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ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA (URV)

Forecasting Financial Time Series
Using Multiple Kernel Learning
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Abstract

This thesis introduces a forecasting procedure based on Multiple Kernel Learning to predict and measure
the influence of several economic variables in the process of predicting the equity premium of the S&P 500
Index. In the experiments of Welch and Goyal they determined that, using linear models, those economic
variables had an unreliable effect on the predictive capabilities of the models. The experiments performed
in this thesis with MKL use the same data in an attempt to predict with non-linear models. The kernels
that are part of the MKL procedure are multivariate dynamic kernels adapted for time series. The presented
financial variables have a questionable impact on the predictive capabilities of the developed models due to
the data being noisy. Some of the kernel methods for time series may not be able to extract any relevant
information from exogenous variables, as they are matched in the results by a simple RBF kernel. MKL
shows a poor capacity at selecting the best combination of kernels as it is also matched by RBF, and even
the kernels that MKL uses. However the experimental results show that the presented methods have better
predictive capabilities than the linear models.
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1. Introduction

Financial gain is probably the best incentive to spark research in the fields of mathematics and computer
science. The biggest companies are in a perpetual cycle of self improvement, employing a vast amount of
resources to make theoretical and practical developments to outplay their business opponents. Organiza-
tions providing programming challenges offer enticing prices for the research teams that obtain the best
solutions to their problems. Companies that have online presence hire the best researchers in the fields that
may improve their internal algorithms. Being money such a successful motivator it is always interesting to
research how the economies develop and, if possible, how these developments could be predicted.

Predicting the nature of the market itself has been the objective of much research by the statistics
and machine learning groups. In particular the USA stock market returns have been used as data sets for
these researches, as the number of recorded information of it is enough to apply learning techniques. The
amount of information available does not make the problem easy however. The financial market is volatile,
dependant on politics, natural disasters, and business movements.

One of the most representative indicators of the American stock market is the Standard and Poor's
Index (S&P Index) and it has been the target of many prediction algorithms. Although the first approaches
to this predictive task would only use lagged versions of this variable (just try to predict the S&P Index of
tomorrow using the information of its past), soon researchers found new variables to add in to the predictive
models. Those variables were shown to increase the capabilities of said models and perform well.

However, the improvement was spurious. Further tests using different data sets or slightly different
techniques yielded unsatisfying results. The work performed by Welch and Goyal[40] offers a well-founded
answer, concluding that the variables introduced by those other researchers yielded data and model depen-
dent results. This put a slight stop to the creation and promulgation of these kind of variables, and the
models using variables that are not the S&P Index.

The current situation holds a somewhat void of improvement in the use of exogenous(not S&P Index)
variables. A common criticism to the work of Welch and Goyal is that they made use of mostly linear
solvers to test those exogenous variables. On the other hand, newer non-linear approaches to this problem
had been developed and tested with some degree of improvement using only the S&P Index. Very complex
techniques such as Multiple Kernel Learning[21] have been applied to financial time series yielding good
results, with the very interesting feature of providing a weighted vector to each of the input kernels, thus
creating a comparison of influence between them in the final model.

There is a gap in the current literature as there are no methods that use complex non-linear solutions to
exploit the exogenous variables. Non-linear models may unravel their importance or give another argument
against their use. Variety of experimentation is key to this issue so employing several algorithms, method-
ologies, and data representations is important to give redundancy to the results. Creating a document with
said results may help in the present discussion.

The objective of this thesis will be to determine which is the best kernel learning method for these series
and to ascertain what is the influence of the exogenous variables on the predictive models. The following
work includes:

• A presentation of new kernels for time series with a comparative evaluation of them.

• An experimental procedure that uses the MKL technique to obtain a combined model and weights
the composing kernels.

• An empirical comparison between validation techniques for the parameter tuning phase.
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This document has the following sections: a State of the Art on which the most recent and insightful
works on the field will be commented and analyzed, an introduction to the basics of kernel functions and
kernels for time series on the Kernel Theory section, a short review of the kernel learning methods (including
MKL) in the Kernel Learning section, an explanation of the data set which the experiments will be based
on in the Experimental Data section, the main experimental procedure of the task will be presented in
the Classification and Regression Experiment section, and the Exhaustive Experiment will describe more
wide-range tests performed on the data.

Part from the work presented in this thesis was summarized in an article and accepted in the International
Work Conference on Artificial Neural Networks (IWANN) in spring of 2017. The reference to the published
article can be found at https://link.springer.com/chapter/10.1007%2F978-3-319-59147-6_16.
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2. State of the Art

There is a long history of attempts to predict stock market returns by specifying a regression task using
lagged predictor variables independent of the stock market returns. Shiller [34], Campbell and Shiller [7],
Cochrane [11], among others, have studied the forecasting of future excess returns using the dividend price
ratio as predictor. Other popular predictor variables explored in the literature are the dividend yield, earnings
price ratio, dividend-to-earnings ratio, volatility, interest rates, exchange rates, consumption indices and
inflation rates (see, e.g., [19], [24], [28], [29] and [13] for a general discussion). The list of valuation ratios
sought of as forecasters of expected excess returns is much longer and show “... a pervasive pattern of
predictability across markets wherein the cashflow or price change one may have expected is not what is
forecast.” [13]. In view of this and further evidence showing the spurious nature of predictor models (mostly
linear regressions on the aforementioned valuation ratios), several authors have conducted extensive studies
on the forecasting performance of various economic variables and different models (to mention a few, e.g.,
[2], [6], [12], [40]). The work by Welch and Goyal [40] is of particular interest since the authors do a
comprehensive revision of the empirical performance of the most widely accepted variables as predictors
of equity premium, under linear regression models, and conclude that these models have poor predictive
capacity both in-sample and out-of-sample.

Predicting the market returns has been the object of debate by practitioners given that the data is
believed to be non-stationary and with a high degree of noise. The use of the previously mentioned
predictor variables has often been a point of controversy given their unreliable results. Among common
practises in investment, the ”buy-and-hold” strategy is based on buying stocks and holding them without
regard of the market. This is further supported by the hypothesis of the efficient market(Fama [18]), which
states that the market cannot be predicted and that no excess of return can be obtained by predicting the
market.

Regardless of the efficient market hypothesis, many approaches to predict market returns have been
developed. In particular, Support Vector Machine approaches with general kernels have been seen in the
literature to create such predictive models (see, e.g., [17], [30], [27], [36]). These kernels are, however, not
tailored to exploit the time dependency of the data. In this regard, the kernels created in [32] make use
of said structures. The work exposed in [21] goes further into the complexity of the algorithms, employing
Multiple Kernel Learning as a predictive model.
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3. Kernel Theory

The following sections contain a brief description of kernels, the conditions they have to meet to be able
to become a proper kernel, how a kernel matrix is defined and created, an introduction to kernels for time
series, the many kernels for time series introduced in the literature, and a new kernel developed for this
work.

3.1 Kernel basics

Kernels have various definitions depending on the context in which they are used. However, in this thesis,
its definition will be the one most frequently used in the statistical machine learning field.

Kernels[25] are two-place symmetric functions that return the inner product of the arguments in some
feature space, thereby inducing an implicit mapping that creates an image of the input into the desired
feature space. It is then possible to compare input data in a higher-dimensional space without the need of
calculating the exact coordinates of the transformation.

These functions are used in the task of dealing with data that cannot be related linearly. By using
a kernel as a similarity measure the input data can be projected into a feature space in which it can be
related linearly. The projection may be costly to be calculated however there are times in which it is not
necessary, the kernel can be calculated using other methods. The technique to evade the actual mapping
of samples is known as the ’kernel trick’ and it is widely used in machine learning applications.

Kernel functions can be defined as follows:

k(x , z) = 〈φ(x),φ(z)〉 (1)

where x , z ∈ X are input vectors. φ represents the mapping from the original feature space X into a
new feature space F as follows:

φ : x → φ(x) ∈ F (2)

3.2 Kernel Matrices and Positive Semi-Definiteness

Using kernel functions it possible to create a kernel matrix [25]. These matrices are particular cases of
Gram matrices, which are matrices of inner products of two data samples. In the case of kernel matrices
this inner product is substituted by the kernel function. The formulation of the kernel matrix is as follows:

Kx = [k(xi , xj)]i ,j∈I =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 (3)

where I is the space of indexes of all the samples.

Kernel matrices serve as the main data structure that will be used by the learning algorithms to create
a model. It synthesizes the information of the input data and the information about the features of the
data. It also serves as a validation method for the kernel function: any valid kernel function should produce
a symmetric and positive semi-definite kernel matrices.
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It is known that a function is a valid kernel function if and only if it induces positive semi-definite
(p.s.d.) matrices [25]. Said property ensures that methods of convex programming will converge to a
global solution using matrices created with those functions. This property is defined as follows:

n∑
i ,j=1

cicjk(xi , xj) ≥ 0 (4)

for all n ∈ N, x1, ..., xn ∈ X and c1, ..., cn ∈ R.

This property can be applied directly to kernel matrices defined using a p.s.d. kernel. Any operation
applied to a p.s.d. kernel matrix that does not alter that property will generate a viable kernel. Knowing
that some basic operations like the sum, product and limit may not change this property (using positive
operands), new kernels can be created applying such operations over existing kernels.

3.3 Kernels for time series

Time dependant data sets contain observations obtained with the same frequency. For instance, a data
set can have the values of river saline levels measured monthly. This creates a homogeneity on the time
stamps of each observation (they will always be separated by one month) but does not assure that a year,
for example, will be complete. Failures on the measuring process may occur and the missing observation
must be considered in a different way than typical missing data in other problems. The construction of
kernels also considers these factors.

Kernels for time series can be constructed using two approaches: structural similarity and model sim-
ilarity. Structural similarity employs methods to find an alignment of the data that makes possible the
comparison between series. Model similarity changes the structure of the data by constructing a higher
level representation of it and the comparison is performed using this new representation.

There are different philosophies on building time-dependant kernel functions. Two common approaches
are: to build a kernel function around a previously defined model that takes into account the time depen-
dency of the input data or to change the data in order to be used by existing and non-time dependant
similarity functions. Both options will be explored on the particular models introduced below.

Identifying the structure of the series can be helpful to find the best method to define predictive models.
A deterministic model works under the assumption that the data belongs to a determined function and uses
numerical analysis techniques to fill missing values. This undefined function is considered as a combination
of polynomial functions [22]. It is the simplest model that can be assumed in a time-series.

Real data sets are rarely deterministic, as the values usually deviate from a linear combination of
functions. Models that take into account this consideration are called Stochastic Models. In this kind of
model it is considered that future values depend on past values. This fact does not mean that Deterministic
Models are useless in time series, but their limitations must be understood.

Determining if a model is deterministic or stochastic often follows an experimental approach: a model of
the data is built using linear combinations of polynomial functions and the result is tested against the data.
There are also mathematical procedures to determine if a data set follows a deterministic model, like in [4],
in which they demonstrate the discriminant capability of a model based in singular value decomposition.
The Lag and Autocorrelation plots can also help to distinguish between said models.

Stochastic models are very wide in definition and assume less information about the underlying data.
Another assumption must be made in order to apply statistical models and, in the case of Stochastic
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Models, that assumption is second order stationarity.

The definition of stationarity states that the distribution of data of an stochastic process is invariant in
time. Also, the auto-covariance between Xt and Xt+τ only depends on the lag τ [31]. Given this definition
and assigning a value to the lag (which is the number of previous observations that should be taken into
account to predict the actual one) it is possible to apply some probabilistic models to the data, assuming
that the range in time defined by that variable is relevant.

