Incremental Learning stages for face recognition, which
is an important open problem in artificial intelligence. The main challenge of this work is the develop-
ment of incrementally learning systems that learn about more and more concepts over time.

Most of the actual methods that use incremental learning in "online" or "offline" stages. This thesis
focuses on "offline" incremental stages where the data available is distributed in batches of classes.
Since the necessity to deal with a continuous training stages, some well-established methods for trans-
fer learning are applied by the author to run the experiments.

Preserving knowledge is the most challenge task to deal using incremental learning techniques. The
actual research is on apply incremental learning in natural systems where for example, it is not consid-
ered to store all the old training data to make a new model when new data comes available.

Another interesting concept for incremental learning systems is "lifelong" learning, which are related
to the methods analyzed in this work since the system proposed also learn from a sequence of different
tasks. The similarity of multi-task learning and "lifelong" learning is that they both use shared information
across tasks to help learning, but also, multi-task learning is not able to grow the number of tasks over
time preserving the knowledge.

i

Resum

La classificació d’imatges és una de les tasques més desafiants en el camp de la visió per a computa-
dors. Portant això al camp de les xarxes neuronals profundes utilitzant sistemes que són capaços de
gestionar datasets considerablement grans, com pot ser el de ImageNet. Grans xarxes convolucionals
com pot ser VGG-16, que és la que s’utilitzarà en aquest treball i que ha demostrat molt bons resultats.

Aquest treball està focalitzat en noves tècniques per aprenentatge incremental per al reconeixament
de cares, que és un important problema obert en la inteligència artificial. El major repte en aquest tre-
ball és desenvolupar dos sistemes incrementals que aprenen més conceptes durant el temps.

Molts dels actuals mètodes que utilitzen l’aprenentatje incrmental en escenaris com"online" o "offline".
Aquest treball està focalitzat sobretot en els sistemes incrementals que utilitzen "offline" com a mètode
incremental d’aprenentatge on les dades són proporcionades per conjunts de classes, on cada conjunt
apareix en un moment diferent. Hi ha una necessitat per a gestionar amb escenaris d’aprenentatge
continuu, i és per això que mètodes de tranferència d’aprenentatje sert’an estudiats i implementats per
l’autor del projecte per tal d’executar els experiments.

Una de les tasques més desafiants és com gestionar i preservar el coneixament obtingut per tal de
no oblidar. Quan es parla de aprenentatje incremental, molts cops està relacionat amb el concepte
de sistemes naturals on per exemple, no està contemplada la possibilitat de guardar totes les mostres
del coneixament adquirit per a un futur entrenament quan hi hagin noves classes disponibles. D’altra
banda, l’aprenentatge "online" es diferencia del "offline" durant el procés d’entrenament. On s’encarrega
d’apendre de forma eficient amb dades que arriben de forma incremental però sempre per les mateixes
tasques, dit d’altre forma, els sistemes que utilitzen l’aprenentatge "online" en la majoria de treballs
proposats, no s’encarreguen d’incrementar el nombre de classes.

Un altre concepte interessant per als sistemes d’aprenentatge incremental és el que se’n diu apre-
nentatge "lifelong", que també està relacionat amb els mètodes analitzats en aquest treball, ja que el
sistema proposat també aprèn d’una seqüència de tasques diferents. També hi ha una similaritat entre
l’aprenentatge per múltiples tasques i l’aprenentatge "lifelong", que és que els dos utilitzen informació
compartida entre tasques per ajudar en l’aprenentatge, de totes formes, els sistemes d’aprenentatge
per a múltiples tasques tampoc poden augmentar el nombre de classes.

ii

Resumen

La clasificación de imágenes es una de las tareas más desafiantes en el campo de la visión por com-
putador. Llevando esto al campo de las redes neuronales profundas utilizando sistemas que són ca-
paces de gestionar datasets considerablemente grandes como puede ser ImageNet. Grandes redes
convolucionales cómo puede ser VGG-16, que és la que se utilizará en este trabajo, han demostrado
muy buenos resultados.

Este trabajo está focalizado en nuevas ténicas para aprendizaje incremental para el reconocimiento
de caras, que és un importante problema abierto en la inteligencia artificial. El mayor reto en este tra-
bajo consiste en desenvolupar dos sistemas incrementales que aprenden más conceptos a medida que
pasa el tiempo.

Muchos de estos métodos que utilizan el aprendizaje incremental en escenarios cómo "online" o "of-
fline". Este trabajo está focalizado sobretodo en los sistemas incrementales que utilizan "offline" como
método incremental de aprendizaje dónde los datos son propocionados por conjuntos separados de
classes. Hay una necesidad clara de gestionar escenarios de aprendizaje continuo, y es por este mo-
tivo que métodos de transferéncia de aprendizaje han estado estudiados y implementados por el autor
del proyecto para tal de llevar a cabo la ejecución de experimentos.

Una de las tascas más desafiantes es cómo gestionar y preservar el conocimiento obtenido para no
olvidar. Cuando se habla de aprendizaje incremental, muchas veces va relacionado con el concepto
de sistemas naturales dónde por ejemplo, no está contemplada la opción todas las muestras para el
conocimiento adquirido para un futuro entrenamiento cuando haya clases disponibles para hacerlo. En
cambio, el aprendizaje "online", se diferencia del "offline" durante el proceso de entrenamiento. Dónde
se encarga de aprender de forma eficiente con datos que llegan de una forma incremental peró siempre
corresponden a las mismas clases, dicho de otro modo, los sistemas que utilizan el aprendizaje "online"
en la mayoria de trabajos propuestos, no se encargan de incrementar el nombre de clases.

Otro concepto interesante para los sistemas de aprendizaje incremental es lo que se llama apren-
dizaje "lifelong", que también está relacionado con los métodos analizados en este trabajo, ya que el
sistema propuesto también aprende de una sequéncia de tascas distintas. También hay una similitud
entre el aprendizaje para múltiples tascas i el aprendizaje "lifelong", que es que los dos métodos utilizan
información compartida entre tascas para ayudar en el aprendizaje, de todas formas, los sistemas de
aprendizaje para múltiples tascas tampoco puede augmentar el nombre de clases.

iii

Acknowledgements

First of all, I would like to express my gratitude to my supervisors, Elisa Sayrol and Josep Ramon Morros,
for giving me the opportunity to work on this trending topic. Also for their patience guidance during the
project.

I also wish to thank to the Image Processing Group (GPI), specially to Albert Gil and Josep Pujal for
giving me acces to the Development Platform of the UPC.

iv

Revision history and approval record

Revision Date Purpose
0 20/06/2017 Document creation
1 29/06/2017 Document revision
2 30/06/2017 Document revision
3 30/06/2017 Doccument approbation

Name E-mail
Eric Presas Valga eric.presas@alu-etsetb.upc.edu
Elisa Sayrol elisa.sayrol@upc.edu
Josep Ramon Morros ramon.morros@upc.edu

Written by: Reviewed and approved by: Reviewed and approved by:
Date 20/06/2017 Date 30/06/2017 Date 30/06/2017

Name Eric Presas Valga Name Elisa Sayrol Name Josep Ramón Morros

Position Project Author Position Project Supervisor Position Project Supervisor

v

Contents

Abstract i

Resum ii

Resumen iii

Acknowledgements iv

Revision history and approval record v

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Requirements and Specifications . 2
1.4 Work Plan . 2
1.5 Deviations . 3
1.6 Document Structure . 4

