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Predicting instrumental mass fractionation (IMF) of stable isotope 

SIMS analyses by response surface methodology (RSM)† 

C. Fàbregaa, D. Parcerisaa, J. M. Rossellb, A. Gurenkoc, C. Franked 

Instrumental mass fractionation (IMF) of isotopic SIMS analyses (Cameca 1280HR, CRPG Nancy) was predicted by response 

surface methodology (RSM) for 18O/16O determinations of plagioclase, K-feldspar, and quartz. The three predictive 

response surface models combined instrumental and compositional inputs. The instrumental parameters were: (i) X and Y 

stage position, (ii) the values of LT1DefX and LT1DefY electrostatic deflectors, (iii) chamber pressure and, (iv) primary-ion 

beam intensity. The compositional inputs included: (i) anorthite content (An%) for the plagioclase model and, (ii) 

orthoclase (Or%) and barium (BaO%) contents for the K-feldspar model. The three models reached high predictive powers. 

The coefficients R2 and prediction-R2 were, respectively, 90.47% and 86.74% for plagioclase, 87.56% and 83.17% for K-

feldspar, and 94.29% and 91.59% for quartz. The results show that RSM can be confidently applied to IMF prediction in 

stable isotope SIMS analyses by the use of instrumental and compositional variables.

1 Introduction 

Determination and correction of IMF is one of the key steps to 

obtain reliable results in stable isotope SIMS measurements of 

mineral samples. The instrumental mass bias occurs during 

several phases of SIMS analyses, e.g. sputtering, ionization, 

extraction, secondary beam transmission and detection,1 

which depend on the ion microprobe operating conditions.2,3 

In addition, IMF is strongly influenced by the major elements 

composition of the mineral.4 This has focused an intense 

research on the instrumental and compositional factors 

influencing IMF, the so-called “matrix effect”. Eiler et al. 

reported correlations of IMF with the ion sputtering rate and 

the atomic mass unit of the network-modifying cations in 
18O/16O of target silicates, phosphates and glasses.5 Riciputi et 

al. showed a correlation of IMF with chemical composition, the 

intensity of primary-ion beam, amount of the implanted 133Cs+ 

and kinetic energy of the sputtered ions in 34S/32S, 18O/16O and 
13C/12C analyses of sulfides, silicates, oxides, and carbonates.1 

Gurenko et al. correlated the IMF of 18O/16O analyses on 

volcanic glasses and pyroxenes with compositional 

parameters.
6
 Hauri et al. obtained linear regressions of IMF vs. 

chemical, instrumental, and physical parameters in D/H 

analyses of volcanic glasses.
7
 Vielzeuf et al. proposed a 

mathematical script for bias prediction of 
18

O/
16

O analyses as a 

function of garnet composition using Matlab (The MathWorks, 

Inc.).
8
 Kita et al. reported the influence of X-Y mount position 

and sample topography on IMF using 
18

O/
16

O zircon analyses.
9
 

Page et al. fitted linear regressions of IMF versus the 

composition and molar volume in 
18

O/
16

O analyses of 25 

garnet standards.
10

 Rollion-Bard and Marin-Carbonne 

correlated IMF with Mg, Fe and Mn content in 
18

O/
16

O 

measurements of the calcite-siderite-magnesite solid-solution 

series.
11

 Hartley et al. correlated the IMF of 
18

O/
16

O glass 

standards analyses and the chemical composition, physical 

properties and instrumental setting.
12

 Slodzian et al. correlated 

the IMF with the chemical composition, the atomic 

concentration of implanted Cs and the sputtering yield in 
29

Si/
28

Si analyses of olivine and quartz.
13

 Ickert and Stern 

correlated IMF with Ca content in garnet 
18

O/
16

O analyses.
14

 

Śliwiński et al. correlated the Fe content with bias variation in 
18

O/
16

O and 
13

C/
12

C analyses of the dolomite-ankerite solid 

solution series using the Hill’s equation for nonlinear 

effects.
15,16

 

Introduced by Box and Wilson, RSM has been applied to build 

up multivariate statistical models in a wide variety of 

industrial, engineering and experimental processes.
17

 

Successful RSM applications can be found in, e.g., Riley, 

Legtenberg, Chen et al., Hung et al., Angellier et al., Noordin et 

al., Bas and Boyaci, Bezerra et al., Habib, Tarley et al., Ali et al., 

Azhari et al. and Mohamed et al.
18–30

 In addition, the 

mathematical and statistical aspects of RSM and related 

experimental techniques are covered in e.g., Box, Box, and 
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Draper, Carley et al., del Castillo, Myers et al., Khuri and 

Mukhopadhyay and Barton.
31–37

 

Simultaneously, the statistical prediction models have been 

recognized as powerful tools for e.g., exploring the underlying 

causal relationships below the datasets, building and/or 

assessing new knowledge and improving previous models.
38

 

While explanatory statistical modelling is based on the causal 

relationships among previous theoretical constructions, the 

predictive statistical modelling works on associations of 

measurable variables. The discrimination of both approaches 

as different but complementary tools has been strongly 

emphasized by e.g., Dowe et al., Hitchcock and Sober and 

Konishi and Kitagama.
39–41

 Usually, statistical models present a 

mix of predictive and explanatory power so that, to increase 

the predictive strength and reduce the sampling variance it is 

necessary to partly sacrifice the theoretical accuracy.
42

 

Shmueli demonstrated that the predictions of a “wrong” 

model present lower prediction error than a more “true” 

model, especially in situations dealing with e.g., low quality 

data, small populations of observations or highly correlated 

variables.
38

 

The main purpose of this study was to construct and develop 

three predictive response surface models to IMF correction of 
18

O/
16

O SIMS analyses of plagioclase, K-feldspar, and quartz. 