On the other hand, Non-Stationary time series have their distribution moments change over time. The
DickeyFuller test[16] can be used to detect if a data set is Non-Stationary. Another way to determine it
is to plot the mean and the variance. If those values change strongly over time, the data might not be
Stationary. That property can also be proven by notable changes in auto-covariance or spectrum values
[31]. Box plots in particular can be useful to determine this.

Inside of Non-Stationary models, another assumption can be made in order to use statistical methods.
A Seasonality model assumes that the properties of the data change through time with defined patterns.
Seasonality can be detected by observing repeated patterns in the data, but that can be hard to ascertain.
Some experts [26] prefer to fit a model that takes into account seasonality and assess if this characteristic
was detected in the data.

Given that the context of the present work is financial time-series, it is generally understood that the
data is not stationary, which makes theoretically nonviable the use of the immense majority of methods. A
common practise is to work with successive differences of the series in order to make the data resemble a
stationary process.

3.4 Vector Auto-Regression Kernel

Vector Auto-Regression(VAR)[20] is an econometric model that relates the data of the observation at point
x(t) with a linear combination of lagged values of the observation. Each variable is defined by a function
that represents its changes over a defined period of time using past information of itself and other variables.
In order to fit a model, a lag parameter is provided, which defines how many time steps the function will
be looking at in the past to assess the linear combination parameters. Vector Auto-Regression is a model
by itself, capable of predicting values of new samples, but the information generated by it can also be used
to create a kernel.

Vector Auto-Regression kernels can be built using three steps:

1. Build two VAR models with two series and fit them using a certain number of lags.

2. Append the values of the transition matrices and intercepts of each series and calculate the Frobenius
norm over the difference of those values.

3. Apply the Radial Basis Function to the Frobenius distance to convert it to a similarity measure.

The VAR model that relates the data of the observation at point x(t) is the result of a linear combination
of all the variables of the observation. The formulation is as follows:

x(t) =
L∑

l=1

Alx(t − l) + b + εt (5)

6



where x(t) is the sample at time t, L is the number of lags of the model, A is the transition matrix
(a square matrix with the same dimensions as features has the data), b is the intercept (a vector of the
dimension equal to the number of features) and εt is the Gaussian noise at time t.

The VAR function can be used to build a model similarity kernel, as seen in [32]. In order to compare
VAR models it is interesting to consider the transition matrices and the intercept vectors. A simple
matrix can be built appending the intercept as an additional column of the transition. This results in
B̂ = (A1|A2|...|AL|[b]). In order to calculate the difference between series s1 and s2 the difference between
B̂s1 and B̂s2 is calculated and then the Frobenius norm is applied:

FD(s1, s2) =

√
Trace

{
(B̂s1 − B̂s2)(B̂s1 − B̂s2)T

}
(6)

Once this Frobenius distance is calculated, the distance can be transformed into a valid kernel using
the Radial Basis Function(RBF) kernel:

kVAR = exp

{
−FD(s1, s2)

2σ

}
(7)

The parameters of this kernel methodology are the number of lags L and σ. The value of L will be
fixed to five. σ will be set to the median Frobenius distance between the time series being compared. Both
these parameters are set following the indications of [32].

3.5 Global Alignment Kernel

Global Alignment(GA) is a generalization of a well-known family of distance and similarity measures called
Multivariate Dynamic Time Warping(MDTW) introduced in [33]. In order to understand Global Alignment
it is necessary to explain how MDTW works in the context of time series and which are its drawbacks.

The objective of Dynamic Time Warping is to measure the distance between two series. In order to do
so, both series should be aligned. The core of the problem is to determine the best alignment between the
two series and, using that alignment, measure their similarity.

An alignment in MDTW is represented by a set of relationships between a point in the series and another
point of the same series or the other one. Considering s1 and s2 as two time series, those relationships are
the following: s1(t) with s2(t) denoted by →, s1(t) with s1(t + 1) denoted by ↑ and s1(t) with s2(t + 1)
denoted by ↗.

The relationships are represented as two integer vectors π1,π2 of the same length with binary increases.
Each item of the vectors is a relationship between elements of the series. The length of the vectors is always
equal to or less than the length of the smallest series. Each of the previously mentioned relationships can
be represented on those vectors as follows: (0, 1) for →, (1, 0) for ↑ and (1, 1) for ↗. Intuitively, each
vector π1(t) indicates an element of s1 that forms a relationship with the element π2(t) of s2. For the
sake of simplicity the two vectors that represent the alignment will be denoted as π. Those alignments, by
definition, only consider values of zero or one lag in both series.

After obtaining a satisfying alignment, the distance between the series can be obtained as follows:

Dπ =

|π|∑
i=1

d(xπ1(i), yπ2(i)) (8)
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Figure 1: Multivariate Dynamic Time Warping. Source: [37]

where the distance function d can be any metric, most commonly the Euclidean distance.

The presented algorithm is capable of finding more than one alignment. The selected alignment will
be the one that minimizes the distance between the series. The formulation of the final MDTW distance
is as follows:

MDTW (s1, s2) =
1

|π∗|
min

π∈A(s1,s2)
Dπ(s1, s2) (9)

where |π∗| is the length of the alignment with less distance and A is the set that contains all possible
alignments π.

This distance measurement does not fulfill the positive semi-definite requirement to form a kernel,
even after applying the Radial Basis Function. For this reason the Global Alignment, explained in [15],
generalization can be more widely applied, which delivers correct kernels and enables the creation of a
structural similarity kernel.

Global Alignment follows the same computational steps as MDTW. However, instead of selecting the
alignment with minimum distance, it considers all the alignments. This makes kernels defined by this
metric positive semi-definite under mild assumptions. This is based on the notion that all alignments
provide information about the similarities between both series.

The formulation of this kernel function can be expressed using several distance metrics. The following
formula is the one used in the context of the thesis:

kGA(s1, s2) =
∑

π∈A(s1,s2)

e−Dπ(s1,s2) =
∑

π∈A(s1,s2)

|π|∏
i=1

k(xπ1(i).yπ2(i)) (10)
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where,

k(s1, s2) =
1
2 exp(− 1

σ2 ‖x − y‖2)

1− 1
2 exp(− 1

σ2 ‖x − y‖2)
(11)

where x and y are elements of s1 and s2 and σ is a parameter which is obtained from the adaptive
grid: σ ∈ {0.2, 0.4, ..., 2} · median(‖x(t1) − y(t2‖) ·

√
median(|x(t1|), where x(t1) and y(t2) are samples

in the series. In [32] they use a rank-based approach to obtain that parameter. They retrieve the pair
of observations at which the output variable variation reaches minimum in the series. This is an adapted
formulation from the original proposed by [15] in which the points are chosen randomly.

An improvement over GA was introduced with the name of Fast Global Alignment or Triangular Global
Alignment. This improved version aims toward reducing the computational time of the procedure. That is
accomplished by using an extra parameter T that restricts the number of alignments taken into account
during the final calculation of the kGA. In particular, lower values of T make the kernel function use
alignments close to the diagonal. Increasing the value of T increases the range of alignments that are
taken into account.

3.6 Multivariate Dynamic Euclidean Distance Kernel

In the same line as Global Alignment Kernel the Multivariate Dynamic Euclidean Distance Kernel (MDED),
introduced in [32] is a structural similarity model that creates an alignment of data between two series
of different size in order to be able to compute the distance measure. MDED opts for a much simpler
approach, as it removes the first elements of the longest series until it matches the size of the shortest time
series.

Even if this alignment is potentially worse in most of the cases with respect to MDTW, MDED is
computationally less expensive. The approach is also backed by financial theory: observations generated
in later time stamps contain information from older ones.

Having that L1 6 L2 where L1 and L2 are the lengths of vectors s1 and s2 respectively, this alignment
is defined in the notation of MDTW as π1 = [0, 1, 2, ..., L1 − 1, L1] and π2 = [L2 − (L1 − 1), L2 − (L1 −
2), ..., L2 − 1, L2]. Using said alignment, the calculation of the distance between the series is done as in
eq. 8. Again, the metric employed is the Euclidean distance. In a similar line to the kVAR calculation, it
is necessary to calculate the RBF kernel using the defined dissimilarity measure in order to obtain a p.s.d.
kernel:

kMDED = exp

{
−Dπ(s1, s2)

2σ

}
(12)

The parameter of this kernel function, σ is estimated using the median of all Dπ of the available data,
as suggested in the work that introduces the algorithm [32].

3.7 Multivariate Dynamic Arc-Cosine Kernel

Arc-Cosine kernels have interesting properties[10]. Their behaviour is similar to a neural network with
one infinite hidden layer. This kernel function can be defined using different degrees that have different
properties with slim variations in formulation. In the authors define most of this properties and make an

9



Forecasting Time Series using MKL

experimental comparison of Arc-Cosine kernels with Radial Basis Functions. They obtain good results on
challenging data sets, surpassing other SVM, and comparable results with deep belief networks.

The basic formulation of the Arc-Cosine kernel function depends on the angle between the samples.
The angle between samples can be defined with the following formulation:

θ = cos−1

(
sT1 s2

‖s1‖‖s2‖

)
(13)

The formulation of the function is defined by the degree n, which regulates its complexity. The kernel
function can be expressed as follows:

kn(s1, s2) =
1

π
‖s1‖n‖s2‖nJn(θ) (14)

Jn is a family of functions that analyze the complex dependencies of the angle. The formulation is
quite complex for an arbitrary value of n. However, in the context of this thesis, only n = 0 and n = 1 will
be considered. The different formulations for both this degrees are:

J0(θ) = π − θ (15)

J1(θ) = sinθ + (π − θ)cosθ (16)

Arc-Cosine kernels have different properties depending on the degree of the formulation, with many
complex implications that can be found in the referenced work. This kernel function only has as parameter
the degree, n, which has a small window of tuning. It makes that this kernel function has potentially bad
results compared to other kernel functions that allow some parametrisation.

Arc-Cosine kernels as defined in [10] and, in the same line as the Euclidean Distance Kernel, are created
to work with complete data. In order to work with time series an alignment must be used to obtain input
data for the formula, thus creating a structural similarity model. The chosen alignment is the one presented
in 3.6 for its simplicity and re-usability.
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4. Kernel Learning

After determining and forming the appropriate kernel matrix using the functions described in the previous
section, a model is built to fit to the data and provide predictive capabilities. Kernel learning methods
provide a process to create such models and tools to use them for prediction tasks.

The next sections will describe both general and particular kernel learning models: first a brief intro-
duction on building Support Vector Machines for single kernels functions; second a conceptual description
of Multiple Kernel Learning; and finally two particular MKL algorithms that will be employed in the tests.

4.1 Support Vector Machines

Support Vector Machines(SVM)[38] are predictive models. The learning algorithm in the case of classifi-
cation is designed to create the biggest separation possible between samples of different classes. This is
accomplished by creating a separating hyper-plane that divides the samples in two groups. The distance
between this hyper-plane and the closest samples of each class is called margin and the algorithm max-
imizes it. The samples that are in the margin are called support vectors and they define the shape of
the hyper-plane. Similarly the regression techniques tries to create a hyper-plane that has the minimum
distance to the samples as possible, considering a margin for errors.