2 Literature review 5
2.1 Deep Neural Networks . 5
2.2 Convolutional Neural Networks . 7
2.3 Face Recognition . 7

2.3.1 Pre-processing . 8
2.3.2 Feature Extraction . 8
2.3.3 Classification . 8

2.4 Understanding Convolutional Neural Networks . 9
2.5 Class Incremental Learning . 10

2.5.1 Fine-tuning . 11
2.5.2 Distillation Knowledge . 11
2.5.3 Class Batch Learning . 12
2.5.4 Incremental fine-tuning . 13
2.5.5 State-of-the-art Incremental Learning . 14

3 Related Work 15
3.1 Incremental Classifier and Representation Learning (iCaRL) 15
3.2 Learning Without Forgetting (LwF) . 18
3.3 Implementation . 19

4 Experiments 20
4.1 Data set . 20
4.2 Results . 20

4.2.1 Importance of the data set . 21
4.2.2 Importance of the exemplar sets . 22
4.2.3 Choosing "good" training parameters . 22

5 Budget 26

6 Conclusions and Future Work 27

List of Figures

1 Work Packages and internal Tasks . 3
2 Gantt diagram . 3
3 A perceptron and a simple neural network structure . 6
4 A deep neural network structure . 6
5 A Simple Convolutional Neural Network Structure . 7
6 Diagram of a simple face recognition system . 8
7 Two different methods for defining the feature extractor 9
8 Table of VGG architectures, in this work the architecture "D is selected" 10
9 Randomly chosen weight layer outputs . 10
10 fine-tuning layers for this work is shown in left-side and the typical fine-tuning stage for

VGG is shown on right-side . 12
11 Model that adapts itself to new classes . 13
12 Example of a stream of data that comes over time . 14
13 Schema of incremental training . 16
14 Schema of incremental training . 16
15 Proceature to train for new classes in both methods . 18
16 FaceScrub data set . 21
17 Class Incremental Training. 23
18 Class Incremental Training accuracy test for old and new classes (10 classes per batch). 24
19 Class Incremental Training Accuracy test for old and new classes (50 classes per batch) . 24
20 Class Incremental Training evolution accuracy and loss. 25

List of Tables

1 Hardware Needed . 26
2 Costs of the project . 26

List of Algorithms

1 SELECT REPRESENTATIONS Nearest-Class-Mean (NCM) classifier 15
2 INCREMENTAL TRAINING . 18
3 INCREMENTAL TRAINING (LWF) . 19

vii

1 Introduction

Computer Vision is trying to emulate the human visual system to extract useful information from images
or video sequences. Image classification is one of the most essential tasks in computer vision. Since
Perceptron Neural Networks appears in early 70’s, the challenge was to train networks with multiple
Layers for Computer Vision classification tasks. LeCun applied the back propagation algorithm [26] to a
deep neural network for recognizing and classifying handwritten digits[13].

Over the last two decades lots of advances in the Computer Vision field can be appreciated. The avail-
ability of ImageNet results [5] show that Deep Neural Networks achieve a great success on recognition
tasks. Works using Deep Neural Networks for face recognition purposes have been published over last
decade. These systems are achieving also a great success (i.e DeepFace network).

The motivation of Incremental Learning is to make learning systems able grow the number of tasks
learned in time continuously adding new data for more tasks without forgetting the knowledge obtained.

Incremental classifiers using Deep Neural Networks for adding new capabilities to a system in computer
vision stages are under research since the last few years. These kind of classifiers have to preserve the
knowledge for the old tasks while acquiring knowledge for the new tasks at the same time.

In this final degree project, I’m going to use a well-established Deep Convolutional Neural Network
model, as it is VGG [22] and apply some methods [20, 14] to make the system able to learn tasks at
different moments using streams of data. This work is focused on Face Recognition and how to use this
state-of-the-art methods which are well explained in Sections 3, 2.5.

1.1 Motivation

Lots of visual applications actually using Deep Convolutional Neural Networks to perform some clas-
sification tasks have been proposed in recent years. When building a gradually growing system, new
capabilities are continuously added. There are two kind of methods, the ones that store representations
from the classes that have been learned and the other ones, that do not need to store any sample from
the original tasks.

Training large-scale data sets from scratch needs a lot of computational time and a lot of memory avail-
able, that’s why it’s interesting to research on incremental learning methods. This project aims to use
incremental learning methods for recognizing faces. The entire training process is separated into several
parts. Each part will train the system with its correspondent classes.

This project’s motivation is about to deal with data sets that are streams of data, new visual informa-
tion will be continuous incorporated while existing knowledge will be preserved. Taking these ideas
[14, 20] we build a fage recognition system.

1.2 Objectives

The first purpose of this project consists on analyzing how Deep Convolutional Neural Networks work
in stages such as face recognition, which is heavily exploited to build identity verification and security
surveillance systems. This research propose is to build a system based on the related works 3. The
system will be able to increment its number of classes giving a competitive multi-task classifier after
every training.

The content of this thesis, will be based on the related works that have been published so far, and

1

that’s why the author is going to investigate through the proposed methods. These methods will be im-
plemented and tested in order to extract some conclusions about its performance on face recognition.
Also, topics like learning visual features, incremental learning and knowledge distillation using Deep
Convolutional Neural Networks will be covered in this project. All of the concepts explained in the related
papers will be tested and evaluated by the author to design a competitive model for face recognition
on an incremental learning stage, in other words, the system has to be able to recognize faces over a
stream of data with a certain accuracy.

Also, an analysis for selecting parameters and apply methods to outperform the incremental class repre-
sentation is provided, and furthermore the evaluation for the limitations of this methods and a research
of all the related methods that have been published but don’t perform the actual state-of-the-art.

1.3 Requirements and Specifications

To implement the algorithms and reproduce the experiments that will be done over the methods that are
going to be explained in next sections, a workspace with the required software has to be chosen and
installed. In this thesis, all the experiments require of Python 3.4 and Keras 1.2.2 over Tensorflow GPU
version 1.0.0 libraries followed by NumPy to deal with data vectors and matplotlib libraries to plot the
results. Also, since a GPU will be used, some extra modules are needed: Cuda 8.0 with cuDNN v5.1 to
accelerate the processes and the GPU.

Hardware requirements to work with Keras and Tensorflow are carried out at the Image Processing
Group at UPC lab, providing to the author an access to the Development Platform where the required
RAM memory and a GPU memory is available.

The author has to two systems with the requirements seen before, using these methods [14, 20] to
make a study of its performance on face recognition. As a specification, a detailed analysis will be done,
including some experiments to show the performance of Incremental Learning using VGG network on
face recognition.

1.4 Work Plan

In Figure 1 a general overview of the work packages and its internal tasks are explained, also, the Gantt
Diagram related to the time expended on each task is included in Figure 2.

2

Figure 1: Work Packages and internal Tasks

Figure 2: Gantt diagram

1.5 Deviations

Learning how to work with the required software was a heavy part of the project since the author didn’t
know about the usage of the libraries before the project started. So this part was extended a couple of
weeks.

Otherwise, since there aren’t any publications of the codes related to the papers, the author had to
deal with some coding problems, what also delays the implementation stage. Also, the firstly chosen
data set which was Labeled Faces in The Wild (LFW) was not working properly. We conclude that the
LFW data set won’t work properly in incremental face recognition learning stages, because its lack of im-
ages in some classes, that in a lot of cases are represented by a single image. An incremental learning
system can’t learn from a class with a single sample and that’s why the change to FaceScrub data set.

3

1.6 Document Structure

The rest of the content of this thesis is structured as following. Section 2 describes literature reviews on
image classification focusing on deep structures using Convolutional Neural Networks to later introduce
the concept of Incremental Learning which is explained in details in Section 2.5. Section 3 presents the
related work that perform the actual state-of-the-art as described in the respective papers. Section 4
shows the detail of the experiments done in face recognition with two methods and some modifications
made by the author to improve the results. An analysis of the Budget for this research project is shown
in 5. Finally the author’s conclusions and a future work are included in Section 6.