The second goal of the study was the application of these 

three response surface models to correct, respectively, IMF of 

igneous plagioclase, K-feldspar and quartz 
18

O/
16

O SIMS 

analyses of Variscan granite samples from NE Spain carried out 

during the same session. The use of RSM in this study 

permitted to deal with: 

i. Large distances among the standards and the target 

samples. Rock samples covered an area in the mount 

about 20-25 mm
2
 in order preserve most of the 

textural features, so the distance from the standards 

to the target points was for practical reasons in many 

cases about thousands of microns. 

ii. The electrostatic deflectors of the standards and the 

samples presented significant different values. 

iii. Minor punctual instabilities of the chamber pressure 

appeared during the session. 

iv. Different from the usual standard bracketing 

correction method, which assigns the same value of 

averaged IMF to all SIMS analyses interpolated within 

each standard-bracket, the RSM permits the 

prediction of a single and unique IMF value for each 

SIMS analysis. 

v. The observations from the initial Exploratory Data 

Analysis (EDA) and from the final RSM models 

permitted to explore the “causal” relationships 

among the instrumental and compositional variables 

and IMF of stable isotope SIMS analyses, the so-called 

“matrix effect”. 

2 RSM 

RSM is a combination of mathematical and statistical tools 

designed to build up multiple variables polynomial models.
32

 It 

has proven particularly useful for the development and 

optimization of processes and products and for characterizing 

the behavior of a predicted variable (i.e. the response) within a 

given operational region of several input variables.
35

 RSM is 

especially valuable to obtain an “approximation” function of 

the "actual" unknown function f of the underlying 

phenomenon. The approach is usually carried out by a second 

order polynomial containing linear, interaction and squared 

terms, by Eq. (1): 

� = �� +����� +����	���	 +������
 + �
�
�
���	

�
	



�
�
�

 (1) 

The variable � being the expected or predicted 

response,	�� , � = 1,2,… , n, the input variables, ��	 the constant 

term, �� , ��	 , ��� , �, � = 1,2,… , �, the equation coefficients and � 

the standard error of the prediction, which is assumed to have 

zero mean. 

The adjusting of the polynomial to data is carried out by the 

least squares method (LSM), by minimizing the sum of squared 

residuals. The statistical significance of the model is evaluated 

by the ANOVA test (analysis of the variance). The statistical 

significance (p-value) applied to accept the terms in the model 

is generally p-value ≤ 0.05 (i.e. 95% confidence level). 

Simultaneously, multicollinearity must be properly controlled 

to avoid highly correlated terms in the model, usually by the 

variance inflation factor (VIF). Generally, the terms showing 

VIF > 10 are considered to suffer high multicollinearity and it is 

recommended to exclude them from the model. 

The selection of the model terms is habitually carried out by a 

sequential stepwise backward elimination process.33,35 In each 

step, the no significant term displaying the highest p-value is 

eliminated and then the model is refitted again. The procedure 

sequentially repeats until, ideally most of the remaining model 

terms display proper levels of significance (p-value ≤ 0.05) and 

multicollinearity (VIF ≤ 10). To reach this goal, the observations 

used to fit the model must properly cover the operational 

region of the input variables. To fit a hierarchical model, the 

non-significant linear terms participating in significant 

interaction or squared terms must be preserved in the model. 

The stepwise backward elimination sequence can lead to 

slightly different final models that, depending on the desired 

accuracy, can be equally adequate for a given applied work. It 

is recommended to develop the model in teamwork, running 

the backward elimination process by separate investigators 

and compare among independently fitted models. 

The adequacy of the fitted model is evaluated by the standard 

error of the regression (S), the prediction error sum of squares 

(PRESS), the determination coefficients R
2, adjusted-R

2 and 

prediction-R
2, the analysis of residuals, the diagnostic of 

influence points (Leverage, Cook’s distance) and the adequate 

precision (AP). 

The standard error of the regression (S) calculates the average 

distance between the predicted values and the actual 

observations. S is calculated in the natural units of the 

response, so provides a rapid and intuitive measure of the 

model precision. Thus, when �� , � = 1,2,… , n, the actual 
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values, ��� the model predicted values of the same 

observations and n the number of observations, the standard 

error of the regression (S) can be written as Eq. (2): 

� = �∑ ��� − ����
��
� �  (2) 

The prediction error sum of squares (PRESS) calculates the sum 

of squares of the prediction errors of the model points. The 

prediction error of a given point i is the distance between the 

actual and predicted value, calculated by the prediction model 

refitted without this i observation. So, when �� , � = 1,2,… , �, 

the real observations and ���, � the predictions of the model 

refitted without using the i observation in each case, PRESS 

can be expressed as Eq. (3): 

!"#�� =�$�� − �̂�, �&

�
�
�

 (3) 

The coefficient of determination R
2
 (0-100%) estimates the 

amount of variability of the observations that is explained by 

the model. Thus, when �� , � = 1,2,… , � the actual observations 

of a sample, �' their mean and ���  the model predictions of the 

same observations, the total sum of squares (SStot) is defined 

as Eq. (4): 

��()( =���� − �'�

�
�
�

 (4) 

The residual sum of squares (SSres) by Eq. (5): 

��*+, =���� − ����

�
�
�

 (5) 

Then, the coefficient of determination R
2
 is calculated by Eq. 