The simplest formulation of this technique for classification is the following:

min
1

2
wTw (17)

subject to

yi (wT xi + b) > 1, i = 1, ..., m (18)

where w is the normal vector to the hyper-plane, b is the offset of the hyper-plane from the origin, x
are the training samples and y are the training tags. The formulation of the regression problem[35] only
changes the conditions of the equation of the classification problem:

yi − wT x − b 6 ε

wT x + b − yi 6 ε
(19)

where ε determines the maximum deviation from the function defined by f (x) = w tx + b to the
samples. This formulation, however, does not allow non-linearly comparable data to be related correctly
and the model is not influenced by the user with any parameter. In order to address those features,
ν-SVM[8] can be used for the classification problem:

min
1

2
wTw − νρ+

1

m

m∑
i=1

ξi (20)

subject to

yi (wTφ(xi ) + b) > ρ− ξi , i = 1, ..., m

ξi > 0, ρ > 0
(21)

11
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where ρ is a free parameter that serves as threshold, ξi are the residual errors and φ is a function that
maps the data to a higher dimensional space (a kernel in the context of this thesis). A similar formulation
can be applied to the regression problem[9]:

min
1

2
wTw + C

(
νε+

1

m

m∑
i=1

(ξi + ξ∗i )

)
(22)

subject to

(wTφ(xi ) + b)− yi 6 ε+ ξi ,

yi − (wTφ(xi ) + b) 6 ε+ ξ∗i

ξi , ξ
∗
i > 0, i = 1, ..., m, ε > 0.

(23)

where C is the regularization parameter. ν is an interesting parameter in both problems. It serves both as
an upper bound for the margin errors and a lower bound for the number of support vectors with respect
to the number of training samples. Different values of this parameter can make the model behave in
substantially different ways so its values should be chosen carefully.

4.2 Multiple Kernel Learning

Multiple Kernel Learning(MKL)[23] is a research field that aims to find the best combination of kernels to
solve a task. It is possible for a problem to have several kernel functions that cover different characteristics
of the data, or different representations of the same data. Those procedures create different kernel matrices
that can be used to train a predictive model. However, it is also possible to combine the information of
those matrices into a single combined matrix of kernels. MKL makes it possible to combine in the same
predictive model information obtained using different techniques.

The mathematical formulation of this process is the following:

kη(xi , xj) = fη(
{

km(xm
i , xm

j )
}P
m=1
|η), (24)

where kη represents the combined kernel, fη is the combination (linear or non-linear) function, km represents
a kernel function for a set of P kernels and η parametrizes the combination function. This particular
formulation is for the case of the parameters of the combination function being fixed.

The combination functions of MKL procedures often obtain a vector of weights and perform a linear
combination of the kernel matrices or functions weighted by the obtained vector. In order to infer the
vector of weights, several approaches can be used. One of the most employed in practise is the optimization
procedure by which the kernel weights are obtained using an optimization algorithm following a certain
criteria. In the case of the convex sum of weights (all weights must be positive and sum one) the general
optimization procedure is the following:

arg max
ω

A(ωk, Y ), (25)

where ω is the vector of weights, k is the list of input kernel functions, Y is the vector of response
values and A is a similarity measure.

Two algorithms to perform this task are employed in the development of this work. EasyMKL, a
classification approach of MKL based on the probability distribution of each class, and Center Alignment,
a MKL algorithm for regression based on similarity measures between kernel matrices.
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Figure 2: Multiple Kernel Learning general procedure. Ki are kernel matrices, wi are the weights computed
by the algorithm, and Km is the combined kernel matrix.

4.3 EasyMKL

The EasyMKL[1] algorithm obtains the parameters of the combination function using an optimization
approach, in particular solves a max-min problem involving the parameters of the combination function
η and the probability distribution of each class γ. After the η weights are obtained they are combined
convexly (the optimization restrictions ensure that the weights are positive and sum one). The l-1 norm is
used as a structural risk function to guide the optimization. As base learner it uses Kernel Optimization
of the Margin Distribution(KOMD), a kernel classifier that performs direct optimization of the margin
distribution.

The formulation of this approach starts with defining the convex combination:

kη =
P∑

m=1

ηmkm, 0 6 ηm 6 1, (26)

where, in this case, ηm is the assigned weight to each kernel matrix. The initial optimization equation is:

max
η:‖η‖=1

min
γ∈Γ

Q(η, γ) = max
η:‖η‖=1

min
γ∈Γ

(1− λ)γT ŷ(
P∑
m

ηmk̂m) ŷγ + λ ‖γ‖2 (27)

where λ is an exogenous parameter of the optimization process, ŷ is the vector of training set classes and
k̂m is a kernel matrix of the training set. Using dη(γ), which is a vector containing all dm(γ) = γT ŷ k̂mŷγ,
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the formulation of the problem can be simplified to:

min
γ∈Γ

(1− λ)η̃∗dη(γ) + λ ‖γ‖2
2 (28)

where,

η̃∗ =
dη(γ) ‖dη(γ)‖1

‖dη(γ)‖2 ‖dη(γ)‖2

(29)

The implementation of this algorithm is quite simple, as a optimization MKL algorithm. The function
to minimize is 28 subject to several constraints presented in the introduction of this technique. The
authors also provide a pseudo-code for a greedy version of the algorithm in one of the appendixes for better
comprehension.

As commented previously, the base learner is KOMD. That classification method is the internal proce-
dure that the EasyMKL method uses for obtaining results and compute the optimized parameters. Com-
mon implementations of this method include the capability of predicting values using the KOMD classifier.
However, in the context of this thesis, the best procedure is using the parameters calculated by EasyMKL,
calculating the combined kernel matrix, and using that matrix to train a Support Vector Machine. This
makes the built system capable of more accurate predictions as the ν parameter is of capital importance
for these kernels.

4.4 Center Alignment MKL

This algorithm performs kernel alignment using centered alignment[14], which is a similarity measure that
can be used to compare kernel matrices. The first step in this procedure is to obtain centered kernel
matrices, which are defined as each kernel matrix itself minus the expected value of the kernel function.
Centering the features is a process that also centers the resulting kernel matrix which, in turn, improves
the performance of the algorithm. Centering also solves previous problems with unbalanced data sets. This
process effectively centers the feature mappings in the kernel. This transformation can be defined as:

kc =

[
I − 11T

F

]
k

[
I − 11T

F

]
, (30)

where I is the identity matrix, F is the number of features, 1 is a vector of ones of 1xF elements. kc
is positive semi-definite as it is defined as an inner product.

The MKL algorithm can be constructed using this formulation. Weights are calculated by maximizing
the alignment between the combined kernel matrix and the target kernel matrix. The resulting weights can
be calculated using simple quadratic programming optimization techniques. This particular formulation is
for the convex version of the process:

η̃∗ = argmax
η∈η̃

ηTaaTη

ηTMη
, (31)

where

a = (〈k1c , yyT 〉F , ..., 〈kPc , yyT 〉F ) (32)

where η̃ is the set of possible weights with convex restrictions, a is a vector which represents the
Frobenius distance between each centered kernel matrix to the response kernel matrix, M is a symmetric
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matrix that contains the Frobenius distances for each combination of kernel matrices kjc and klc in j , l ∈
{1, P}. The implementation of this algorithm is also straight forward: equation 31 is introduced in a
quadratic programming optimization algorithm with the problem constraints presented in the referenced
work, obtaining the weights in the process.
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5. Experimental Data

The experiments in this thesis use the same data as in [40] and are performed with a similar set of variables.
It is a data set that comprises several financial features measured monthly, quarterly and yearly in the range
of years between 1871 and 2005. It includes information from several sources, which will be commented
besides the explanation of the features.

The objective of the work presented in [40] is to determine if several variables deemed by several
researchers as predictors of financial returns have any real impact in general circumstances. The authors
perform their experiment using mostly linear regression and comparing the impact of such variables under
those models. Their objective is to compare all the variables fairly and determine which of them have an
impact on the prediction of S&P 500 equity premium. They determine that all of them have questionable
impact.

The objective of this work is to use a subset of those variables described in [40] with non-linear models.
The data set offered by the authors of [40] contains many features, many more that is computationally
possible to compare in the time frame for this thesis. For this reason, a selected set of features (either
extracted or derived from the original data) will be employed in this work. What follows is the list of the
terminology used for the target value and features, and a short description comparing them.

Target value

Equity Premium: A representation of the stock market returns, in this case of the S&P 500. It is calculated
combining several features from the original data ept = log((Indext + D12t)/Indext−1)− log(Rfreet + 1)
where Rfree is the risk-free rate. This feature is theoretically the return rate of an investment with zero
risk, however in practice it is obtained from the interest rate of a three month U.S. Treasury bill. The
variables associated with Index and D12 are the S&P 500 index and the dividends, respectively, and will
be discussed in later sections.

Features

Stock Returns: The original problem uses S&P 500 index (also mentioned as SPX or simply Index) returns
obtained from Center for Research in Security Press (CRSP) and the website of Robert Shiller. This variable
encapsulates the market capitalizations of the largest public companies and serves as an indicator of the
U.S. economy. In the context of this problem, SPX will be considered the endogenous variable.

Dividend Price Ratio: Both this feature and the following are dependent on the dividends(D12), which
are a moving sum with a window of 12 months of the dividends paid on the S&P 500 index. The dividends
data is obtained from the Shiller’s website and the S&P Corporation. The formula for the Dividend Price
Ratio is dpt = log(D12t)− log(Indext).

Dividend Yield: Very similar to Dividend Price, but Dividend Yield considers past values of SPX
dyt = log(D12t)− log(Indext−1).

Earning Price: In a similar line to the features created using dividends, earning price(E 12) is the
moving sum of earnings from S&P 500 index in a window of 12 months. Part of this data is extracted
from Shiller’s website and the other part is the result from an interpolation process by the authors. The
Earning Price is formulated as ep = log(E 12t)− log(Indext).
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Stock Variance: It is a variable that encapsulates the sum of daily returns of SPX. This data was
obtained by the authors with the help of G. William Schwert and CRSP.

Book-to-market ratio: It is the ratio of book value to market value for the Dow Jones Industrial
Average. For the months from March to December, this is computed by dividing book value at the end of
the previous year by the price at the end of the current month. For the months of January and February,
this is computed by dividing book value at the end of two years ago by the price at the end of the current
month. Book values from 1920 to 2005 come from Value Lines website.
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6. Classification and Regression Experiment

As stated in the introduction, the objective of this work is to re-examine the experiments performed by
Goyal and Welch in [40] with kernel functions and using multiple kernel learning to weight each feature in
order to determine its relative influence in the prediction of the equity premium of SPX.

The experiment is divided in two tasks: regression and classification. The objective of the regression
problem will be to predict as accurately as possible the equity premium of the next month. The classification
task uses the sign of the equity premium of the next month instead. Positive values of this metric indicate
good preconditions to hold a share and negative values indicate a proper time to sell those shares. The
reason behind performing both these tasks is to provide a robust response to the usability of the proposed
features.

The experimental process follows two phases. In the first phase only endogenous variables will be used.
All the kernel methods will be evaluated individually and a Multiple Kernel Learning model will be built
using those kernel functions as well. The objective of this first phase is to determine which method performs
better in the prediction task. The second phase uses the exogenous variables over the best model of phase
one. For each variable, a data frame is built and its influence on the result is observed using MKL. Different
combinations of variables and lags will be used. All these experiments will be explained in the following
sections.

Data Preparation

Kernel methods for time series do not work with the same data structures as general ones. Kernel functions
as VAR or GA require data structures that are comprised of a window of observations in order to extract
temporal relationships between them. Those data structures in this context will be blocks of a given size
composed of sequential observations. The data compression process transforms the raw original financial
information into several blocks of data. Knowing that the observation frequency of the data is monthly, an
intuitive way of creating blocks is to build yearly data structures containing 12 observations each. Each of
these blocks will be considered as a data point inside of the problem. Kernel matrices will be built applying
the different kernel functions to each pair of data points inside of a set.