4

2 Literature review

Deep Learning emerged from the sub field of artificial intelligence that uses neural networks to perform
some tasks. Deep Neural Networks are feedforward networks with many hidden layers. The number of
hidden layers to consider the network as a "deep" structure is not defined. Instead, networks with one
hidden layer are considered as "shallow" structures.

Interesting applications using deep learning can be found in fields like computer vision, natural lan-
guage processing and also speech/audio processing.

A basic explanation of the baseline for the methods used on face recognition stages is done in Sec-
tion 2.1 to 2.4, to later focus in Section 2.5 on the main idea of incremental learning and its variances
comparing to the novel methods presented in this work, Section 3.

2.1 Deep Neural Networks

To explain how deep neural networks work, some concepts will be reviewed taking in account that the
reader is familiarized with Deep Neural Networks. A brief introduction to Neural Networks followed by its
applications in deep architectures can be found in this section. Also, Convolutional Neural Networks will
be explained specifically for object/face recognition tasks.

Neural Networks

A neural network is an interconnected group nodes or neurons where each of group nodes are called
layers. Each neuron is a computationally unit that takes several inputs x1, x2, . . . , xN , with its correspon-
dent outputs f(x), seen on left-side of Figure 3 , which is called the activation function that can be for
example rectifier linear unit (mostly used in this work), tanh, sigmoid and more. In Figure 3 an overview
of the simplest neural network with one hidden layer is shown, as it’s said, every neuron has one con-
nection to all the neurons of the next layer. This kind of networks are called fully-connected.

The neurons are connected by links and interact with each other. Using the back-propagation algo-
rithm explained in [26], the network learns by example. That means if an example of what the network
has to do is submitted to the algorithm, it changes its weights so the desired output for a particular input
can be produced.

The back propagation algorithm is one of the most popular Neural Network algorithms that can be sep-
arated to four main steps, which are Feed-forward computation, back propagation to the output layer,
back propagation to the hidden layer and network weight updates as described in [3].

Feed-forward pass is a process composed by two steps. First part is taking the values of the hidden
layer nodes, while the second part is to use those values from hidden layer to compute values of the
output layer. Hidden layer’s values are multiplied with weights of connecting nodes. Once the values
from hidden layers are multiplied by the weights of nodes, next step is to calculate the error obtained in
the output layer. When error is known, it will be used for backward propagation to adjust the weights.

The error has to be propagated from hidden layer down to the input layer to later update the weights.
Now having calculated the output layer forward pass, the error has to be computed.

On classification stages, in a speech/audio or image/video recognition problem, usually needs kind of
feature extractor function φ(). This kind of networks can’t extract good features from a complex amount
of raw data.

5

Figure 3: A perceptron and a simple neural network structure

Deep Neural Networks

Deep Neural Networks are artificial neural networks that contains more than one hidden layer as Figure
4 shows. The main idea is to keep away the process of designing hand-crafted features. Most of this
kind of networks deals with raw data.

To simulate the process of feature extraction, these networks use a cascade classifier of layers of nonlin-
ear processing units. It is useful to learn multiple levels of representations, so the levels form a hierarchy
of concepts.

It’s quite interesting this part of learning the data representations, for example, an image can be rep-
resented in many ways. Some representations are better than others at simplifying specific tasks (i.e
face recognition). Deep Learning solves that problem not by generalizing the feature extractor to do a
certain task which is basically how typical hand-crafted features methods work, instead Deep Neural
Networks are able to learn how to extract features.

Deep Learning architectures such as deep convolutional neural networks [22, 19, 25], deep belief net-
works [9], or recurrent neural networks [24] have been applied to fields like computer vision, automatic
speech recognition, natural language processing and bioinformatics where the produced results are in
some cases superior to human experts.

Figure 4: A deep neural network structure

6

2.2 Convolutional Neural Networks

Fully connected layers from neural networks do not take into account the spatial structure of the data,
which provide a lot of information about the image. The spatial structure of the image has to be pre-
served, to make it possible, different convolutions are done all over the image. To provide not also the
spatial information but some additional information (i.e shapes, color, etc). Convolutional Neural Net-
works combine three hierarchical ideas to ensure some degree of shift, scale and distortion invariance.
The network is trained like standard neural networks by back propagation algorithm. It was firstly pro-
posed by Yann LeCun, LeNet [13] that used neural networks with convolutional layers followed by a
fully-connected block of layers to classify as can be seen in Figure 5.

After LeNet was published, there have been several deeper architectures published in recent years that
improves the performance, but still using as a basis, the main concepts from LeCun’s work. Convolu-
tional Neural Networks alternate between convolution layers with non-overlapping sub-sampling layers.
The convolutional layers are used to extract features from local receptive fields. These layers are orga-
nized in planes of neurons called feature maps, which are responsible to detect a specific feature. In
Section 2.3.3, some heavily exploited deep convolutional neural networks for face recognition tasks are
introduced.

Figure 5: A Simple Convolutional Neural Network Structure

2.3 Face Recognition

Recognizing Faces from images or videos is a popular trending topic in the computer vision research
field. Many places and buildings have surveillance cameras for security proposes. Face recognition
systems are playing an important role in this field. Also, it is typically used in access control systems
by identity analysis which can be compared to biometrics systems like fingerprint or eye iris recognition
systems.

Face recognition is a topic that is receiving a significant attention with lot of approaches proposed.
All these methods can be distinguished in two main groups. The ones that do not use deep structures
"shallow" which ones that do "deep" as referred in [19].

Shallow methods are introduced in next subsections taking into account that the explanation will be
focused on deep architectures, what is the exploited theme in this work. Most face Recognition systems
have three main steps: pre-processing, feature extraction and classification as shown in Figure 6.

7

Figure 6: Diagram of a simple face recognition system

2.3.1 Pre-processing

While building a Face recognition system a good data set neds to be chosen to train the system achiev-
ing a good performance. Also, when implementing these systems in a real situation where there are for
example in access control cameras, most of the times the image to be analyzed is not just the face or the
lighting conditions are not always the same. In these cases some preprocessing algorithms are needed.

In deep architectures we don’t really care about the lighting conditions, instead it is preferred to have
the cropped version of the image containing just the face in our case. Usually a face recognition systems
take use of face detection algorithms like Haar cascade classifier proposed by Viola-Jones in [27] or
this approach using Convolutional Neural Networks proposed by the Yahoo team in [6]. So using face
detection before the recognition stage make the system able to recognize multiple faces from an image.
Face detection methods sometimes are a preprocessing for face recognition algorithms.

2.3.2 Feature Extraction

As it has been said, we can differentiate between shallow and deep structures. There is a basic differ-
ence between this two kind of methods, that is the step of feature extraction. For shallow structures,
there are some well established algorithms for example Eigenfaces [23], that are based on the dimen-
sionality reduction approach of Principal Component Analysis (PCA). Fisherfaces [16], which approach
is based on Fisher’s famous Linear Discriminant Analysis (LDA). Also some approaches like SIFT [15] or
SURF [1] used before for image matching, were applied in some works for this part of feature extraction
in recognition systems.

Deep structures do not need hand-crafted features, it means that using a Convolutional Neural Net-
work as a learning feature extractor can solve the problem, seen in Section 2.2. Actually Convolutional
Neural Networks architectures are achieving the actual state-of-the-art accuracy for face recognition.
DeepFace from Facebook research group proposed in [25] or VGGFace proposed in [19] from Oxford
University.