(6): 

"
 = 1 −	��*+,��()(  (6) 

The adjusted-R
2
 corrects for the number of terms included in 

the model and it is always lower than R
2
. It is especially useful 

for comparisons among models with a different number of 

terms. Thus, being n the number of observations of the 

dataset and p the number of input variables included in the 

model (without the constant term), the adjusted-R
2
 is 

calculated as Eq. (7): 

-.�. "
 = 1 − �1 − "
� � − 1� − 0 (7) 

The prediction-R
2
 estimates the capability of the model to 

explain the variability of new observations. It is always lower 

than R
2
 and adjusted-R

2
, calculated by Eq. (8): 

!12.. "
 = 1 − !"#����()(  (8) 

Importantly, the values of R
2, adjusted-R2

, and prediction-R2 

should be as high and similar as possible. This indicates that 

the model has a satisfactory capacity to explain the 

experimental data and a proper predictive capability for new 

observations. When the model presents an excess of terms, 

the adjusted-R
2
 is much lower than R

2
. In addition, when the 

model has an excessive number of variables with regard to the 

number of observations used to fit the model (i.e. an over-

fitted model), the prediction-R
2
 is much lower than the R

2
 and 

adjusted-R
2
. 

The residuals have a notable role in assessing the adequacy of 

the model. The residual analysis must be done on the 

observations listed in chronological order. Residuals can be 

expressed as 1� = ��� − ����, � = 1,2,… , �, where ��  is the 

actual and ���  is the predicted value of the i observation. It is 

recommended to use a standardized population of residuals 

with µ≈ 0 and σ≈ 1, dividing each residual by the standard 

deviation of the residual’s population. Properly, the 

standardized residuals should remain in the interval (-3, 3), but 

ultimately this limit depends on the experience of the 

investigator and on the goal of the study. The standardized 

residuals out of this interval are potential outliers and must be 

re-examined, as they could indicate, e.g., sampling errors or a 

poor fitting of the model in that region of the variables. 

Usually, standardized residuals are graphically analysed. Thus, 

the cumulated probability distribution function and the 

histogram should approach a normal distribution. In addition, 

the plots of residuals vs. response, the time series (order of 

analyses) and the predictor variables should display random 

distributions. Importantly, the observation of trends in the 

residual plots indicates that significant variables on the 

response are not included in the model.
 

The influential observations (points) must be detected to avoid 

the fitting of biased models. The potential influence of a given 

point can be evaluated by the leverage (Hi) and the Cook’s 

distance (Di). The leverage indicates when a model point has 

remote or extreme values of the input variables. Generally, Hi 

is recommended to be 3� ≤ 20 �⁄ , were p is the number of 

predictor terms of the model including the constant, and n the 

number of observations used to fit the model. The detection of 

a high Hi value is not negative itself, and the influence of that 

point should be further evaluated by the Cook’s distance (Di). 

Di estimates how the model regression coefficients change 

when a given point i is omitted from the model and this it is 

refitted again. Those points with relatively large values of Di 

respect to the rest of the population of points or with Di ≥ 0.5 

are potentially influential observations and should be carefully 

re-examined (Cook).
43

 If high Cook’s distances are detected, it 

is recommended to exclude the affected points and re-fit the 

model again to compare the changes. The capacity of the 

influential observations to deviate the fitted model can be 

strong, so the detection of influential observations is a critical 

step to avoid biased models. 

The adequate precision (AP) calculates the ratio between the 

range of values of the response and the averaged standard 

error of the model predictions, i.e. the signal out of noise: -! = ��678 − �6��� 9:219;2	�#<*+=�>(�)�⁄ . As a rule of 

thumb, AP ≥ 4 is recommended. 
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When the adequate response Surface model is finished, the 

behavior of the response through the model is usually 

visualized by 3D surface or contour plots of the response 

versus pairs of variables, while keeping fixed the rest of the 

input variables. 

3 Analytical process 

3.1 Selection and characterization of standards 

The SIMS points used to construct the three response surface 

models of this study were analyzed on internal standards, 

selected and characterized from natural specimens of 

plagioclase, K-feldspar, and quartz. In a first step, bulk 

fragments of about 30 potential specimens were examined 

using scanning electron microscopy and energy dispersive 

spectroscopy (SEM-EDS) at the Escola Politècnica Superior 

d’Enginyeria de Manresa of the Universitat Politècnica de 

Catalunya (Spain). The specimens presenting no visible or 

minimal visual heterogeneities in BSE mode and virtually 

uniform composition in EDS were prepared as thin sections 

(30 µm-thick) with metallographic polishing for further 

petrographic and compositional analyses. 

These selected specimens were texturally and compositionally 

analyzed using the following techniques: 

i. Petrographic analyses were performed using a Nikon 

Eclipse E400 petrographic microscope at the Escola 

Politècnica Superior d’Enginyeria de Manresa of the 

Universitat Politècnica de Catalunya (Spain). 

ii. SEM-EDS analyses were carried out using a Hitachi 

TM-1000 operating at 15 Kv at the Escola Politècnica 

Superior d’Enginyeria de Manresa of the Universitat 

Politècnica de Catalunya (Spain). Backscatter 

diffracted electron (BSE) imaging is especially useful 

for the detection of perthites and antiperthites in K-

feldspar and plagioclase, respectively. 

iii. Optical cathodoluminescence (CL) observations were 

performed under a Technosyn Cold 

Cathodoluminescence model 8200 MKII CL, equipped 

with a Nikon Coolpix 4500 digital camera at the 

Facultat de Geologia of the Universitat de Barcelona 

(Spain). CL working conditions went from 15 to 18 kV 

gun potential and 150 to 350 μA beam current. 

Afterwards, the quality of the CL pictures was 

improved by adjusting the colour histograms of the 

images following Witkowski et al.
44

 Importantly, 

optical-CL permits the detection of textural features 

in minerals indicative of potential geochemical 

heterogeneities where BSE images do not show 

visible contrast because the major element 

composition does not significantly change, e.g., 

recrystallization, internal zoning, micro-cracks cement 

or overgrowths. Specimens presenting large areas 

with important cathodoluminescence heterogeneities 

should not be used as standards. 

iv. The chemical composition of the standards was 

determined by EPMA under a JEOL JXA-8230 

operating at 20 Kv and equipped with five dispersive 

wavelength spectrometers (WDS), at the Centres 

Científics i Tecnològics of the Universitat de 

Barcelona (Spain). The EPMA analyses were 

distributed in several grains of each specimen to 

check that chemical composition was homogeneous 

at millimeter scale. 

v. Finally, the 
18

O/
16

O isotope ratios of plagioclase, K-

feldspar and quartz specimens selected as adequate 

standards were determined by CO2-laser fluorination 

at the Laboratorio General de Análisis de Isótopos 

Estables of the Universidad de Salamanca (Spain). 