The sets of data points can be defined in several ways. The classical approach is to divide the available,
labeled data in to three sets: a set to train the model, a set to validate the parameters and a set to test the
model. Although this approach is very common and applicable to most problems, time series behaves in a
different way. For instance, a common method to obtain these sets is using N-Fold Cross-Validation. In a
time dependent problem this methodology allows to test a model with a set of data older than the data
used to train the model, which is paradoxical. Leave-N-Out solves partially this problem but introduces a
new one, which is the time difference between the set of data used to train the model and the set destined
to testing. Trying to predict a result in the current year using data from seven years ago may result in
misleading performance. Time dependent models are built considering that they should be evaluated with
data of the near future. In order to reduce these effects a moving window approach will be employed.

In this thesis the moving window is defined as a set of data points with a fixed number of elements
or years. After a window’s data is used to train, validate, and test a model the next window will start
one year later with the same number of elements. This window will be divided inside the problem in train,
validation and test sets. In order to respect the sequential nature of the problem only the last data point
will be used as test data. Validation and train sets will contain a preselected number of samples, 2 and 20
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respectively. The size of the window in this case is 23 (the sum of the elements of the three sets).

Figure 3: Schema of the data preparation for this task. The first object(left) contains all monthly obser-
vations which are divided in yearly blocks of data(middle) to be part of windows of data points(right).

The output variable of this process varies depending on the task that is being evaluated. As introduced,
the equity premium is the value to predict in the task of regression. The classification task uses only the
sign to create a binary problem. The vector of the true output variables is computed before starting any
model building and uses the value of the first month of the next year.

Working with time dependant models introduces an important dependency with past observations of
the same variable. It is a common practise to include several lagged observations to increase the information
provided to the model and form better temporal models. This practise will be applied to all the predictor
variables, with different configurations and quantities of lags.

Performance Metrics

Metrics are strongly related to the type of task being performed. The results of a regression task are real
values and they must be compared with the true value. In this case, the model will predict the equity
premium of the following month and it will be compared with the true value. Mean Squared Error is a very
common performance metric defined as:

MSE =
1

n

n∑
i=1

(ŷi − yi )
2 (33)

Three different errors will be taken into account in the results: train error, validation error and test
error. Test error measures the performance of the models against data out of sample, train error does the
same for the in sample data and validation error helps to determine if the validation procedure is working
correctly.

The performance metric selected for the classification task is the accuracy, defined as the number of
correctly classified samples over the total number of samples. This simple metric is selected because it is
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intuitive to use in classification problems and it is easy to compare models using it. This metric will also
be applied to training, validation and test predictions.

The other metric employed to display results is the set of weights of the multiple kernel learning model.
As stated in the definition of the work the weights of a multiple kernel learning can be helpful to determine
the relative importance of each kernel. This metric will help to determine which kernel function creates the
best models from the data and which kernel matrix, constructed with the different variables, has a higher
impact on the prediction of the results.

Validation methods

The process of parameter tuning introduces a new data division problem inside each window, but with
several changes with respect to the main approach. Having a concealed, small dataset for validation
purposes results in destining only a few samples to predicting and obtaining performance metric for each
parameter combination. Many implementations apply out-of-sample as a simple solution however there are
arguments to also use K-Fold Cross-Validation. In this thesis, results produced by both will be reported.
Although in past sections both these techniques have been discouraged, the problem to solve is not the
same. In this section the algorithms will be used to find the best set of parameters for the final model so,
using for instance Cross-Validation, does not build a model with future data, only uses it to find the set of
model parameters.

The authors of [3] argue that the use of K-Fold Cross-Validation(CV) is possible under several circum-
stances. In their work they state that this methodology is not used by many practitioners because it employs
future data. The use of not-known data during the evaluation process can change the distribution of the
resulting model and also alters the order of the observations when the folds are rearranged, eliminating
natural relationships. However commonly used methods, as out-of-sample, do not use the available data
in an efficient way. The research work performed in [3] suggest that the common effects of using CV are
negligible under some conditions. Those conditions are:

• Independence between signals

• Stationarity of the distribution of the data

• The data must be used in an auto-regressive model

The authors also comment that their demonstration is applicable to other lagged non-parametric models.
They demonstrate those claims by performing several experiments using data with different underlying
distributions. The models increase their predictive capability using CV when the data is generated by an
auto-regressive model. However, if the data is seasonal, CV performs worst that the rest of the models.
Given the assumptions about the data that this thesis assumes it is only fitting to include both validation
procedures and observe how they compare.

Methodology

The problem’s methodology is divided in two steps. The first is to determine which is the best single or
combination of kernel functions to perform the described predictive task. The second is to use the selected
method to determine the relative importance of each exogenous variable using the weights of the trained
Multiple Kernel Learning model.
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The first step follows the classical methodology of model comparison: perform a predictive task using
the same data and compare the results using a predefined metric. The kernel functions defined in 3 will
be used training a ν-SVR or a MKL model. The results of each experiment will be shown in a comparative
table. The process includes parameter tuning for each of the models. In the case of the single kernel
functions, the creation and evaluation of the model is straight forward: a support vector machine is built
and fitted using the training data and tested or validated with the rest of the data. In the case of Multiple
Kernel Learning, all kernel functions introduced in 3 will be used to create several Gram Matrices that
will become the inputs for the MKL procedure. The implementation of KernelAlign for regression lacks
of a built-in method to perform predictions, for this reason the resulting weights will be used to create a
combined matrix that will be the input to a ν-SVR, which will become the predictive model. EasyMKL has
an internal predictor, however the results are rarely good, as it lacks many of the parameters that Support
Vector Machine permits. In a similar manner to the regression tasks, the combined kernel matrix can
be feed to a ν-SVM and this methodology increases the predictive capability of the model. The method
selected in this step will be considered as the internal method.

The second step tries to determine the relative importance of each exogenous variable by using the
weights of MKL, the external method. The MKL must be feed with a list of matrices, each one containing
a different variable combination. To create such matrices the procedure defines data frames, which are
groups of yearly data containing different features. The input list to the problem contains one data frame
for each of the five exogenous variables, one data frame with only the endogenous variable and one data
frame with all the variables. The data frames containing exogenous variables also contain a certain number
of lags of the endogenous variable. The result of the MKL procedure will generate a weight for each data
frame, thus weighting the relative importance of each variable. Each data frame will contain the training
and validation data for each internal method, creating a kernel matrix that will be included in the list of
inputs to MKL. After the computation, the performance of the model can be measured using the predefined
performance metric for each task and the distribution of weights.

Using this representation, the input of each experiment will be a list containing seven matrices encap-
sulating the following features:

1. SPX

2. SPX and Dividend-Price Ratio

3. SPX and Earning Price

4. SPX and Dividend Yield

5. SPX and Stock Variance

6. SPX and Book-to-Market Ratio

7. All the features

The experiments will be constructed including lagged versions of these features as additional information
for the modeling process. Four experiments will be defined containing the seven data frames previously
commented. Each experiment will be denoted by EX.

• EX1 only considers the exogenous variables without lags and SPX with four lags is included in each
data frame.
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SPX DP EP DY SVAR BM

0:4
0:4 0
0:4 0

EX1 0:4 0
0:4 0
0:4 0
0:4 0 0 0 0 0

0:4
0:4 0, 3
0:4 0, 3

EX2 0:4 0, 3
0:4 0, 3
0:4 0, 3
0:4 0, 3 0, 3 0, 3 0, 3 0, 3

0:4
0:4 0:4
0:4 0:4

EX3 0:4 0:4
0:4 0:4
0:4 0:4
0:4 0:4 0:4 0:4 0:4 0:4

0:4
0 0:4
0 0:4

EX4 0 0:4
0 0:4
0 0:4
0:4 0:4 0:4 0:4 0:4 0:4

Table 1: The definition of the four experiments with their respective lags.

• EX2 adds to the information of EX1 each exogenous variable with a lag of 3; this is motivated by
the fact that the resulting data frame will contain more information but without adding too much
redundancy.

• EX3 includes four lags of each exogenous variable.

• EX4 contains the same information as EX3 for the exogenous variables, but only includes the SPX
without lags.

A visual representation of this data can be seen in table 1.

6.1 Classification task

Tables 2 and 3 show the evaluation of the different kernel methods and multiple kernel learning using
EasyMKL. These results are obtained using the same data for each method but adjusting the parameters
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individually. The parameter ranges used in each of these methods can be found in A. All the methods are
also include both parameter validation methods for comparison.

kVAR kGA kMDED kMDARC0 kMDARC1 MKL MKL Norm

Train Acc. 0.588 0.739 0.722 0.674 0.734 0.982 0.777
Validation Acc. 0.872 0.859 0.74 0.491 0.452 0.529 0.763
Test Acc. 0.631 0.64 0.64 0.64 0.658 0.64 0.694

Table 2: Results of kernel combinations using Out-Of-Sample Validation.

kVAR kGA kMDED kMDARC0 kMDARC1 MKL MKL Norm

Train Acc. 0.61 0.762 0.742 0.675 0.729 1.000 0.898
Validation Acc. 0.751 0.691 0.674 0.559 0.445 0.417 0.568
Test Acc. 0.568 0.649 0.631 0.640 0.640 0.667 0.658

Table 3: Results of kernel combinations using Cross-Validation.

The results of this table have several interesting factors to cover. All of the test accuracy measures
are in very defined range, between the 55% and 70%, which indicates the general capacity of Multivariate
Dynamic kernels for this task. Individual kernels share similar test accuracy measures, around the 64%,
including very simple kernels like kMDED and kMDARC0. It is also worth to mention that the kernels based on
the arc-cosine kernel perform as well if not better than other more common kernel functions. In particular,
kMDARC1 is the best performing individual kernel, surpassing Global Alignment in the version that uses
out-of-sample validation.

By a considerable margin, the best performing method is the combination of kernels created with
EasyMKL, surpassing all the individual kernels. This technique tends to over-fit, as it can be observed in
the difference of accuracy between training, validation and testing. It is most prominent in the case of
cross-validation, were training accuracy is much higher than test and validation accuracy measures. The
normalization (scaling individual kernel matrices to have the l2 norm) also has interesting repercussions
on the results: it reduces training accuracy and increases validation accuracy, reducing over-fitting. The
results of the normalization technique seem to differ depending of the validation technique employed.

Finally, it is also worth to comment the effects of the different validation techniques on the results.
There is no clear pattern to determine if cross-validation selects better or worse models than out-of-sample
since all kernels react different to this parameter tuning technique. In the cases of kGA and not-normalized
MKL the results improve, but in the rest of kernel functions have the same or worst test accuracy. The
results clearly differ with [3], specially in the case of kVAR.

Figure 4 shows the resulting weights of the process of EasyMKL. It can be an interesting source of
information to visualize how the algorithm determines which kernels are relatively more important.

From the results it can be observed that kMDARC1 usually is the kernel with most weight. This further
supports the fact that this kernel function is possibly the best performing one for the problem. However, in
the case of MKL with out-of-sample validation and normalization, kGA is the kernel with highest weight and
this combination is also the one with higher test accuracy. kMDARC0 also receives weights higher than the
mean, signaling that it is also important in the construction of the model and adds additional information.
Finally, it is worth to comment the impact of the normalization in the weights: in all the cases it decreases
the weights of kVAR and kMDED, the worst performing kernel functions.