2.3.3 Classification

Once features from all samples are extracted, the next step is to assign a class to the image. Some-
times in typical face recognition systems two or more classifiers are combined from a wide variety of
classification methods when using a hand-crafted feature extractor. The mainly exploited classifiers for

8

supervised learning, can be Support Vector Machines.

In deep architectures, the classification stage is more or less the same for every related work. The
part of feature extraction can be differentiated by two commonly used methods as Figure 7 shows.

Figure 7: Two different methods for defining the feature extractor

There are several deep neural network architectures performing the actual state-of-the-art in face recog-
nition. Most of the times, the classification part is a fully-connected block containing two or three dense
hidden layers followed by a softmax classification layer. Some examples are DeepFace from Facebook
research group [25] and VGGFace, which is the commonly used VGG-16 pre-trained for faces by Oxford
University [19]. VGG possible architectures are shown in Figure 8, note that VGG-16 corresponds to
the D structure, which is the network structure used to run the experiments in this work as Section 4
establishes.

2.4 Understanding Convolutional Neural Networks

In this Section, we introduce a brief explanation of what convolutional layers from CNNs learn in convo-
lutional blocks. As described in Section 2.2, each convolution layer corresponds to a level of features.

Several approaches for understanding and visualizing Convolutional Neural Networks have been devel-
oped recently [30] in order to interpret what convolutional layers are learning. The most straight-forward
visualization technique is to examine the activations of the network during the forward pass.

These methods to analyze the network are useful to detect anomalies over the training process. For
example, if a high learning rate is chosen in training, the visualizations on some activation maps may be
zero for many different inputs, which can indicate what is called dead filters. In Figure 9, three randomly
chosen filters weight outputs for each convolutional block are shown for four identities.

Convolutional Neural Networks use learned filters to convolve the feature maps from the previous layer.
To invert this procedure, a deconvolutional network is used, which is basically the inverse of the convo-
lutional network using the transposed versions of its filters applied to the rectifier maps, in other words,
the filter have to be flipped vertically and horizontally as describe it in [30].

9

Figure 8: Table of VGG architectures, in this work the architecture "D is selected"

Figure 9: Randomly chosen weight layer outputs

2.5 Class Incremental Learning

Incremental Learning considers systems that can learn new tasks over a trained system, the main goal
is to retrain sequentially the model with new knowledge without losing the knowledge achieved before
for the old tasks.

Some concepts about transfer knowledge between networks are introduced in this Section and also
an explanation of how incremental learning works and its different proposed approaches in recent years.

Most of the methods proposed for continuous integration of new tasks to a system has to accomplish the
following. The resulting model has to preserve the old tasks performance while learning for new ones.
Some additional concepts that the author is going to study like Distillation Knowledge and incremental
fine-tuning are used to preserve the knowledge.

10

2.5.1 Fine-tuning

Transfer learning and fine-tuning methods are heavily exploited and always for the same reason. Usually
the data set size is not sufficient for the depth of the network. Then, these methods require of a pre-
trained model as a initialization. Usually the top layers are removed and replaced to adapt the network
to the presented problem.

It’s commonly used to pre-train a Deep Convolutional Neural Network with a very large data set (i.e.
ImageNet), and then use the weights of this model as a initialization of the new network as said in [11].
There are many ways for transfer learning, these are presented below.

Convolutional Neural Network as a feature extractor

Once a pre-trained Deep Convolutional Neural Network is available the top layer is replaced by a new
one having the desired outputs to solve the problem. In training stage, just the top layer recently added
has to be trainable and taking the rest of the network frozen as left-side of Figure 7 shows. Training the
rest of the network is computationally heavy and don’t give better results at all.

We can differentiate the feature extractor in two groups, the ones that contains the fully connected part of
the network, and the ones that not include any fully connected layer. The last ones takea just the feature
maps of the last convolutional layer which are called "bottleneck features", seen also in Figure 7 on the
right-side.

Fine-tuning the Convolutional Neural Network

This strategy is the same as explained in last point, but it’s not only about replacing the top layer and
retraining it freezing the networks for the other layers. Here in this case, all the network is retrained, also
instead of training all the layers, the layers that are desirable to be trained can be setted up as trainable.

Mostly the first convolutional layers are frozen, because as observed in Section 2.4, the earlier fea-
tures of the CNN are more generic (i.e edge detectors, color detectors...) and that’s why the training is
fixed in later layers, that content more specific details of the classes contained in the original data set.
Figure 10 shows an example of the commonly used way to finetune the VGG-16 network and what is
done in this work. Typically, the last convolutional block is set up as trainable like all the fully connected
block, so the network is learning how to extract the last features for the chosen data set.

Pre-trained models

Since the actual Deep Convolutional Neural Networks takes 2-3 weeks to train across multiple GPUs
on ImageNet data set, there are a lot of shared models around the web. It’s a common practice to take
a model trained by someone that does similar tasks and fine-tune it with the methods explained to solve
our problem. In Figure 7 a schema for using the Convolutional Neural Network as a feature extractor is
provided followed by the proposed architecture for fine-tuning the network used in this thesis as Figure
10 shows.

2.5.2 Distillation Knowledge

Distillation knowledge [8] is commonly used to squeeze the knowledge of a trained network into a smaller
one by using the outputs of the trained network as a soft targets instead of using the logits for every class,

seen in qi =
exp(gi)

n∑
j
exp(gi)

where it is reflected to the loss function when training l(θ) = −
n∑
i=1

δ′i ∗ log(qi), as

11

Figure 10: fine-tuning layers for this work is shown in left-side and the typical fine-tuning stage for VGG
is shown on right-side

described in [referencia distillation] where the logits are changed by δ′i =
(δi)

1
T∑

j(δj)
1
T

In the simplest form, this is also a case of transfer learning, the knowledge is transferred from one
network to another. Like every transfer learning stage, the knowledge of the model is preserved. When
training the new model, a transfer set is used, which consists on using a soft target distribution for each
case, so the new network is feeded by the old network outputs, that’s why the loss function do not look
to the logits anymore . Using this method the knowledge will be preserved as we can see [8].

2.5.3 Class Batch Learning

since the necessity for dealing with continuous data streams is vast, there is a growing number of ap-
proaches which replace fixed models with ones that can be able to adapt themselves continuously to the
stream data set as Figure 11 shows.

A frequently used approach called online learning can be seen as a special case of continuous learning,
which data set is not presented at once as seen in [2]. This approaches take data from online sources
and grow up the number of classes itself if some strong data to learn from is available, usually using
Support Vector Machines as a model to classify.

12

Taking this models to Deep Neural Networks field, lots of approaches are studied and are constantly

Figure 11: Model that adapts itself to new classes

under research. A decade ago, a published work done by Wilson and Martinez that compares batch
learning and online learning in neural networks [28]. They said that there are no practical advantage of
learning with mini-batches over online learning.

Novel proposed approaches like [29] deal with stream data sets duplicating the existing network, then
fine-tuning each network individually to later decide which of two networks has the better performance.
This method is relatively complex, memory-intensive and computationally demanding.

In this work, some novel approaches of incremental class learning will be introduced. These approaches
do not use the previous classes information to finetune the network for new tasks as seen [14, 20, 21, 10].
Some topics like Incremental fine-tuning, catastrophic forgetting and distillation are the baseline of this
novel approaches [20, 14]

2.5.4 Incremental fine-tuning

When talking of fine-tuning, we are talking about a kind of incremental learning where there is an initial
pre-trained model θt. Then for training to the new tasks θt+1, the initial model θt is taken in order to have
the weights of the network well initialized.

In fine-tuning stages, it’s required that the parameters do not vary too much keeping the learning rate as
low as possible to avoid rare performances on training stage.