About 4-6 mg of material was carefully extracted 

from each standard using a tungsten 0.65 mm 

diameter dental drill with the aid of a binocular 

scope. After extraction, the sampling craters were 

analyzed by SEM-EDS to check that the drilled 

material was virtually homogeneous. 

3.2 Textural and compositional features of the standards 

The eight plagioclase, two K-feldspar, and one quartz internal 

standards used in this study were selected to develop a 

response surface model for each mineral group (Table 1). The 

plagioclase specimens covered most of the albite-anorthite 

solid solution series and the K-feldspar standards represented 

the K-feldspar compositional end-member. The 

cathodoluminescence, BSE images, and EPMA analyses of the 

standards are included in the electronic supplementary 

information (S1 and S2)†. The characteristics of the standards 

used in this study are as follow: 

Table 1 Fluorination δ18OVSMOW results for plagioclase, K-feldspar and quartz standards 

Mineral    Plagioclase 

 Albite Albite Oligoclase Andesine Labradorite Labradorite Bytownite Anorthite 

Ref. Gstd0001 Gstd0002 Gstd0003 Gstd0004 Gstd0005 Gstd0006 Gstd0008 Gstd0009 

n 3 3 2 2 3 3 2 2 

δ18O‰±1σ 9.73±0.15 12.36±0.15 8.20±0.05 7.50±0.23 7.50±0.26 7.33±0.15 6.85±0.03 7.05±0.20 
18O/16O 0.002024717 0.00203000 0.00202164 0.00202024 0.00202024 0.00201990 0.00201894 0.00201934 

Mineral K-feldspar  Quartz 

 Adularia Microcline 

Ref. Gstd0010 Gstd0011 Gstd0012 

n 2 4 3 

δ18O‰±1σ 9.30±0.05 9.23±0.21 9.36±0.10 
18O/16O 0.00202385 0.00202370 0.00202398 
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i. Gstd0001: 2.5 cm-sized, translucent, labradorescent, 

brunet albite crystal from Hybla, Ontario, Canada. CL 

showed dull brown luminescence. The average 

feldspar composition was Ab91An7Or2, falling in the 

lower part of the albite range. The reference 
18

O/
16

O 

ratio was 0.002024717 (
18

δOVSMOW= 9.7‰). 

ii. Gstd0002: 6 cm-sized, translucent, white albite 

specimen from Bancroft, Ontario, Canada. CL 

presented pale-blue-red colors. The average feldspar 

composition was Ab93An6Or1, in the lower half of the 

albite range. The fluorination 
18

O/
16

O ratio was 

0.002029998 (
18

δOVSMOW = 12.4‰). 

iii. Gstd0003: 5 cm-sized, translucent, white oligoclase 

specimen from Madawaska, Ontario, Canada. CL 

exhibited bright green luminescence. The average 

feldspar composition was Ab76An22Or2, in the center 

of the oligoclase range. The bulk 
18

O/
16

O ratio was 

0.002021643(
18

δOVSMOW = 8.2‰). 

iv. Gstd0004: 1.2 cm-sized, gemstone quality, 

translucent, violet andesine/labradorite crystal from 

Congo. CL was intense purple. The average feldspar 

composition was Ab48An50Or2. The reference 
18

O/
16

O 

ratio was 0.002020239 (
18

δOVSMOW = 7.5‰). 

v. Gstd0005: 4 cm-sized, labradorescent, dark 

labradorite specimen from Labrador, Canada. CL 

exhibited pale green luminescence. The mean 

feldspar composition was Ab44An54Or2, in the middle 

of labradorite range composition. The fluorination 
18

O/
16

O ratio was 0.002020239 (
18

δOVSMOW = 7.5‰). 

vi. Gstd0006: 1 cm-sized, almost black, labradorescent 

labradorite crystal from Grass Valley, California, USA. 

CL was homogeneous dull grey. The average feldspar 

composition fell in the lower half of the labradorite 

range, being Ab37An62Or1. The bulk 
18

O/
16

O ratio was 

0.002019905 (
18

δOVSMOW = 7.3‰). 

vii. Gstd0008: 0.2-0.5 cm-sized, translucent, white 

bytownite fragments. CL displayed homogeneous, 

dull grey luminescence. The mean feldspar 

composition was Ab23An76Or1, in the upper part of 

the bytownite range. The fluorination 
18

O/
16

O ratio 

was 0.002018936 (
18

δOVSMOW = 6.9‰). 

viii. Gstd0009: 2 cm-sized, translucent white anorthite 

crystal from Miyake Island, Japan. CL was 

homogeneous, pale green-brown. Feldspar 

composition was Ab4An96, falling in the lower part of 

the anorthite range. The reference 
18

O/
16

O ratio was 

0.0020193367 (
18

δOVSMOW = 7.1‰). 

ix. Gstd0010: 3 cm-sized, translucent, orthoclase crystal 

from Grisons, Switzerland. CL exhibited dull blue 

luminescence. The average feldspar composition was 

Ab11Or89. The bulk 
18

O/
16

O ratio was 0.00202384836 

(
18

δOVSMOW = 9.3‰). 

x. Gstd0011: 8 cm-sized, translucent, pink microcline 

specimen from Parry Sound, Ontario, Canada. CL was 

bright blue. Under BSE imaging showed crypto-

perthites (< 5%).The averaged composition was 

Ab7Or93. The fluorination 
18

O/
16

O ratio was 

0.00202369797 (
18

δOVSMOW = 9.2‰). 

xi. Gstd0012: 5 cm-sized, transparent, quartz crystal 

from Pazolastok, Oberalp, Switzerland. CL showed 

homogeneous dark luminescence. The composition 

was 99.9% SiO2. The reference 
18

O/
16

O ratio was 

0.00202398204 (
18

δOVSMOW = 9.4‰). 