The following table 4 contains the experiments performed with exogenous variables and their results.
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Figure 4: Weights of kernel methods with different MKL procedures for classification

Figure 6.1 reflects the different weights obtained with the MKL process. All the experiments are executed
using the best performing kernel method for the data, normalized multiple kernel learning using out-of-
sample validation technique. Each variable is contained in a data frame that will be transformed into a
kernel matrix using the MKL procedure.

Train Acc. Validation Acc. Test Acc.

EX1 0.757 0.767 0.574
EX2 0.764 0.772 0.567
EX3 0.758 0.784 0.600
EX4 0.733 0.779 0.533

Table 4: Resulting accuracies using exogenous variables.

The best performing method is EX3 in terms of test accuracy. EX1 and EX2 are fairly similar, indicating
that the inclusion of the third lag does not affect too much the model. EX4 is the worst performing one,
which can mean that the model heavily rely on the lags of SPX to predict the output. The weights of EX1,
EX2, and EX3 are near the mean, with slightly higher weight for the endogenous variable. This result does
not mean that the rest of variables are not important to predict the result (that will be represented with
weights near zero) but that they are mostly equally important. EX4 has its weights shifted towards the
exogenous variables. As those data frames lack of lags of SPX it is possible that the information contained
in the exogenous variables takes a more active role in the prediction procedure, however the model performs
worse in comparison to the rest. It is also worth noting that stock variance is still one of the most relevant
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Figure 5: Weights of variables with different experimental settings using EasyMKL

variables in this case.

6.2 Regression task

Tables 5 and 6 shows the evaluation of the different kernel methods and multiple kernel learning using Center
Alignment. These results are obtained using the same data for each method but adjusting the parameters
individually. In all the methods the impact of using out of sample validation and cross-validation is also
tested. All the methods are validated in the same range of parameters. For C and ν the available values
are 0.2, 0.4, 0.6, 0.8, and 1. The range of σ is 0.5, 1, 1.5, and 2.

kVAR kGA kMDED kMDARC0 kMDARC1 MKL MKL Norm

Train MSE 0.0140 0.0029 0.0039 0.0045 0.0015 0.0032 0.0132
Validation MSE 0.0269 0.0119 0.0171 0.0137 0.0355 0.0091 0.0140
Test MSE 0.0472 0.0295 0.0326 0.0304 0.0645 0.0252 0.0351

Table 5: Results of kernel combinations using Out-Of-Sample Validation.

Mirroring the results of the classification task, the results of regression fall in a determined range that
states the capabilities of these methods in the economic prediction tasks. The test errors are in the range
between 0,02 and 0,07. In these results higher differences can be observed between the performances of
different methods, with some methods being nearly thrice more accurate than others. Simpler methods
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kVAR kGA kMDED kMDARC0 kMDARC1 MKL MKL Norm

Train MSE 0.0122 0.0014 0.0015 0.0030 0.0009 0.0017 0.0109
Validation MSE 0.0305 0.0141 0.0184 0.0172 0.0326 0.0106 0.0184
Test MSE 0.0434 0.0265 0.0297 0.0275 0.0618 0.0251 0.0313

Table 6: Results of kernel combinations using Cross-Validation.

like kMDED and kMDARC0 perform relatively good however kMDARC1 has worse results than the rest of the
methods, probably attributed to over-fitting looking at the training error.

The best performing technique is the MKL, as it was in the classification case. A clear case of over-
fitting can also be observed in this case considering the difference between the training error and the testing
error. The parameters have been optimized using a shallow range of values so a fine tuning of them may
reduce this effect. The normalization technique only increases the error of the methods, indicating a lose
of information during this process.

The different validation techniques have a revealing impact on the regression task. As it can be observed
on the tables, the results obtained using cross-validation as a parameter validation technique are always
better than the result of OOS. This indicates that this technique is certainly useful for the validation
process of the regression task. The results clearly support [3], contradicting the conclusions reached in the
classification task.

Figure 6: Weights of kernel methods with different MKL procedures for regression.

Figure 6.2 contains the resulting weights of the process of Center Alignment. It can be an interesting
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source of information to determine how the algorithm evaluates which kernels are relatively more important.
From the results can be observed that kGA obtains the higher percentage of weight in all of the variations
of the experiment, with even higher values in the best performing settings of MKL. This fact is reinforced
by the better results obtained by this kernel in the individual tests. The normalization procedure impacts
the weights by making their values be more similar to the mean and assigning a much higher weight to
kMDARC1. These results for kMDARC1 are opposite to the ones in the classification task, which indicates
how much these tasks are different. kMDARC0 has a significant impact on the resulting vector of weights,
which further mirrors the individual results.

The table 7 and the figure 7 contain the experiments performed with exogenous variables and their
results. All the experiments are executed using the best performing kernel method for the data, non-
normalized multiple kernel learning using the cross-validation technique. Each variable is contained in a
data frame that will be transformed into a kernel matrix using the MKL procedure. The parameter ranges
remain unchanged in these results.

Train MSE Validation MSE Test MSE

EX1 0.0025 0.0129 0.0321
EX2 0.0024 0.0131 0.0332
EX3 0.0024 0.0131 0.0332
EX4 0.0024 0.0135 0.0344

Table 7: Resulting errors using exogenous variables.

Figure 7: Weights of variables with different experimental settings using Kernel Alignment.
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The best performing method in the regression task for these parameters is EX1 in terms of test MSE.
There is not much difference between the four experiments in their results, with EX1 being slightly better
than the rest. It is noteworthy that all the results are worst than the versions without the exogenous
variables. On the other hand, the weights are somewhat different. The SPX index is clearly the feature
that most weight has in most of the variations of the problem, ranging between 60% and almost 80%.
EX1 is an interesting result, as it has more weight to the Stock Variance than the SPX. This experiment
also has the best results in the test set, however those results are bad in comparison to the errors of the
endogenous variable. Given those results it seems that the regression task does not give any relevant weight
to the exogenous variables in most of the cases, it relies mostly on the SPX feature to carry the prediction
task. It is possible that the stock variance has interesting implications on the predictive capabilities, but
the results contradict that statement.

Conclusions

The results indicate that, in this experimental procedure, the exogenous variables have a questionable
importance in the predictive models. In the case of the classification task the weights are comparable
between them, however this means that there is not a clear variable affecting the model more than others.
The regression task yields different results, given high weights to the endogenous variable. The overarching
conclusion in these results is that exogenous variables do not seem to increase the predictive capabilities of
the model. Furthermore, in some cases, they worsen it.

The instability of these results is reported clearly in [40]. Not only the results are worst with the
introduction of exogenous variables, but the weights also fluctuate with each different configuration of lags
and variables. This can also be attributed to the capabilities of MKL as a learning model. The problem of
over-fitting was present in both tasks, reporting low train error measures contrasted by high error scores in
the validation and the test sets.

This experimentation concludes that introducing exogenous variables in this procedure does not increase
the predictive capabilities of the model. Left to discuss is whether this result is the best that can be obtained
from the data or if the reason behind the relatively bad results are the capabilities of the models.
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7. Exhaustive Experiment

The comparatively bad results obtained in the previous section discourage the use of exogenous variables
however, being one of the objectives of the thesis, it will be interesting to make more tests using those
variables. In this section, a new batch of experiments will be explained and executed, with a discussion on
its results. In order to ascertain if Multiple Kernel Learning is hindering the results of exogenous variables
they will be tested against all the single kernels. The capabilities of the kernels for time series that were
showcased in this thesis will also be tested taking advantage of the battery of tests that will be generated
against a non-time dependant model in the form of the RBF kernel.

The experimental procedure will be similar to the one introduced in the regression and classification
tasks. The data will be used with the same compression, both validation methods will be used, the
performance metric will be the same, and the experiments will be performed using the same scrolling
window approach. The changes to the procedure are:

• Only regression will be considered: the results from classification may be useful for investment tasks
but the classes are created using a threshold, which makes the resulting binary division unstable, hard
to predict, and hard to evaluate.

• Normalization will not be used: as seen in the previous results, normalizing the kernels in regression
tasks does not yield improvement in the results.

• The data will not be structured in experiments: instead all the data frames created for those experi-
ments will be used individually to test each algorithm.

The main objective of this section is to test if MKL worsens the possible results of using a basic kernels,
to determine if the exogenous variables affect the predicting capabilities of the model in a positive way, and
to ascertain if it is possible to apply the Cross-Validation technique as a parameter optimization procedure.
In order to decide this facts, a factorial experiment will be performed.

7.1 Radial Basis Function Kernel

One of the most used kernel functions in the practice is the Radial Basis Function[39]. It is employed for
general data inputs and as a default kernel in most of the Support Vector Machine implementations. It
uses the squared Euclidean distance to calculate the dissimilarity between samples. Generally outputs good
results with diverse types of data. The most common formulation is the following:

K (x , x ′) = exp

(
−‖x − x ′‖2

2σ2

)
, (34)

where σ is a free parameter. RBF, however, does not work directly with time series as it needs data of
the same size in order to compare it. The data set of Welch is almost complete, as its data is measured
monthly. Some entries are missing in the beginning (some variables were not recorded as early as the SPX),
but they can be discarded in order to have a complete data set that can be feed to a RBF kernel.
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7.2 Factorial Design

The Factorial Design[5] is a methodology to define tests and to compare results. In problems that have
several decisions to be made and several possible combinations of them this methodology provides the design
principles to build a group of tests to reach a hypothesis about the results. This procedure determines if a
decision is statistically better than other and if there are relevant interactions between decisions.

In the particular case of this thesis there could be a high number of decisions suggested in the previous
section: normalization of the kernels, use of different lags of each variable, the parameters of the kernels,
the parameters of the kernel learning algorithms, etc. Those topics, however, will be left out of the scope
of this document as factorial experiments increases exponentially the number of tests to do when new
decisions are introduced. The final decisions of the factorial experiments will be the following:

• Use MKL or any single kernel methods

• Use any combination of exogenous variables or only the endogenous variable

• Use Cross-Validation or not

Even though the decisions are clear, the number of factors on each decision is not so straight forward.
The setting has several single kernels and several exogenous variables. Which of them should be used and
how should they be used is a problem by itself. In order to have insightful but time-conscious results they
must be considered in the methodology with several restrictions.

The data is divided in all the data frames created for the previous experiments. This creates a significant
amount of data to explore and test each of the methods. The different sets of data are defined in 8. The
inclusion of some data sets may seem unreasonable as they share similar structure, however they were all
defined for various tests in the code and their impact could be seen as enriching information, hence their
inclusion.

7.3 Experimental Results

Before using the formulas of the factorial experiment to analyze the decisions and the results it is imperative
to set the results that will be considered in comparison. The experimental procedure employed uses several
different representations of the same data with several different methods. In order to use the factorial
design, in the most clear and simple version, it is necessary to narrow the results to one by decision. In this
section the results will be commented and a model will be selected for the factorial experiment comparison.

The results obtained can be found in Appendix B, which are plenty and cumbersome to interpret. The
parameter ranges defined in the regression task section remain unchanged in these results. In the lines of
the decisions presented in the experimental definition, the following a priori conclusions can be obtained:

• The best result of the MKL method is surpassed by the best results of the RBF and MDARC0 kernels
by a very slim margin. (0.02505 vs 0.02448 and 0.02497)

• All kernel methods except MKL perform better with the inclusion of exogenous variables, but with
different degree of improvement.