Incremental learning uses fine-tuning in a different way, instead of replacing the top layer to adapt the
model to the new tasks, more nodes are added to the top layer to increase the number of classes to be
predicted. In other words, a new layer correspondent to the number of new classes is concatenated with
the old one, that contains the classification information for the old tasks.

The knowledge for the old classes has to be preserved while adding knowledge for the new ones. Some
approaches to deal with catastrophic forgetting in [12, 7], which basically take some information about
the old network outputs or using dual-network models [29].

13

2.5.5 State-of-the-art Incremental Learning

Multi-Task learning has been a field of research in the last few years, this systems are able to learn
different tasks jointly by exploiting its commons and differences. The tasks are learned in parallel while
using shared representations, meaning that the knowledge learned for a task can help other tasks to
improve its performance.

Lifelong Machine Learning Systems, which basically differentiates from Multi-Task learning by it’s incre-
mental and continuous learning property. Lots of related works in this field using the transfer knowledge
to learn for new tasks [8, 17, 11, 10].

Incremental learning systems can be categorized in two general approaches that trains deep networks
from data streams. The first approach is online learning, here the data set used is not static, so it’s
typical to have more data but also time constraints. Usually this method is also called online fine-tuning
because the learning of the network is based on Sigmoid Gradient Descendent (SGD). The deep net-
work is continuously fine-tuned with new data as the data is accumulated [17].

The second approach is called offline learning or batch learning, where the algorithm updates the net-
work parameters after consuming the whole batch of classes, instead of online learning where the algo-
rithm update the network parameters after learning from one training instance.

To deal with incremental learning stages there are basically two main used methods, which are dual-

Figure 12: Example of a stream of data that comes over time

network memory models and incremental fine-tuning models. Using a dual-network to deal with the
learning for new classes was heavily exploited in the last 90’s, and which performance is improved by
Motonobu Hattori in 2009 [7] heavily inspired by the complementary learning systems theory.There are
two networks, one with a small storage capacity and another one with a recurrent structure.

The second method is incremental fine-tuning, which is related to this work. Two interesting studies
that use this method are presented below [20, 14]. These systems basically are taking into account the
knowledge learned for the classes.

14

3 Related Work

In this Section is explained what the author have implemented, and why this methods [14, 20] are cho-
sen. The author will take use of VGG-16 network structure adding a Batch Normalization layer before
softmax layer, seen in Figure 10. A pre-trained VGG network with faces is available and provided by
Oxford University [19].

Since this two proposed methods are related and using most of the times the same techniques, a com-
parison will be done to conclude which method works better and why. Always comparing with fine-tuning
the entire output layer with all the classes seen so far. To conclude if it can be applied in face recognition
stages.

As explained in next Sections, the main difference between these methods is that one store some rep-
resentations to train when new classes comes in, and the second one do not store old samples to train
when more classes are available.

3.1 Incremental Classifier and Representation Learning (iCaRL)

Lifelong learning systems are able to learn multiple tasks in an incremental way, as said before, the input
has to be a stream of data in which examples of different classes occur at different times. Then in the
output for every new data that comes in, the system has to be able to classify for the classes observed
so far, and furthermore provide a competitive multi-class classifier. The computational requirements and
memory footprint remain bounded with respect to the number of classes seen so far.

iCaRL use information of old data to train for every new batch of classes coming in, instead of tak-
ing the whole data set for the old classes, this proposed method select the samples that better represent
the class by doing a nearest-mean class classification seen in Algorithm 1. So all the data for new
classes and the selected exemplars for old classes are putted together in order to preserve the knowl-
edge obtained before.

Let’s say there is a feature function φ : X ← Rd and a classifier defined by gy(x) = 1
ewi

for each

Input: - Y = {y1, . . . , xt} // Set of images for new classes.
- φ(x) // features for every sample
- µy // Set mean feature vectors (one for each class)
Output:
- Z = {y1, y2, . . . , yt} // Set of representations images for each class
for i← 1 to t do

µi ← 1
|{i:yi}|

∑
φ(xi)
{i:yi}

// Compute the average feature vectors

end
Zi∗ ← argmin

y∈Y
|φ(x)− µy| // Select number of representations for each class

return Z
Algorithm 1: SELECT REPRESENTATIONS Nearest-Class-Mean (NCM) classifier

y ∈ Y seen so far. Since the data set is a stream of data that comes in batches of classes, so there is
more than one class for every batch which can be defined as Xs, . . . , Xt where all representations in
Xy are of class Y.

To train for the new batch of classes, the classification and the representation layer are trained, keeping
the rest of the layers frozen. After the training process, the whole old data representation has to be

15

Figure 13: Schema of incremental training

recomputed by the actual feature function φ(x). Later has to re selected by the nearest-mean-class
of exemplars. It takes more computational time and it consumes memory because the exemplar set
is constantly growing in number of classes. To deal with it, a parameter that mark the total number of
representations that can be stored is considered. The Nearest-Class Mean algorithm is exploited in this
stage to take the most representative images for every class as seen in [4]1.

iCaRL relies on sets of exemplar images, it means that do not need any priory information about how
many classes will occur. For every trained batch of classes, the classifier has to achieve competitive
results. Some methods explained in last sections are used for training the model θs.

Principle of reharsal. To preform the update procedures for the model parameters for learning the

Figure 14: Schema of incremental training

16

representations, all the data of new representations is taken and also the data representations for the
earlier classes.

Distillation Knowledge. This method for transfer learning between networks is also used in order
to keep the knowledge for the old classes high while learning new classes at the same time. So the
knowledge is not transferred to other network, is used to learn in the same network. The loss function
called Knowledge Distillation loss found by Hinton [8] work well using the outputs of a network to well
approximate the outputs of another.

Taking a look to the loss function proposed [20], the function is separated in two terms. One term
for the classical classification loss using categorical cross entropy which represents the loss function on

the learning for new classes, defined by l(θ) = −
s−1∑
i=1

δy=yi ∗ log(gy(xi)) where δy=yi are the logits for

the new classes and gy(xi) are the predicted probabilities performed by the softmax classification layer.

The other term, has to preserve the knowledge for the old classes while the training for the new classes
is performed 2.5.2 proposed by Hinton which says that you can define the loss function in a distillation

knowledge stage by l(θ) = −
t∑
i=s

qy=yi ∗ log(gy(xi)) where qy=yi are the outputs of the current model for

the representations of the old classes which are called the exemplar representation sets. Distillation is
well studied by Zhizhong Li and Derek Hoiem in [14] that uses it not to transfer the knowledge from one
network to another but to transfer the knowledge learned before in the same network when new training
data for new classes in available seen in Section 3.2.

In Algorithm 2 the principal steps for Class-Incremental Classifier Learning algorithm can be observed
in different functions. Let’s suppose that there is a model firstly trained with some classes, which some
of the most representative images for each class are stored in exemplar sets. Then, some new data
for training new classes appear, so in order to train the network the exemplar sets and the data for
new classes has to be merged in mergeSets function making a training set. In order to finetune the
network for new classes, some new outputs are added and initialized to zero, which is also included in
finetuneNetwork function.

The implementation for training was simulated with streams of fixed batch classes. As it’s explained,
all the data of the new classes is used, instead of old data stored in exemplar sets, which representa-
tions are chosen by taking the most representative samples for each class seen so far.

Once the network is trained for the new classes, the exemplar sets has to be updated, so the features
for all the representations of the exemplar sets and for the new representations has to be performed to
later select the most representative samples for each class, included the new ones. After this two steps,
the exemplar sets are stored. Figures 13, 14 shows that when the model changes, the exemplar set also
changes. For old representations in exemplar sets, an update routine is called updateRepresentations
while for new representations, a select routine is also called selectRepresentations.