The plagioclase, K-feldspar, and quartz standards used in this 

study are deposited in the Museu de Geologia Valentí Masachs 

of the Universitat Politècnica de Catalunya (Manresa, Spain) 

with the same reference labels. 

3.3 Sample preparation for SIMS 

Fragments about 3-5 mm of the plagioclase, K-feldspar, and 

quartz standards were cut off by a hand-manipulated 

22 mm diameter / 0.6 mm thickness diamond wheel with the 

aid of a binocular scope. The portions were included in 25 mm 

diameter epoxy resin cylindrical mounts and the target surface 

was finished with a metallographic polishing. The surface 

roughness was checked under a digital profilometer Leica DCM 

3D at the Servei de Microscopia of the Universitat Autònoma 

de Barcelona (Spain). The roughness values were below 1 µm, 

achieving the recommendations of Kita et al. to avoid 

topography effects on IMF.
9
 Afterwards, the specimens 

included in the mounts were imaged by optical 

cathodoluminescence (CL) and SEM. These pictures were used 

to select suitable places for the 
18

O/
16

O isotope analysis in the 

grains during the SIMS session. The different positions of the 

standards in the mounts present from the central area virtually 

free of significant X-Y effects on IMF (i.e. 10-12 mm diameter) 

to extreme external positions (i.e. 20-22 mm diameter from 

the center) affected by X-Y effects.
9
 Representative images of 

several standards mounts are included in the electronic 

supplementary information S1†. 

3.4 
18

O/
16

O SIMS measurements 

The 
18

O/
16

O SIMS analyses were carried out using a 

Cameca IMS 1280HR at the Centre de Recherches 

Pétrographiques et Géochimiques, the Centre National de la 

Recherche Scientifique (Nancy, France). Measurements were 

carried out in one session from 22nd to 25th July 2014 under 

stable weather conditions. The sample surface was gold 

coated and bombarded by a 
133

Cs+ 5-6 nA primary beam in 

chamber pressure conditions about 10
-9

Torr. The positive 

charge of the sample surface was compensated by a normal 

incident electron flood. Sputtered ions were accelerated to the 

secondary column by a -10 Kv potential. The secondary ion 

beam was automatically centered onto the field departures by 

the electrostatic deflectors LT1DefX and LT1DefY. The two 

oxygen isotopes 
16

O and 
18

O were simultaneously collected by 

two Faraday cups (FC). Each analysis included 30 cycles, with a 

total time about 4 minutes, including the 60 s pre-sputtering 

time.  

During the SIMS session, the groups of analyses of plagioclase, 

K-feldspar, and quartz standards were sequentially alternated 

(Fig. 1) and intercalated with analyses of rock samples (not 

included in this study). 
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The internal precision (within-spot uncertainty) of all standard 

analyses averaged 0.06‰. The external precision (spot-to-spot 

reproducibility) was determined on four grains of the same 

standard (Gstd0010 with 
18

δOtrue= 9.3±0.1‰, 1σ) located in a 

central position of four different mounts and analyzed several 

times during the session. Spot-to-spot reproducibility was 

0.29-0.5‰ (1σ). Mount-to-mount reproducibility was 0.29‰ 

(1σ), calculated as the standard deviation of the four Gstd0010 

grain averages (Fig. 1a). 

The intervals of plagioclase raw 
18

δO results obtained from n 

grains casted in different mounts were 5.42-6.82‰ (Gstd0001, 

An7, n = 1), 5.81-8.02‰ (Gstd0002, An6, n = 1), 1.35-4.54‰ 

(Gstd0003, An22, n = 4), 0.44-4.60‰ (Gstd0004, An50, n = 4), 

2.89-3.69‰ (Gstd0005, An54, n = 1), 1.07-2.09‰ (Gstd0006, 

An62, n = 1), 3.54-5.31‰ (Gstd0008, An76, n = 1) and 2.15-

5.78‰ (Gstd0009, An96, n = 2). For K-feldspar, the raw 
18

δO 

intervals were 1.27-5.87‰ (Gstd0010, Or89, n = 6) and 1.43-

7.12‰ (Gstd0011, Or93, n = 4). For quartz (Gstd0011, n = 6), 

the raw 
18

δO interval was -2.98 to 3.20‰ (Fig. 1b, c, d). 

Most of the plagioclase, K-feldspar, and quartz standards 

recorded a wide interval of raw 
18

δO values, induced by the 

positional X-Y effect, as the standards were placed in central 

and also in extreme external positions of the mounts (Fig. 1e), 

and the variability of electrostatic deflectors (LT1DefX-

LT1DefY) values used in the different grains of each standard. 

The micron-scale compositional and isotopic heterogeneities 

typical of natural feldspars, even in apparently homogeneous 

grains, probably also accounted for a small part of these wide 

ranges of SIMS 
18

δO raw results obtained in the standards 

analyses (see electronic supplementary informaeon S2)†. 

After the 
18

O/
16

O SIMS measurements, the compositions of the 

craters were constrained by EPMA (included in the electronic 

supplementary information S2)†. The EPMA analyses were 

placed around the SIMS spots guided by the BSE images 

provided by the electron microscope attached to the EPMA. 

The chemical composition assigned to each SIMS point was 

determined as the mean of several surrounding EPMA 

analyses or, as the value obtained in the EPMA nearest 

neighbour point. 