• Cross-Validation seems to make general but small improvements applied with any kernel function.
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SPX DP EP DY SVAR BM

0 0:4
1 0:4 0
2 0:4 0
3 0:4 0
4 0:4 0

5 0:4 0 0 0 0
6 0:4 0, 3
7 0:4 0, 3
8 0:4 0, 3
9 0:4 0, 3

10 0:4 0, 3 0, 3 0, 3 0, 3
11 0:4 0:4
12 0:4 0:4
13 0:4 0:4
14 0:4 0:4

15 0:4 0:4 0:4 0:4 0:4
16 0 0:4
17 0 0:4
18 0 0:4
19 0 0:4

20 0 0:4 0:4 0:4 0:4
21 0:4 0:4
22 0 0:4
23 0:4 0
24 0:4 0 0 0 0 0

25 0:4 0, 3
26 0:4 0, 3 0, 3 0, 3 0, 3 0, 3
27 0:4 0:4 0:4 0:4 0:4 0:4
28 0 0:4 0:4 0:4 0:4 0:4

Table 8: The definition of the data frames to test the variables.
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In terms of the decision of using MKL or not the results of the RBF kernel are surprising, as it
surpasses the much more complex MKL algorithm. MDARC0 also gets an improvement by using the
exogenous variables and it becomes the single best performing, time-dependent kernel function. The main
difference between MDARC0 and MDARC1 relates again to the over-fitting, as can be observed in the
minuscule training error of MDARC1 for its best result. The ratio between the test error and the train
error can be a useful tool to determine the degree of over-fitting. This ratio will be defined simply as
RatioofOverfitting = TestError/TrainingError and quantifies how much the model fits to the training
data. The results of this comparison can be found at figure 8. As the figure shows the RBF and MDARC0
kernels suffer less than the half of over-fitting than MKL. It is possible that this fact means that the MKL
model produces worst results as it falls on this problem. The notable exception is VAR which has the lowest
ratio, however it outputs noticeably worst results, perhaps a result of bad fitting.

Figure 8: Ratio of over-fitting for all kernel methods

As shown in the regression task, the inclusion of exogenous variables in the MKL model decreases
the predictive capacity. However the results reported in Appendix B show that every other kernel method
increases their predictive capacity by including this additional data. The most notable case, again, is the
fact that RBF improves the most compared with other methods shifting its results from 0.0293 using
only endogenous variables to 0.0245. Other improvements near the 15% performance increase can be
appreciated in the VAR kernel. MDARC0 also improves in about 10% its test MSE. The rest of kernel
methods only increase their results by 5% or less. Another sources of interesting information are the data
sets with which the models obtain said increases in performance. The data sets are 1, 2, 17, 18, and 22. In
the case of 1 and 2 they are selected by TGA and MDARC1, the models that tend to over-fitting and not
improve much with the exogenous variables. The rest of data sets have common facts, which are the lack
of lags of the SPX index (i.e. the endogenous variable) and that all of them include a single exogenous
variable with four lags (Dividend Price, Dividend Yield and Book-to-market ratio). This contrasts with
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Factor Levels - +

1 Kernel Method(KM) RBF MKL
2 Variables(Var) Endogenous Exogenous
3 Validation Method(VM) OOS CV

Table 9: The different factor levels for each decision of the Factorial Experiment.

the clear tendency of MKL to favor the SPX index with maximum lags. It is safe to conclude that, in the
methods with increased performance by the introduction of exogenous variables, the endogenous variable
has a reduced impact contrary to the methods that saw little or no impact in the use of exogenous variables.
Looking at the results it is possible that the models like MKL and MDARC1 over-fit towards the SPX index
as it is the most similar to the output variable, but the models like RBF and MDARC0 unravel correlations
between the output and the exogenous variables that the other methods apparently do not do.

The decision between using or not the Cross-Validation technique is also looked upon. As introduced in
[3] Cross-Validation is not demonstrated to work with non-independent signals, non-stationary distributions
of data and/or non-auto-regressive models. The results of this experimental approach indicate positive
results using this technique. All of the kernel methods get increases in performance when this technique
is employed, and most of them also had their best results using it. The only exception is RBF which, in
general, improves with CV however the best result is found using OOS by a slim margin. Although the
improvement of this technique is empirically true, the results are not conclusive on the effects that this
technique can have in similar data sets or methodologies. The effects are slim however, less than a 10%
improvement in all the cases.

7.4 Factorial Experiment Results

Although testing all the possible combinations of models, exogenous variables, and validation techniques
is extremely tempting to create conclusive comparisons, the sheer number of tests scales quickly with the
introduction of so many factors. Considering the seven different methods, the six exogenous variables
that can be combined between them, and the two validation techniques the number of test grows to 896
(7 ∗ 26 ∗ 2). This bulk of computational expense is unfeasible on the scope of this work so, in order to
reach conclusive results, a simplification should be done.

The decisions are reduced to two levels(options) per each. The first decision will be reduced to use
MKL or the best performing single kernel method, which is RBF. The second decision will only consider the
best performing exogenous variable combination for each method. The third decisions will be unaltered,
testing both validation techniques. Following the representation procedures of the factorial experiment, the
different levels of each decision are represented as in table 9 and the different formulations (experiments)
are represented in table 10 along with the test MSE of each experimental combination with the variance
of the results.

Next on the factorial experiment procedure are the equations that determine the influence of each deci-
sion and the interaction of those decisions. The formulation is quite simple for the individual comparisons
between levels: the mean of one level across all the experiments minus the mean of the other level across
all the experiments. The formulation of the interaction between two variables is more complex: the mean
of the experiments where both decisions have the same level symbol (both + or -) minus the mean of
the experiments where both decisions have different level symbols (if one is + the other must be - and
viceversa). The interaction between three levels is even more intricate: obtain the difference between each
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Formulation 1 2 3 Result Variance

1 - - - 0.02930723 0.01210860
2 + - - 0.02519840 0.01040213
3 - + - 0.02448274 0.00897466
4 + + - 0.02918150 0.01196361
5 - - + 0.02840321 0.01228031
6 + - + 0.02505082 0.01156009
7 - + + 0.02500117 0.00982782
8 + + + 0.02729349 0.01146790

Table 10: The results of each experiment of the Factorial Experiment.

level of decision 1 fixing the rest of decisions(y8 − y7, y6 − y5, etc), subtract those results using the levels
of the second variable fixing the third decision ((y8− y7)− (y6− y5), etc), and finally subtract the mean of
each level of the third decision. The results of these equations for the current problem are the following:

KM =
0.02519 + 0.02505 + 0.02918 + 0.02729

4
− 0.0293 + 0.02840 + 0.02448 + 0.025

4
= −0.000117

Var =
0.02448 + 0.025 + 0.02918 + 0.02729

4
− 0.02931 + 0.0284 + 0.0252 + 0.02505

4
= −0.000500

VM =
0.02931 + 0.02448 + 0.0252 + 0.02918

4
− 0.02840 + 0.025 + 0.02505 + 0.02729

4
= 0.000605

KM&Var =
0.02931 + 0.0284 + 0.02918 + 0.02729

4
− 0.02448 + 0.025 + 0.0252 + 0.02505

4
= 0.003613

KM&VM =
0.02931 + 0.02448 + 0.02505 + 0.02729

4
− 0.0284 + 0.025 + 0.0252 + 0.02918

4
= −0.000412

Var&VM =
0.02931 + 0.0252 + 0.025 + 0.02729

4
− 0.02448 + 0.02918 + 0.02841 + 0.02505

4
= −0.000079

KM&Var&VM =
(0.02729−0.025)−(0.02505−0.0284)

2 − (0.02918−0.02448)−(0.0252−0.02931)
2

2
= −0.000790

The variance is also considered on the formulations of the factorial experimentation. It generates
intervals of confidence of the results, which should be taken into account to ascertain if the decision being
analyzed has a substantial impact on the results. As the number of variance measures obtained is 8, that
means that the measurement will have 8 degrees of freedom. Given the results and its variance it is possible
to determine if the observed effects of the decisions can be attributed only to noise. The authors of the
experimental procedure indicate a change of 2 to 3 times the variance in the decisions to be considered as
a potential change in performance, but ultimately suggest that these intervals should be set by the reader
looking at the t-distribution table. Looking strictly at the obtained variance, the mean variance of all the
formulations is 0.01107314, the variance of each effect is V (effect) = ( 1

8 + 1
8 )∗0.01107314 = 0.002768285

and the standard error of each effect is SE (effect) =
√

V (effect) = 0.0526144942.

The table of calculated effects is 11. The effects of these decisions are very small, even including the
interactions between them. This indicates that the decisions taken do not change the capabilities of the
model by any significant stretch, which is an expected result looking at the very small differences between
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Name Effect with standard error

Kernel Methods(KM) −0.000117± 0.0526144942
Variables(Var) −0.000500± 0.0526144942
Validation Method(VM) 0.000605± 0.0526144942
KM x Var 0.003613± 0.0526144942
KM x VM −0.000412± 0.0526144942
Var x VM −0.0000797± 0.0526144942
KM x Var x VM −0.000790± 0.0526144942

Table 11: Table of calculated effects

the compared methods. Without looking at the standard errors it can be seen that: MKL yields worst
results than RBF on average, the same can be said for the use of exogenous variables over endogenous
variables, and the cross-validation technique is better on average than out-of-sample validation. These
results, however, pale in comparison with the massive variance of the model. None of the observed results
are even capable of coming close to this metric, indicating that the influence of the noise is quite big.
Even though the results may be highly influenced by noise there is an interesting result. The interaction
between the kernel methods and the selected economic variables is notable and this effect can appear in
other versions of the problem, and be further explored.

Exhaustive Analysis Conclusions

The results of the factorial experiment indicate that most of the possible improvements that can be observed
in the MSE of these decisions are ultimately not reliable due to the high amount of noise in the samples. This
unreliability in the models was indicated previously in [40] and again demonstrated in these experiments.
Some interesting results, however, must be addressed: MKL integrating five kernels for time-series is
matched by a simple RBF and also by one of its composing kernels, MDARC0. Furthermore, those simple
models achieve the predictive capabilities of MKL using exogenous variables. The interaction between the
kernel methods and the exogenous variables can be also observed in the relatively high interaction between
those decisions. Cross-validation also raises as a possible better validation algorithm than Out-Of-Sample.
This does not contradict the theorem proposed in [3], but these empirical observations lack of theoretic
proof and can be ultimately spurious given the influence of noise.

The performance of MKL is highly put in question during these experiments, it does not improve while
presented with exogenous variables and over-fits to the training data. It is possible to think that the selected
algorithm does not comply with the data or the definition of the problem however, if the weights produced
by the algorithm are ignored and proportional weights are used, the predictive capabilities of the model are
highly reduced(from a MSE of 0.02505082 to 0.053655275643).

During all of the experimental procedure the developed algorithms were not compared with a ground
truth. In [40] they use a linear model to create the predictors for their data. Using a basic implementation
it is possible to apply a very similar linear model to these data. The results of this experiment are reported
in B.8. Some basic observations can be done by looking at the table: the linear model reports several
times worse results than the studied algorithms, and the exogenous variables introduce positive changes
in the predictive capabilities of the model. The comparison of this results to the ones obtained from
the best performing model of the present work can be found at figure 9. The best result of the kernel
methods is RBF with a test MSE of 0.02448274 against the best result of the linear model with a MSE of
0.09958952476. Although the difference of performance may very possible be affected by the noise of the
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data it is also significant enough to be a real improvement.