The number of exemplar representations for each old class has to be chosen by defining a number
of a total representations ntotal, which is related to the memory available for the system and also of the
total number of classes observed so far nclasses. So first there will be a lot of data for old classes, but
when new classes come in and the total space ntotal that was assigned to the exemplar sets, the num-
ber of representations has to be reduced by nrepresentations = round(ntotal

nclasses
), when nrepresentations

change, the exemplars stored for old classes has to be chosen again.

17

Input:
- X = {xs, . . . , xt} // Set of images for new classes.
- Z = {z1, . . . , zs−1} // Set of images representations for old classes.
- L = {ls, . . . , lt} //Labels for new classes
-O = {o1, . . . , os−1} // Predictions for old classes
- nrespresentations // Number of representations for class
- θs // Current model weights
Output:
- Z = {z1, z2, . . . , zt} // Set of representations images for each class
- θt // Model weights
Y,L← mergeSets(X,Z,L,O)// Merge image sets and labels vectors
θt, φt ← finetuneNetwork(θs, Y, L)
P ← computeFeatures(φt, Y)
Z ← selectAndUpdateRepresentations(Y, P, nrepresentations)
Z ← (z1, . . . , zt)
return Z

Algorithm 2: INCREMENTAL TRAINING

3.2 Learning Without Forgetting (LwF)

Another related work to deal with batches of classes presented by Li, Hoiem [14], the system is able to
incrementally train a single network for learning multiple tasks, which makes this method a little bit differ-
ent of the Incremental multi-class Representation learning explained in Section 3.1. The main difference
between this two methods is that iCaRL requires learning one classifier for any input that can predict the
observed classes, whilst this method introduced in this section, learns a separate classifier for each task
and each classifier is evaluated only on the data from its own.

Learning without forgetting is heavily inspired in Less Forgetting Learning [10] which preserves the per-

Figure 15: Proceature to train for new classes in both methods

formance for old tasks by preventing the shared representation to change. While Less Forgetting Learn-
ing method argues that task-specific decision boundaries should not change keeping the old tasks final
layer unchanged, against Learning without Forgetting that discourages the old task output to change,
and furthermore a jointly optimization is done for the shared representation and the final layer.

This approach rise with a combination of Distillation knowledge from networks while fine-tuning for each
batch of classes. So once a task is learned, the training data does not need to be stored to future apply it
for training as it’s seen in Section 3.1 where some representations for the old classes are stored in order
to preserve the knowledge.

Looking to Figure 16 it can be appreciated that when new classes are available, an output layer just

18

for the new classes is finetunned while keeping the rest of the network frozen, which give the initializa-
tion for its weights and its connections to jointly train with the old output layer in order to take good results
for both old and new classes. This procedure can be seen in Algorithm 3 provided in [14].

For each original task, the output probabilities for each image has to be close to the recorded output
from the original network, and that’s why the use of Knowledge Distillation loss to increase the weight for
smaller probabilities, like explained in Section 2.5.2 and well-detailed [8].

It deals with modified versions of the recorded and current probabilities. To preserve the knowledge
for old tasks, a loss balance weight λ0 is applied to not overfit the network with new tasks.

Input:
- θs // Shared parameters.
- θo // task specific parameters for each old task
- Xn, Yn // training data and ground truth on the new task.
Output:
- θ∗s , θ

∗
o , θ
∗
n // Updated parameters

Yo ← CNN(Xn, θs, θo)// Compute output of old tasks for new data
θn ← RandIt(|θn|)
Ys ← CNN(Xn, θs, θo)//Old task output
Yt ← CNN(Xn, θs, θn)//New task output
θ∗s , θ

∗
o , θ
∗
n ← argmin(λoLold(Yo, Ys) + Lnew(Yn, Yt) +R(θ∗s , θ

∗
o , θ
∗
n))

return θ∗s , θ
∗
o , θ
∗
n

Algorithm 3: INCREMENTAL TRAINING (LWF)

3.3 Implementation

The network is trained using standard back propagation with mini batches of size 32 and a weight decay
parameter of 0.008 for iCaRL method and 0.001 for LwF method. On the first batch of classes, when the
model hasn’t been trained yet, the learning rate is set at 1.0 in both methods because the networks do
not have information of any class yet. It will outperform the results.

As suggested in [20] when doing the experiments, the learning rate has to be smaller than the ex-
periments done in that work. A learning rate of 0.05 was chosen by trial and error experiments to find
the value that outperform the results. Also, some regularization for the learning rate after each class of
batches is considered in order to adapt the learning of the network for the new classes.

To perform the optimization in training, as typical in this kind of works, SGD is used because of its
convergence rate at the different parameters such as the learning rate and the weight decay. this is used
in a well-established network proposed by Oxford University in [22] that is VGG-16. Where its structure
is described in Figure 10

A pre-trained VGG network for face recognition is available since 2015 when they train VGG-16 for a
face recognition task in [19] which results seems to be more or less equal than the actual state-of-the-art
for face recognition that is FaceNet [25] with an accuracy of 97.35% over Labeled Faces in the Wild
dataset. To test it in an incremental learning stage, some modifications are done in top layers, as also is
described in Figure 10 where the layers that are in blue blocks are frozen during training. The red block
represents the finetunned layers. As it can be appreciate, the top layer was removed from VGGFace
which contains over 1000 outputs and replaced to another one which contains the desired outputs for
the number of classes of first batch.

19

To outperform the results originally obtained, a Batch Normalization layer was added before the soft-
max layer (fc8) as Figure 10 shows. As suggested in [20], adding a Batch Normalization layer, allow the
network to keep the weights before the softmax layer in a range to work with. Sometimes the weights of
the networks take high values that can saturate the activations, and Batch Normalization allows to keep
these values in a understandable values for the network.

4 Experiments

The report for the results of this two implemented and tested methods for incremental class represen-
tation learning is done over a well-known face classification data set: FaceScrub [18] which basically is
build by detecting faces in images returned from searches for public figures on Internet.

Lots of experiments designed to evaluate the performance of this two incremental learning methods
[20, 14]. To later conclude which one of this approaches is the most effective method to learn new
tasks while preserving the old ones as it’s explained in Sections 2, 3. iCaRL method requires of training
data for old classes, this data is selected in a representative way just taking the old samples data that
are relevant considered by a distance with the mean feature vector of each class as Section 3.1 explains.

On the other hand, Learning without forgetting method do not require the old data to be stored for
training for new classes, it means that when new classes are available LwF uses only images and labels
for the new tasks.

The experiments are designed to evaluate whether iCaRL and LwF are effective methods to learn new
tasks while preserving the performance for the old ones. This two methods are compared to fine-tuning,
which gives the best model accuracy. The fine-tuning results can’t be compared at all to the two incre-
mental learning approaches exploited in this work, because of all the data set seen so far is used to train
on every batch of classes, while the rest of the methods do not use all or any the samples for the old
classes, focusing only to new classes samples.

4.1 Data set

The FaceScrub dataset was created using this approach [18], followed by manually checking and clean-
ing the results. There are a total of 106,863 face images of 530 celebrities, with about 200 images per
person, which make it one of the largest public face dataset.

To build it, first the names are compiled of public figures from websites such as IMDb, also the genre
is taken to later use to label training data for the gender classifier (which not apply in this work). Every
name taken from public figures websites, is search in an image search engine such as Google, download
the returned images to apply the face detector to extract potential faces for each person.

4.2 Results

The comparison between the different methods are done over a stream of data, it means that the data
set add cumulatively new tasks to the system to simulate a scenario in which new faces in our case are
gradually added to the prediction vocabulary.

As it’s said we experiment on gradually adding FaceScrub tasks, which are taken from the cropped
faces version of the data set, since the cropped version for its identities faces is done.