3.5 IMF calculation 

The IMF of each SIMS analysis was calculated as the SIMS 
18

O/
16

O ratio over the reference fluorination 
18

O/
16

O ratio of 

the bulk specimen, by Eq. (9): 

?@A = 	 18B 16B⁄ CDEC
18B 16B⁄ FGH)* (9) 

Expanding (9), IMF can also be expressed in ‰, as Eq. (10): 

?@A	�‰� = 	J 18B 16B⁄ CDEC
18B 16B⁄ FGH)* − 1K × 10N (10) 

The IMF values reported in this study were calculated by 

equation (9) and, if necessary, expressed in ‰ using equation 

(10). The approximation of IMF by the expression ?@A	�‰�~	�18δBCDEC − 18δB*+7G� was avoided. 

The plagioclase IMF values recorded in the center of the 

mount (i.e. within a 5-6 mm radius) were of the same order 

than previous plagioclase standards analyzed also using the 

Cameca 1280HR at the CRPG by Borisova et al.
45

 These 

plagioclase IMF averages were -13.8±0.4‰ (1σ) for Gstd0001 

(An7), -14.6±0.5‰ for Gstd0003 (An22), -13.6±0.3‰ for 

Gstd0005 (An54) and, -12.46±0.5‰ for Gstd0008 (An76). 

The complete ranges of IMF went from 0.98312 (-16.88‰) to 

0.99055 (-9.45‰) for plagioclase (Fig. 2a), 0.98223 (-17.77) to 

0.98790 (-12.1) for K-feldspar (Fig. 2b) and, 0.97804 (-21.96‰) 

to 0.98432 (-15.68‰) for quartz (Fig. 2c). 

The IMF values of all the SIMS analyses are included in the 

electronic supplementary information S2†. 

4 Results of response surface models for IMF 

prediction 

The response surface models of plagioclase, K-feldspar, and 

quartz were fitted to reach a high predictive power. This 

approach generated three markedly different models 

displaying high prediction accuracy. The models were built 

using the tools of Design of Experiments (DOE) and Response 

Surface included in the statistical software Minitab 17 (Minitab 

Inc.). The instructions for fitting a response surface model are 

included in the electronic supplementary information S4†. 

The instrumental input variables included in the three models 

were the X and Y position, the LT1DefX and LT1DefY 

electrostatic deflectors values, the chamber pressure (CP), and 

the primary-ion beam intensity (PI). In addition, the plagioclase 

model included the compositional input variable anorthite 

content (An%), and the K-feldspar model, the orthoclase 

(Or%), and barium (BaO%) contents. The IMF of the SIMS 

points, calculated by equation (9), was introduced in each 

model as the response (output variable) to fit. The values of 

the input variables and the calculated IMF of each SIMS 

analysis are included in the electronic supplementary 

information S2†. The selection of the final terms of each model 

was manually carried out by a stepwise backward elimination 

process. 

4.1 Plagioclase model  

The plagioclase model was properly fitted by a second order 

polynomial including seven linear, three squared and five 

interactions terms. The complete model design and 

predictions are included in the electronic supplementary 

information S3 and S4†. The model equation in the real values 

of the input variables was Eq. (11): 

IMFPlagioclase= 0.98306 + 1.280E-7 X + 2.300E-6 Y –

 3.624E+5 CP + 7.000E+5 PI – 1.08E-5 LT1defX –

 1.826E-5 LT1defY + 3.180E-5 An + 3.136E-11 X2 

+ 4.083E-7 LT1defX2 + 3.220E-7 LT1defY2 – 4.912E-

9 X×An – 4.250E+2 Y×PI +3.840E-9 Y×An + 2.090E-

7 LT1defX×LT1defY - 3.906E-7 LT1LT1defX×An 

(11) 

The ANOVA test indicated that the whole model (F = 65.22), 

the linear (F = 64.64), interaction (F = 76.11) and the squared 
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(F = 51.38) parts were significant (Electronic Supplementary 

Information S3)†. To keep a hierarchical structure, the non-

significant terms Y, LT1defY and PI were retained in the model. 

The multicollinearity of the final terms was low, as the VIF 

values ranged from 1.94 of X’ to 6.50 of (Y × An). The model 

properly fitted the observations, since R
2
 and adjusted-R

2
 took 

90.47 and 89.09%, respectively. The predictive power was 

high, as PRESS and prediction-R
2
 were 0.0000288 and 86.74%, 

respectively. The model got a proper discrimination capacity 

since the adequate precision (A.P.) was 46.6. 

The standardized residuals of the model predictions followed a 

normal distribution (Fig. 3a, c). The plots of standardized 

residuals vs. fitted IMF (Fig. 3b) and time series (Fig. 3d) 

showed random distributions, indicating that the most 

significant variables were included in the model. 

Severe influential observations were not detected during the 

backward elimination process of the model terms. The 

leverage and Cook’s distance of the model points averaged 

0.1344±0.0685 and 0.01187±0.02300 (1σ), respectively. Only 

the SIMS analysis Pattern2_AN@8 showed high leverage 

(0.5547), but its Cook’s distance was small (0.1718), so it was 

kept in the model. 

The fitted model was right centered on the operational region 

of the input variables. A Monte Carlo simulation (n = 10
5
) of 

the plagioclase IMF using the fitted model displayed a 

Gaussian distribution properly aligned with the actual 

distribution of IMF (Fig. 4), supporting that the fitted model 

was properly working in the space of the input parameters. 

The model took a good predictive capacity, as the scatterplot 

of the predicted vs. the actual IMF fell on a 1:1 slope (Fig. 5). 