Figure 9: Comparison of both methods against the ground truth.
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8. Conclusions

In this thesis, a Multiple Kernel Learning approach is applied to the Goyal and Welch experimental data [40]
in order to determine the capabilities of this technique over financial data, in particular on the prediction
of the SPX Equity Premium. Alongside it is also studied if a set of financial variables (called exogenous
variables in this thesis) and if the Cross-Validation technique (as part of the parameter tuning process)
improve or not the quality of the models. The experiment is designed around several kernel functions for
time series that aimed to extract relevant information from these variables and create a predictive model.
The experimental procedure is based on selecting the best kernel or combination of them for this problem,
applying the selected model to each of the variables creating several kernel matrices, and obtaining the
multiple kernel learning weights of each of those matrices. Those weights theoretically indicate the relative
importance of each variable.

Multiple Kernel Learning results to be an algorithm that obtains interesting results when the data is
similar to the output, reporting better predictions than its composing kernels. However, when exogenous
variables are introduced, the MKL technique is not capable of exploiting the composing kernel methods that
extract the best from those variables. This algorithm also suffers from over-fitting and long computational
times to create each kernel matrix and integrate them. The algorithms present in this thesis clearly work,
as the test performed with the mean weight yields worse MSE. MKL seems not to be a reliable model
for this type of data and it does not use the capabilities of the underlying kernels. As future work it is
possible to explore the possible kernel matrices that compose the MKL, change the MKL algorithm, or its
parameters to obtain better results.

The impact of the exogenous variables is unclear. While it has notable effects on several models the
noise of the data(normally present on financial data sets) makes it difficult to determine if they improve
or not the models. If the noise of the data is assumed, the best performing kernel methods use these
variables. In particular the Dividend Yield and the Earning to Price with no lags of the SPX help to obtain
the best results. It is also observed that the better performing models use zero lags of the SPX whilst the
models that suffer from over-fitting do the contrary. The use of exogenous variables shows the possibility
of a factual improvement, but the nature of the data and the previous research suggest the contrary. As
future work the rest of the variables presented on [40] can be considered, different configurations of lags
and variables can be tested, and different models can be adopted.

Cross-Validation also falls on the same problems as the rest of the decisions, the noise of the data
makes it difficult to make solid statements about its capacities on this problem. Ignoring the noise, CV
seems to improve the predictive capabilities of the models even though the data is surely non-stationary.
This does not contradict the hypothesis formulated in [3] but these results do not have a theoretical base.
CV should be further explored on time series as it provides a better use of the data and redundancy on
the parameter validation. Future work on this topic will include looking into different types of data, and
measuring the capabilities of this validation method.

The Radial-Basis Function Kernel is the surprise of these experiments. Not only it is capable to unravel
the potential use of the exogenous variables but it is also able to equal MKL and other time dependent
methods. It is an interesting case, as the predictive capabilities of the model are low with endogenous
variables and high with exogenous. It is also much faster computationally than other kernel methods and
very easy to apply. The results however are also dependent on the noise of the data and are not conclusive,
but the effects of the additional data are considerable. Future work on RBF for time series include looking
into other data sets, and creating other alignments.
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The applied methods surpass easily linear models which indicate that, regardless the noise, the models
clearly work and offer a better predictive capability. All of the presented methods can be improved and
further tuned to increase their usefulness even more, creating a bigger gap with simple solutions and showing
the potential of machine learning methods on the prediction of the market returns.
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A. Appendix: Classification Task Parameters

Method Nu Range Sigma Range Lamb Range
VAR OOS From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2
VAR CV From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2
GA OOS From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2
GA CV From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2

MDED OOS From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2
MDED CV From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2

MDARC0 OOS From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2
MDARC0 CV From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2

MDARC1 OOS From 5e-7 to 5e-6 with 5e-7 steps 0.5, 1, 1.5, 2
MDARC1 CV From 5e-7 to 5e-6 with 5e-7 steps 0.5, 1, 1.5, 2

EasyMKL OOS From 5e-4 to 5e-3 with 5e-4 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps
EasyMKL OOS Norm From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps

EasyMKL CV From 5e-5 to 5e-4 with 5e-5 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps
EasyMKL CV Norm From 5e-3 to 5e-2 with 5e-3 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps

Experiment Nu Range Sigma Range Lamb Range
EX1 From 5e-3 to 5e-2 with 5e-3 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps
EX2 From 5e-3 to 5e-2 with 5e-3 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps
EX3 From 5e-3 to 5e-2 with 5e-3 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps
EX4 From 5e-3 to 5e-2 with 5e-3 steps 0.5, 1, 1.5, 2 From 0.1 to 1 with 0.2 steps
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B. Appendix: Exhaustive Experiment Results

B.1 RBF Model

Exp. No. Val. Method Train MSE Test MSE Val. Method Train MSE Test MSE
0 OOS 0.00306411 0.02930723 CV 0.00103674 0.02840321
1 OOS 0.00349565 0.02835293 CV 0.00123333 0.02746420
2 OOS 0.00350171 0.02837131 CV 0.00123225 0.02745769
3 OOS 0.00349352 0.02836194 CV 0.00123535 0.02747099
4 OOS 0.00286571 0.03029962 CV 0.00059418 0.03019455
5 OOS 0.00266325 0.02869388 CV 0.00096415 0.02855284
6 OOS 0.00352995 0.02780917 CV 0.00142519 0.02691156
7 OOS 0.00358537 0.02784800 CV 0.00143158 0.02692488
8 OOS 0.00353107 0.02781486 CV 0.00142337 0.02691171
9 OOS 0.00283623 0.02956674 CV 0.00069497 0.02938819

10 OOS 0.00338679 0.02838164 CV 0.00163665 0.02719797
11 OOS 0.00385586 0.02705715 CV 0.00203146 0.02603252
12 OOS 0.00391688 0.02732228 CV 0.00205417 0.02599775
13 OOS 0.00384719 0.02698429 CV 0.00203669 0.02595329
14 OOS 0.00291104 0.02853820 CV 0.00116093 0.02803924
15 OOS 0.00509759 0.02968128 CV 0.00332226 0.02773096
16 OOS 0.00551052 0.02448713 CV 0.00402825 0.02498475
17 OOS 0.00570985 0.02516123 CV 0.00415020 0.02559651
18 OOS 0.00549755 0.02448274 CV 0.00401582 0.02500117
19 OOS 0.00474816 0.02594415 CV 0.00323149 0.02640658
20 OOS 0.01005784 0.03217500 CV 0.00851560 0.03151288
21 OOS 0.00254913 0.03107964 CV 0.00059067 0.03084448
22 OOS 0.00342827 0.03058733 CV 0.00161112 0.03100310
23 OOS 0.00223595 0.03166996 CV 0.00024696 0.03168141
24 OOS 0.00254007 0.03106635 CV 0.00058541 0.03084102
25 OOS 0.00233346 0.03138113 CV 0.00029305 0.03141906
26 OOS 0.00303194 0.03134441 CV 0.00096389 0.03034614
27 OOS 0.00448832 0.03125163 CV 0.00180096 0.03076520
28 OOS 0.00731371 0.03450099 CV 0.00560320 0.03377273
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B.2 VAR Model

Exp. No. Val. Method Train MSE Test MSE Val. Method Train MSE Test MSE
0 OOS 0.01403406 0.04693318 CV 0.01227778 0.04330353
1 OOS 0.01408445 0.04694520 CV 0.01219379 0.04324724
2 OOS 0.01404446 0.04684107 CV 0.01226774 0.04328547
3 OOS 0.01402557 0.04695789 CV 0.01225121 0.04326257
4 OOS 0.01545896 0.05033875 CV 0.01391573 0.04633112
5 OOS 0.01552038 0.05024569 CV 0.01407337 0.04637820
6 OOS 0.01401942 0.04696514 CV 0.01220506 0.04328864
7 OOS 0.01405244 0.04677887 CV 0.01226669 0.04334671
8 OOS 0.01401965 0.04695247 CV 0.01227670 0.04326884
9 OOS 0.01543887 0.05033083 CV 0.01393131 0.04633275

10 OOS 0.01545542 0.05017743 CV 0.01426716 0.04548493
11 OOS 0.01406075 0.04683115 CV 0.01220627 0.04331017
12 OOS 0.01373267 0.04658093 CV 0.01235272 0.04242848
13 OOS 0.01403474 0.04693739 CV 0.01227131 0.04330260
14 OOS 0.01552793 0.05027838 CV 0.01392910 0.04633126
15 OOS 0.01500905 0.04995592 CV 0.01390806 0.04539797
16 OOS 0.01798986 0.04839287 CV 0.02121137 0.04351260
17 OOS 0.01780996 0.04938047 CV 0.02103073 0.04433980
18 OOS 0.01767696 0.04823614 CV 0.02091500 0.04362724
19 OOS 0.01620554 0.04530918 CV 0.01403630 0.04314954
20 OOS 0.01841130 0.05122172 CV 0.02202310 0.04657330
21 OOS 0.01352386 0.04247674 CV 0.01085813 0.04040997
22 OOS 0.01603756 0.04139779 CV 0.01862742 0.03746968
23 OOS 0.01373443 0.04248061 CV 0.01087158 0.04043157
24 OOS 0.01352945 0.04257538 CV 0.01086651 0.04044086
25 OOS 0.01352907 0.04254827 CV 0.01086894 0.04043085
26 OOS 0.01352562 0.04254171 CV 0.01086153 0.04042571
27 OOS 0.01350713 0.04243564 CV 0.01064099 0.04038666
28 OOS 0.01527347 0.04445001 CV 0.01828113 0.04002803
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B.3 GA Model

Exp. No. Val. Method Train MSE Test MSE Val. Method Train MSE Test MSE
0 OOS 0.00291810 0.02938741 CV 0.00141682 0.02656155
1 OOS 0.00289668 0.02933737 CV 0.00141077 0.02655288
2 OOS 0.00289794 0.02932829 CV 0.00142612 0.02639643
3 OOS 0.00289657 0.02933271 CV 0.00142057 0.02642614
4 OOS 0.00322631 0.03233348 CV 0.00161577 0.02922893
5 OOS 0.00315717 0.03192838 CV 0.00161598 0.02918103
6 OOS 0.00286177 0.02918355 CV 0.00142573 0.02654399
7 OOS 0.00288278 0.02939365 CV 0.00143408 0.02640879
8 OOS 0.00287012 0.02916590 CV 0.00142191 0.02642395
9 OOS 0.00312023 0.03212712 CV 0.00162363 0.02931566

10 OOS 0.00320773 0.03231870 CV 0.00163675 0.02928567
11 OOS 0.00286202 0.02903762 CV 0.00142202 0.02656322
12 OOS 0.00292002 0.02929876 CV 0.00142352 0.02648266
13 OOS 0.00285639 0.02905318 CV 0.00140817 0.02657282
14 OOS 0.00317692 0.03203844 CV 0.00161741 0.02927366
15 OOS 0.00330047 0.03214643 CV 0.00160875 0.02928342
16 OOS 0.00258238 0.03188518 CV 0.00065514 0.02908691
17 OOS 0.00247809 0.03233077 CV 0.00063395 0.02926124
18 OOS 0.00258870 0.03187116 CV 0.00065226 0.02907460
19 OOS 0.00291476 0.03509102 CV 0.00075164 0.03247364
20 OOS 0.00268914 0.03411292 CV 0.00077341 0.03127794
21 OOS 0.00432814 0.03382664 CV 0.00212293 0.03098144
22 OOS 0.00318839 0.03369424 CV 0.00105776 0.03203304
23 OOS 0.00441609 0.03437149 CV 0.00214454 0.03093313
24 OOS 0.00436641 0.03408481 CV 0.00211717 0.03095843
25 OOS 0.00435252 0.03407101 CV 0.00212123 0.03094502
26 OOS 0.00430159 0.03427615 CV 0.00207995 0.03093004
27 OOS 0.00421521 0.03414207 CV 0.00210636 0.03106603
28 OOS 0.00270250 0.03275321 CV 0.00099183 0.03156059
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B.4 MDED Model