20

Figure 16: FaceScrub data set

We can differentiate this two different methods that are being analyzed, as Section 3 explains, by analyz-
ing what we do during training. These methods are really similar but iCaRL in our case outperform the
continuous learning scenario proposed [20] for object recognition using CIFAR-100. It seems that de-
pends on the data set this methods work more or less better, if we compare object recognition and face
recognition stages and data sets. That’s why the importance of the data set is explained in Section 4.2.1.

An analysis with different initialization methods is done over the weights of the new layer to add new
capabilities to the system. In iCaRL method, two different initialization are suggested, and the conclusion
was that the system works better with zeros initialization instead of randomly initialization. Otherwise,
LwF method seems to outperform when the initialization is done by fine-tuning only the new added layer
to use it as initialization to later joint train for old and new tasks as Algorithm ?? shows.

For iCaRL method, some experiments are done in order to contrast the results to LwF and fine-tuning
methods. Since iCaRL uses a sets of exemplars for the old classes it’s quite interesting to take a look
in how many representations are needed in order to have competitive classification models after train-
ing for every batch of classes. First, we didn’t consider a total size for memory to store old exemplars,
analyzing the number of representations needed. The results in Figure ?? shows 3 curves for iCaRL
accuracy performance which corresponds to a number of representations of 5, 10 and 20 respectively.
As it’s shown there is not much differences between taking 10 or 20 representations per class, which
curve is similar to fine-tuning method.

As suggested in [20], to implement the system in real situations, a total memory size has to be cho-
sen since the system will grow every time new classes are available. It means that if the total number
of representations of the classes seen so far exceeds a certain chosen parameter ntotal, the represen-
tations for the exemplar sets has to be re chosen by keeping a number of representations that do not
exceed the total number of representations. In this case, it can be appreciated that the system has limi-
tations over the number of classes seen so far and its number of representations stored for each class.
In other words, the system is not able to grow it’s tasks to "infinite".

4.2.1 Importance of the data set

As observed in 3.1 compared to 3.2 and proved in Figure 17, iCaRL method is always achieving better
results than the other method. Comparing the results obtained using iCaRL method in face recognition
to the other ones published before [14, 10, 11] which proposes are mainly focusing on object recognition

21

tasks, it can be appreciated the importance of having a large enough dataset to feed the incremental
network.

To prove it, LwF method implemented by the author is achieving better results as iCaRL experiments
with LwF does [20] which achieve around 20% after 100 classes seen so far coming in batches of 10
classes, and around of 50% using iCaRL method. Looking at Figure 17 we can see that using more
rich data sets like FaceScrub that give us good quality images will outperform this incremental learning
methods. Instead, [20] used CIFAR-100 data set which contains images divided in 100 classes for object
recognition, every image have a size of 32x32 which is considered a low quality images.

4.2.2 Importance of the exemplar sets

As it’s seen in Section 3 comparing [20] and [14] and contrasted in Figure 17, iCaRL is achieving far
enough better results than LwF just for using some representative samples for each class.

As suggested in [20] a total number of representations is chosen ntotal, which accuracy curves can
be seen in Figure 17 as iCaRL adaptive. This experiments to adapt the total number of representations
for the exemplar sets are done over a maximum of 500 representations for all classes, with a initial num-
ber of 20 representions for each class. For batches of 10 classes and looking from 10 to 100 classes so
far the result show that the curve is under 20 representations curve after the maximum number of repre-
sentations is achieved. Also looking for batches of 50 classes, the maximum number of representations
are achieved earlier and that’s why its worse results but still performing better than LwF.

We can extract conclusions also looking at the Figures 18 and 19 where on the top side of both fig-
ures, the accuracy for old and new classes is shown during training. It can be appreciable that if a higher
number of representations for old classes in exemplar set is augmented, then the two curves gather
together.

If we analyze the adaptative method to chose the number of representations for each class in expemplar
sets it can be appreciated that the curves for old and new classes are more or less joined, but when the
total number of representations is achieved, the accuracy for old classes is reduced and the accuracy
for new classes is heavily augmented

In LwF, the results are quite different because of the absence of the exemplar set. As it’s explained
in Section 3.2, this method is not using old representations anymore and this is reflected to the curves
shown in Figures 17, 18 and 19. Comparing the accuracy for old classes and new classes in every batch
we can appreciate that LwF performance is better using a high batch class size. The results shows
that LwF results are better when batches of 50 classes are used. Instead of iCaRL method where the
performance is better when low number of classes are coming in every batch, but still performing better
results than LwF in higher batch class sizes.

4.2.3 Choosing "good" training parameters

The most important task performing the experiments is the correct chose of the hyperparameters, which
will change the results heavily when doing bad practices.

As said in [14] in the effect of lower learning rate of shared parameters which results seems that lower-
ing the learning rate does not prevent fine-tuning from significantly reducing original tasks performance,
"Simply Reducing the learning rate of shared layers is insufficient for original task preservation".

To outperform LwF with FaceScrub dataset, an initial high learning rate of 1.0 was chosen, in order
to later preserve the original tasks knowledge, in other words, train more for old tasks than for new ones.

22

Figure 17: Class Incremental Training.

Tested with FaceScrub data set with 10 (left-side) and 50 (right-side) classes per batch

After the initial model is trained, the learning rate can be reduced. This won’t get good results for new
tasks at the moment but the performance will be adapted later when new classes are coming. As it’s
seen in Figure 20 comparing performance of iCaRL and LwF during training in two different class batch
training stages.

Some trial and error experiments were done to adjust parameters like learning rate, decay, batch size
and the number of epochs. First, a high learning rate of 1.0 is used followed by a decay of 0.1 in 30
epochs for the training of the initial model (when first batch class comes in). The parameters chosen
initially are the same for iCaRL and LwF.

To contrast firstly learned classes with the new ones, another parameters were chosen in order to pre-
serve as maximum as possible the knowledge for the old classes. For LwF the learning rate is 0.04,
which is considerably low compared to the initial one, followed by a decay of 0.008 with a number of 70
epochs. LwF seems to work better using more epochs, always dealing with the preservation of knowl-
edge.

For iCaRL a learning rate of 0.05 is chosen followed by a decay of 0.008 with 20 epochs, which make
also iCaRL faster in training stage. Figure 20 shows that iCaRL training is more stable than LwF, and it’s
just because of the usage of the old representations.

To initialize the new nodes added when new classes are available for training was also chosen by a
trial and error experiments. For LwF and as it’s suggested in [14] the initialization is done by fine-tuning
only the output new layer and use the weights as the initialization to joint train with old outputs. iCaRL
initialization weights and connections are chosen to zero which seems to work better than random ini-
tialization.

We can conclude saying that this method perform good results if the representations of exemplar sets
are fixed instead of changing the representations if a maximum number of representations is achieved,
which performs bad results in comparision but stull performing better than LwF as Figure 17 shows

23

Figure 18: Class Incremental Training accuracy test for old and new classes (10 classes per batch).

Tested with FaceScrub data set with 5 (top left), 10 (top middle), 20 (top right), adaptative (bottom left)
number of representations and LwF (bottom right)

Figure 19: Class Incremental Training Accuracy test for old and new classes (50 classes per batch)

Tested with FaceScrub data set with 5 (top left), 10 (top middle), 20 (top right), adaptative (bottom left)
number of representations and LwF (bottom right)

24

Figure 20: Class Incremental Training evolution accuracy and loss.

Trained with FaceScrub data set in second batch of classes (top) and 5th batch of classes (bottom) for
both methods

25

5 Budget

This project is carried out using the Development Platform server from Image Processing Group (GPI)
from UPC, which make possible the execution of the experiments and test. All libraries used are open
source for non-commercial profit licence.