The absolute difference between the actual and the predicted 

IMF (/actual IMF-predicted IMF/) averaged 0.000325 

±0.000263 (1σ). In addition, the corrected δ
18

O‰ results 

reduced the range of values versus the raw SIMS δ
18

O‰ in 

most of the standards. These reductions went from 4.41 to 

1.73‰ (61%) in Gstd0003, from 4.15 to 1.63‰ (61%) in 

Gstd0004, from 1.02 to 0.75‰ (26%) in Gstd0006, from 1.77 

to 0.96‰ (46%) in Gstd0008 and from 3.63 to 1.52‰ (58%) in 

Gstd0009. In Gstd0002, amplitude kept almost constant, from 

2.20 to 2.19‰. Only in Gstd0001 and Gstd0005 variability 

slightly increased, from 1.40 to 1.53‰ (9%) and from 0.80 to 

0.94‰ (17%) respectively (Fig. 6). Obviously, the standard 

values corrected using the model predictions matched the 

fluorination reference values (Fig. 6). Therefore, the 95% 

confidence intervals of the model-corrected and the 

fluorination values intersected the 89% (Gstd0001), 67% 

(Gstd0002), 75% (Gstd0003), 90% (Gstd0004), 100% 

(Gstd0005), 100% (Gstd0006), 87% (Gstd0008) and 89% 

(Gstd0009) of the analyses (Fig. 6a-h). 

4.2 K-feldspar model
 

The K-feldspar model was adequately fitted by a second order 

polynomial including eight linear, two squared and four 

interactions terms. The complete model design and 

predictions can be found in the electronic supplementary 

information S3 and S4†. The model equation in natural units of 

the predictor variables was Eq. (12): 

IMFK-felds= 1.1170 + 1.340E-7 X – 4.590E-7 Y – 

1.649E+7CP – 2.406E+7 PI + 3.100E-5 LT1defX – 

4.760E-4 LT1defY + 1.100E-6 Or + 1.598E-4 BaO + 

1.952E-11X2 – 1.207E+10 CP2 + 5.821E+1 Y×CP + 

3.112E+15 CP×PI + 8.190E+4 PI×LT1defY – 1.882E-
6 LT1defY×BaO 

(12) 

The ANOVA results showed that the whole model (F = 42.73), 

linear (F = 48.76), interaction (F = 32.19), and squared 

(F = 33.26) parts were significant (Electronic Supplementary 

Information S3)†. To preserve the model hierarchy, the non-

significant terms Y, CP, PI, and Or were forced to stay in the 

model. Multi-collinearity was low, as VIF values went from 

1.55 of X
2
 to 7.45 of Y. The model reached a good explanatory 

capacity, since the coefficients R
2
 and adjusted-R

2
 were 

87.56% and 85.51%, respectively. The model presented a 

proper predictive power, as PRESS and prediction-R
2
 were 

0.0000234 and 83.17%, respectively. A large signal/noise ratio 

was obtained since adequate precision (A.P.) was 22.68. 

Properly, the standardized residuals displayed Gaussian 

distribution (Fig. 7a, c). The plots of the residuals vs. fitted IMF 

(Fig.7b) and time series (Fig. 7d) presented suitable 

unsystematic distributions. 

During the backward elimination process, the SIMS analysis 

CHR10_FK1@46 was deleted from the model, as the leverage 

and Cook’s distance presented high values (0.580316 and 

0.420016, respectively). This severe influence was probably 

generated by an extremely high orthoclase content (Or96.7). 

The final model included 101 SIMS points with suitable low 

influence, as the leverage and Cook’s distance averaged 

0.1500 ±0.05247 and 0.01085±0.01633 (1σ), respectively. 

The Gaussian distributions of the actual and Monte Carlo-

simulated (n = 10
5
) IMF values were properly aligned (Fig. 8), 

supporting that the model was correctly centered on the 

operational region of the predictor variables. 

The model reached a suitable predictive capacity, as the 

scatter plots of the predicted vs. the real IMF followed a 1:1 

slope (Fig. 9a). The absolute difference among real and 

predicted IMF averaged 0.000324±0.000261 (1σ). The model-

corrected δ
18

O‰ results reduced the range of values versus 

the raw SIMS δ
18

O‰ from 4.6 to 2.26‰ (51%) for Gstd0010 

and from 5.69 to 1.84‰ (68%) for Gstd0011 (Fig. 9b, c). The 

95% confidence intervals of the standards corrected values 

intercepted the 95% confidence intervals of the fluorination 

results in the 73% (Gstd0010) and 94% (Gstd0011) of the 

points (Fig. 9b, c), indicating a high predictive accuracy. 

4.3 Quartz model
 

The quartz model was properly fitted by a non-linear 

polynomial including six linear and one interaction term. The 

complete model design and the predictions are included in the 

electronic supplementary information S3 and S4†. The model 

equation in natural units of the input variables was Eq. (13): 

IMFquartz = 0.95924 + 2.320E-7X - 1.570E-7Y - 

7.200E+4CP + 4.005+6PI - 1.441E-5LT1defX + 
7.906E-4LT1defY – 1.335E+5PI × LT1defY 

(13) 
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The ANOVA test indicated that the whole model (F = 77.86), 

the linear (F = 52.74) and the interaction (F = 88.15) parts were 

significant (Electronic supplementary information S3)†. The 

non-significant term LT1defY was preserved in the structure to 

keep a hierarchical polynomial. Multi-collinearity was kept 

down, as VIF values ranged from 1.58 of PI × LT1defY to 10.01 

of X. The determination coefficients R
2
 and adjusted-R

2
 

reached suitable values of 94.29 and 93.08%, respectively. The 

model obtained a high predictive power, as PRESS and 

prediction-R
2
 were 0.0000094 and 91.59%, respectively. The 

discrimination capacity was good since adequate precision 

(A.P.) was 32.87. 

The standardized residuals of the model predictions presented 

a normal-cumulated distribution (Fig. 10a, c). In addition, the 

plots of residuals vs. fitted IMF values (Fig. 10b) and time 

series (Fig. 10d) showed adequate random distributions. 