Exp. No. Val. Method Train MSE Test MSE Val. Method Train MSE Test MSE
0 OOS 0.00291810 0.02938741 CV 0.00141682 0.02656155
1 OOS 0.00289668 0.02933737 CV 0.00141077 0.02655288
2 OOS 0.00289794 0.02932829 CV 0.00142612 0.02639643
3 OOS 0.00289657 0.02933271 CV 0.00142057 0.02642614
4 OOS 0.00322631 0.03233348 CV 0.00161577 0.02922893
5 OOS 0.00315717 0.03192838 CV 0.00161598 0.02918103
6 OOS 0.00286177 0.02918355 CV 0.00142573 0.02654399
7 OOS 0.00288278 0.02939365 CV 0.00143408 0.02640879
8 OOS 0.00287012 0.02916590 CV 0.00142191 0.02642395
9 OOS 0.00312023 0.03212712 CV 0.00162363 0.02931566

10 OOS 0.00320773 0.03231870 CV 0.00163675 0.02928567
11 OOS 0.00286202 0.02903762 CV 0.00142202 0.02656322
12 OOS 0.00292002 0.02929876 CV 0.00142352 0.02648266
13 OOS 0.00285639 0.02905318 CV 0.00140817 0.02657282
14 OOS 0.00317692 0.03203844 CV 0.00161741 0.02927366
15 OOS 0.00330047 0.03214643 CV 0.00160875 0.02928342
16 OOS 0.00258238 0.03188518 CV 0.00065514 0.02908691
17 OOS 0.00247809 0.03233077 CV 0.00063395 0.02926124
18 OOS 0.00258870 0.03187116 CV 0.00065226 0.02907460
19 OOS 0.00291476 0.03509102 CV 0.00075164 0.03247364
20 OOS 0.00268914 0.03411292 CV 0.00077341 0.03127794
21 OOS 0.00432814 0.03382664 CV 0.00212293 0.03098144
22 OOS 0.00318839 0.03369424 CV 0.00105776 0.03203304
23 OOS 0.00441609 0.03437149 CV 0.00214454 0.03093313
24 OOS 0.00436641 0.03408481 CV 0.00211717 0.03095843
25 OOS 0.00435252 0.03407101 CV 0.00212123 0.03094502
26 OOS 0.00430159 0.03427615 CV 0.00207995 0.03093004
27 OOS 0.00421521 0.03414207 CV 0.00210636 0.03106603
28 OOS 0.00270250 0.03275321 CV 0.00099183 0.03156059
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B.5 MDARC0 Model

Exp. No. Val. Method Train MSE Test MSE Val. Method Train MSE Test MSE
0 OOS 0.00448266 0.03017307 CV 0.00303947 0.02750740
1 OOS 0.00438130 0.03033511 CV 0.00303238 0.02750745
2 OOS 0.00430287 0.03025093 CV 0.00303029 0.02749531
3 OOS 0.00437446 0.03033042 CV 0.00303387 0.02750327
4 OOS 0.00483698 0.03265952 CV 0.00348099 0.03003066
5 OOS 0.00454929 0.03280596 CV 0.00346311 0.03000364
6 OOS 0.00431780 0.03022475 CV 0.00303372 0.02750280
7 OOS 0.00428226 0.03027964 CV 0.00302512 0.02752506
8 OOS 0.00433264 0.03022978 CV 0.00303425 0.02750700
9 OOS 0.00483722 0.03269294 CV 0.00348099 0.03002765

10 OOS 0.00461842 0.03266099 CV 0.00345385 0.03004614
11 OOS 0.00431539 0.03039954 CV 0.00302905 0.02751775
12 OOS 0.00438233 0.02996020 CV 0.00302115 0.02753189
13 OOS 0.00434922 0.03043683 CV 0.00303007 0.02751388
14 OOS 0.00483704 0.03273492 CV 0.00348273 0.03003572
15 OOS 0.00458588 0.03277171 CV 0.00344387 0.03005103
16 OOS 0.00466319 0.02700114 CV 0.00336784 0.02516014
17 OOS 0.00461577 0.02745185 CV 0.00354831 0.02496900
18 OOS 0.00476953 0.02739168 CV 0.00337998 0.02512452
19 OOS 0.00764765 0.03100629 CV 0.00657263 0.02989996
20 OOS 0.00444478 0.02963286 CV 0.00342736 0.02700091
21 OOS 0.00434652 0.03296846 CV 0.00321992 0.03100073
22 OOS 0.00524396 0.03485069 CV 0.00431465 0.03097653
23 OOS 0.00434673 0.03296139 CV 0.00322381 0.03100515
24 OOS 0.00430099 0.03303431 CV 0.00321900 0.03100902
25 OOS 0.00434598 0.03296466 CV 0.00322306 0.03099847
26 OOS 0.00430347 0.03303308 CV 0.00321791 0.03099947
27 OOS 0.00430900 0.03302431 CV 0.00321454 0.03098931
28 OOS 0.00495135 0.03372132 CV 0.00374306 0.03106068
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B.6 MDARC1 Model

Exp. No. Val. Method Train MSE Test MSE Val. Method Train MSE Test MSE
0 OOS 0.00141642 0.06454347 CV 0.00084872 0.06195843
1 OOS 0.00140551 0.06454576 CV 0.00083698 0.06191304
2 OOS 0.00142036 0.06456436 CV 0.00084097 0.06198693
3 OOS 0.00140505 0.06455857 CV 0.00083630 0.06195052
4 OOS 0.00101288 0.07209861 CV 0.00069561 0.07001002
5 OOS 0.00101078 0.07210341 CV 0.00067773 0.07002524
6 OOS 0.00139963 0.06457152 CV 0.00083325 0.06203867
7 OOS 0.00141745 0.06467819 CV 0.00083342 0.06201544
8 OOS 0.00139929 0.06453407 CV 0.00083269 0.06205413
9 OOS 0.00101298 0.07206679 CV 0.00069558 0.06999928

10 OOS 0.00099895 0.07199983 CV 0.00066705 0.07004536
11 OOS 0.00141481 0.06453824 CV 0.00081582 0.06202888
12 OOS 0.00147210 0.06471340 CV 0.00081717 0.06215511
13 OOS 0.00139244 0.06456903 CV 0.00081491 0.06198741
14 OOS 0.00101256 0.07208105 CV 0.00069429 0.07005456
15 OOS 0.00105312 0.07213666 CV 0.00066688 0.06885190
16 OOS 0.00391465 0.20311481 CV 0.00312568 0.19680441
17 OOS 0.00410346 0.20231562 CV 0.00322415 0.19591008
18 OOS 0.00394311 0.20327858 CV 0.00312588 0.19766841
19 OOS 0.00309193 0.23343913 CV 0.00250065 0.22569748
20 OOS 0.00272093 0.22444343 CV 0.00209785 0.21882312
21 OOS 0.00069841 0.10688639 CV 0.00059354 0.10471736
22 OOS 0.00257703 0.36153815 CV 0.00228157 0.35070087
23 OOS 0.00070420 0.10691662 CV 0.00059857 0.10482455
24 OOS 0.00069194 0.10675472 CV 0.00058697 0.10467764
25 OOS 0.00070273 0.10695535 CV 0.00059703 0.10480972
26 OOS 0.00068225 0.10666073 CV 0.00057774 0.10460431
27 OOS 0.00065183 0.10638874 CV 0.00054876 0.10442328
28 OOS 0.00233916 0.34853808 CV 0.00207044 0.33707789
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B.7 MKL Model

Exp. No. Val. Method Train MSE Test MSE Val. Method Train MSE Test MSE
0 OOS 0.00317263 0.02519840 CV 0.00172581 0.02505082
1 OOS 0.00303165 0.02636677 CV 0.00171694 0.02569375
2 OOS 0.00308524 0.02636645 CV 0.00174043 0.02583051
3 OOS 0.00303083 0.02638263 CV 0.00170267 0.02582997
4 OOS 0.00296271 0.02759382 CV 0.00194980 0.02781390
5 OOS 0.00311781 0.03039160 CV 0.00181611 0.02960162
6 OOS 0.00284180 0.02667591 CV 0.00163308 0.02560045
7 OOS 0.00285914 0.02701470 CV 0.00166955 0.02577446
8 OOS 0.00289699 0.02647714 CV 0.00162149 0.02558547
9 OOS 0.00352629 0.02869596 CV 0.00182265 0.02870890

10 OOS 0.00388418 0.02896528 CV 0.00165877 0.02879822
11 OOS 0.00369098 0.02642289 CV 0.00163924 0.02600961
12 OOS 0.00356328 0.02658283 CV 0.00171433 0.02627249
13 OOS 0.00369894 0.02653517 CV 0.00159672 0.02591099
14 OOS 0.00310866 0.02870631 CV 0.00179677 0.02871827
15 OOS 0.00372231 0.02985329 CV 0.00164433 0.02945137
16 OOS 0.00455895 0.02952075 CV 0.00285192 0.02704368
17 OOS 0.00452126 0.02911581 CV 0.00306283 0.02785605
18 OOS 0.00460566 0.02918150 CV 0.00284229 0.02729349
19 OOS 0.00395662 0.03142445 CV 0.00257444 0.02886149
20 OOS 0.00331100 0.03116476 CV 0.00180630 0.02869494
21 OOS 0.00492558 0.03211244 CV 0.00241768 0.03347685
22 OOS 0.00360164 0.03824243 CV 0.00241908 0.03478473
23 OOS 0.00437648 0.03288784 CV 0.00253757 0.03325722
24 OOS 0.00494282 0.03280640 CV 0.00241544 0.03278341
25 OOS 0.00405611 0.03280902 CV 0.00241952 0.03268470
26 OOS 0.00511989 0.03361792 CV 0.00241326 0.03418544
27 OOS 0.00462924 0.03433964 CV 0.00227922 0.03362307
28 OOS 0.00333816 0.03611367 CV 0.00219124 0.03538021
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B.8 Linear model

Exp. No. Train MSE Test MSE
0 4.00E-04 2.92E-01
1 2.09E-29 3.40E-01
2 9.90E-30 3.11E-01
3 2.44E-29 3.65E-01
4 1.61E-26 7.99E-01
5 9.91E-30 3.30E-01
6 1.04E-29 3.26E-01
7 6.30E-30 2.98E-01
8 1.66E-29 3.28E-01
9 4.21E-27 5.00E-01

10 4.21E-30 3.21E-01
11 4.29E-30 3.20E-01
12 3.77E-30 2.93E-01
13 4.18E-30 3.22E-01
14 2.77E-27 4.51E-01
15 2.04E-30 3.14E-01
16 5.30E-30 1.08E-01
17 4.02E-30 1.12E-01
18 4.02E-30 1.24E-01
19 2.93E-27 2.82E-01
20 2.01E-30 9.96E-02
21 9.90E-30 4.60E-01
22 6.73E-30 1.71E-01
23 4.33E-29 4.94E-01
24 6.02E-30 4.59E-01
25 3.22E-29 4.70E-01
26 3.45E-30 4.47E-01
27 1.83E-30 4.35E-01
28 1.84E-30 1.34E-01
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