The project started at February 2017 and ends in July 2017, what summe a total of 5 months. The
dedication proposed by the project supervisors was to work 20 hours per week with weekly meetings
with supervisors in order to make a following to the project.

Two supervisors have assisted to the realization of this project, as it’s said, there where weekly meetings
of a duration of 1 hour. The supervisors fee is about 55e/hour. The author’s salary as a junior engineer
is around 2000e/month working full time. Since this project only require 20 hours of work per week the
author’s salary is around 1000e/month.

Finally, if the server was outsourced to a company like Google, which provide access to their servers
using Google Computing Cloud engine. Analyzing the needed hardware shown in Table 1 we can ap-
proximate the costs of its utilization by a total of 1.237,28$/month. Table 2 shows all the information
about the cost of this project that would be around 13.216,60e.

Hardware Model Properties

Graphics Unit Processor
(GPU)

NVIDIA TESLA k80
1 GPU
12 GB

CPU -
60 GB
16 Kernels

Storage - 500 GB

Table 1: Hardware Needed

Resources Cost/month Months Cost

Junior Engineer 1000e 5 5000e
Supervisor 1 220e 5 1100e
Supervisor 2 220e 5 1100e
Server 1.203,28e 5 6016,6 e

Total: 13216,6e

Table 2: Costs of the project

26

6 Conclusions and Future Work

The main motivation about this kind of research and its propose it’s to move Artificial Intelligence com-
munity beyond learning algorithms that considers the nature of systems that are able to learning over a
lifetime. That’s why the research is always to improve the limitations of the actual state-of-the-art pro-
poses published so far.

In this thesis it is shown how to use convolutional learned features extracted from VGG-16 to work
in a incremental way. Growing it number of classes using some proposed novel methods which are
achieving really good results on face recognition.

This work proposes a novel method published in the last year, but we have use it to solve the task
of face classification in an incremental way. The time consumption for training of large-scale data sets
as FaceScrub is a problem under constant research. The incremental learning methods analyzed in this
work are trying to solve it.

The only limitations that can be appreciated for iCaRL is the total number of representations stored
for preserving knowledge for the old classes. If the data set has an unlimited amount of data as in online
learning stages, this method performance will be limited to the maximum number of representations in
exemplar sets chosen.

Based on this work analysis, we conclude that incremental learning can be directly achieved just by
fine-tuning. We use fine-tuning basis to train a system that learn and retain knowledge at the same
time. It’s interesting the scalablity property of this systems, able to scale up a large number of training
examples.

The usage of a data set with cropped faces help to outperform the results. Also the iCaRL strategy
for learning the classifiers and the feature representations simultaneously. Observing that the quality of
the images is an important thing to take into account while using this method.

For future work try other architectures based on the combination of this two methods and its exten-
sions. Also, making the system robust to noisy samples since the chosen data set is a "clean" one.

On the other hand, the computational time taken from training the system by a incremental way com-
pared to train it with all training examples is not improved by this methods.

27

References

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF : Speeded Up Robust Features.

[2] H. Bekel, I. Bax, and G. Heidemann. Adaptive computer vision: Online learning for object recogni-
tion. Proc. Pattern Recognition Symposium (DAGM), 3175 of LN:447–454, 2004.

[3] Mirza Cilimkovic. Neural Networks and Back Propagation Algorithm.

[4] Piew Datta and Dennis F Kibler. Symbolic Nearest Mean Classifiers. Association for the Advance-
ment of Artificial Intelligence, pages 82–87, 1997.

[5] Jia Deng, Wei Dong, Richard Socher, Li-jia Li, Kai Li, and Li Fei-fei. ImageNet : A Large-Scale
Hierarchical Image Database. pages 2–9.

[6] Sachin Sudhakar Farfade, Mohammad Saberian, and Li-Jia Li. Multi-view Face Detection Using
Deep Convolutional Neural Networks. 2015.

[7] Motonobu Hattori. Avoiding catastrophic forgetting by a dual-network memory model using a chaotic
neural network. World Academy of Science Engineering and . . . , (36):853–857, 2009.

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. pages
1–9, 2015.

[9] Geoffrey E Hinton and Simon Osindero. A fast learning algorithm for deep belief nets âĹŮ 500 units
500 units. 2006.

[10] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting Learning in Deep Neural
Networks. XX(X):1–5, 2016.

[11] Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler. Fine-tuning Deep Neural
Networks in Continuous Learning Scenarios. ACCV 2016 Workshop on Interpretation and Visual-
ization of Deep Neural Nets, 2016.

[12] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. 2016.

[13] P. LeCun, Yann; Bottou, L.;Bengio, Y.;Haffner. Gradient-Based Learning Applied to Document
Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[14] Zhizhong Li and Derek Hoiem. Learning without forgetting. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9908 LNCS:614–629, 2016.

[15] David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints. pages 1–28, 2004.

[16] Vijayshree More and Abhay Wagh. Improved Fisher Face Approach for Human Recognition System
using Facial Biometrics. 2(2):135–139, 2012.

[17] Hyeonseob Nam and Bohyung Han. Learning Multi-Domain Convolutional Neural Networks for
Visual Tracking. 2015.

[18] Hong Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In 2014
IEEE International Conference on Image Processing, ICIP 2014, pages 343–347, 2014.

28

[19] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep Face Recognition. Procedings of
the British Machine Vision Conference 2015, (Section 3):41.1–41.12, 2015.

[20] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental Classifier and Representation Learning. 2016.

[21] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong Machine Learning Systems : Beyond Learn-
ing Algorithms. AAAI Spring Symposium Series, (Solomonoff 1989):49–55, 2013.

[22] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. International Conference on Learning Representations (ICRL), pages 1–14, 2015.

[23] Marijeta Slavkovi and Dubravka Jevti. Face Recognition Using Eigenface Approach *. 9(1):121–
130, 2012.

[24] Ilya Sutskever. Sequence to Sequence Learning with Neural Networks. pages 1–9.

[25] Y Taigman, M Yang, and M.A. Ranzato. Deepface: Closing the gap to humal-level performance in
face verification. CVPR IEEE Conference, pages 1701–1708, 2014.

[26] Donald R Tveter and Commercial Use. The Backprop Algorithm. Network, 1995.

[27] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. Proceed-
ings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
CVPR 2001, 1:I–511–I–518, 2001.

[28] D. Randall Wilson and Tony R. Martinez. The general inefficiency of batch training for gradient
descent learning. Neural Networks, 16(10):1429–1451, 2003.

[29] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng, and Zheng Zhang. Error-Driven Incremen-
tal Learning in Deep Convolutional Neural Network for Large-Scale Image Classification. MM ’14
Proceedings of the ACM International Conference on Multime, d:177–186, 2014.

[30] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 8689 LNCS(PART 1):818–833, 2014.

29

	Abstract
	Resum
	Resumen
	Acknowledgements
	Revision history and approval record
	Introduction
	Motivation
	Objectives
	Requirements and Specifications
	Work Plan
	Deviations
	Document Structure

	Literature review
	Deep Neural Networks
	Convolutional Neural Networks
	Face Recognition
	Pre-processing
	Feature Extraction
	Classification

	Understanding Convolutional Neural Networks
	Class Incremental Learning
	Fine-tuning
	Distillation Knowledge
	Class Batch Learning
	Incremental fine-tuning
	State-of-the-art Incremental Learning

	Related Work
	Incremental Classifier and Representation Learning (iCaRL)
	Learning Without Forgetting (LwF)
	Implementation

	Experiments
	Data set
	Results
	Importance of the data set
	Importance of the exemplar sets
	Choosing "good" training parameters

	Budget
	Conclusions and Future Work