During the backward elimination process of the model terms, 

the SIMS analyses CHR10_Q@124-123-122-121-120 were 

sequentially deleted in this order, as their corresponding pairs 

of leverage and Cook’s distances values were 0.994-3.087, 

0.781-0.005, 0.802-0.013, 0.883-1.561, and 0.918-1.674, 

respectively. Probably, the reason for this severe influence was 

a large shift of the chamber pressure (Fig. 11). The final model 

included 42 quartz analyses with adequate influence, since 

leverage and Cook’s distance averaged 0.195±0.070 and 

0.026±0.045 (1σ), respectively. 

The Gaussian distributions of actual IMF and Monte Carlo 

simulation (n = 10
5
) were almost aligned, indicating that the 

quartz model covered the operational space of the predictor 

variables (Fig. 12). 

The model achieved a strong predictive accuracy, as the 

scatterplot of the predicted vs. the real IMF fell on a 1:1 slope 

(Fig. 13a). The averaged absolute difference between the real 

and predicted IMF was 0.000290±0.000270 (1σ). The model-

corrected δ
18

O‰ results reduced the range of values versus 

the raw SIMS δ
18

O‰ from 6.18 to 1.70‰, a decrease of the 

72% (Fig. 13b). The model-corrected values were properly 

situated on the real quartz fluorination value, since the 95% 

confidence intervals of the model-corrected and the bulk 

fluorination value intersected in the 97% of the points 

(Fig. 13b). 

5 Discussion 

5.1 Insights in the input variables  

The coupled examination of the exploratory data analysis 

(EDA) and the final response surface models of plagioclase, K-

feldspar and quartz revealed systematic meaningful trends of 

IMF vs. the input variables. 

5.1.1 X and Y mount location. Notably, IMF systematically 

presented stronger variation vs. the X-position, showing 

negative parabolic trends towards the external parts of the 

mounts and maximums around the zero X-value (Fig. 14a,  b). 

In addition, similar negative parabolic trends of IMF vs. the X-

position were also obtained in the response surface models 

built up using the previously published SIMS data of Śliwiński 

et al. on dolomite-ankerite and Pollington et al. on quartz 

(Fig. 14c, d), both using a Cameca 1280HR (WiscSims).
15,46

 

Unexpectedly, the variations observed along Y were slightly 

negative parabolic or linear with low slopes in all the cases, 

indicating that the variation of IMF along X is much stronger 

than along Y. In addition, this behaviour is independent of the 

value ranges of X, Y, and IMF (Fig. 14a, b, c, d). This suggests 

that at least for the Cameca 1280HR, a close relationship exists 

between the X position and the instrumental mass bias. As can 

be observed on the material surface after the SIMS analyses, 

the incident primary ion-beam of this ion microprobe model 

excavates half-ellipsoidal craters almost aligned on the X 

direction. Verdeil et al. showed that the ellipsoid of sputtered 

material elongates in the same direction of the oblique 

primary-ion beam.
47

 Considering this fact, most of the 

sputtered matter would follow the X direction, and this 

direction would become significantly more sensitive to IMF 

than the perpendicular Y direction. In the studies of Kita et al., 

Treble et al., and Tang et al. this close relationship of IMF with 

the X direction can be also observed.
9,48,49

 

5.1.2 LT1defX-LT1defY electrostatic deflectors. Peres et al. 

showed the exponential increase of the electrostatic deflectors 

values moving beyond 5mm from the center to external X-Y 

positions using a “normal” sample holder.
50

 In consistency with 

this fact, the electrostatic deflectors values played a major role 

regarding the IMF prediction by RSM. Systematic positive 

trends of IMF vs. the electrostatic deflectors (i.e. reduction of 

IMF) were observed for plagioclase, K-feldspar, and quartz 

(Fig. 15a, b, c). Notably, this characteristic behaviour of IMF vs. 

the electrostatic deflectors was also observed in the response 

surface models fitted using the previously published SIMS data 

of Śliwiński et al.
15

 on dolomite-ankerite and Pollington et al. 

on quartz (Fig. 15d, e).
15,46

 In all these cases, the IMF variations 

are stronger along the LT1DefX (or equivalent) than along the 

LT1DefY (or equivalent), supporting that most of the beam 

distortion occurs in the X direction. This evolution of IMF vs. 

the pair of electrostatic deflectors is independent of the value 

ranges of IMF and the deflectors, highlighting the close 

dependence of the instrumental mass bias on the action of the 

electrostatic deflectors. This fact is consistent with the proper 

centering of the secondary beam achieved with the adequate 

position of the electrostatic deflectors as has been highlighted 

by Schuhmacher et al.
51

 

For a given unknown sample placed far away from the 

standard, or even in a different mount, the electrostatic 

deflectors values of both groups of analyses can easily present 

significant differences. The introduction of the electrostatic 

deflectors values within the response surface models takes 

into account these variations. In case it is desired to construct 

a response surface model using observations resulting from 

several mounts, it could be helpful to adjust the Z-focus of 

each mount in a similar X and Y mount position. For this, one 

possibility is to include a standard specimen located in the 

same X and Y position to adjust the Z-focusing for all mounts 

used in a given SIMS session. 

5.1.3 Chamber pressure. The inclusion of the chamber 

pressure in the model was initially unexpected, as most of the 

Page 8 of 13Journal of Analytical Atomic Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Jo
ur

na
lo

fA
na

ly
tic

al
A

to
m

ic
S

pe
ct

ro
m

et
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
0 

Fe
br

ua
ry

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
ite

cn
ic

a 
de

 C
at

al
un

ya
 o

n 
14

/0
2/

20
17

 1
1:

31
:3

6.
 

View Article Online
DOI: 10.1039/C6JA00397D

http://dx.doi.org/10.1039/c6ja00397d


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

SIMS analyses were carried out at ultra-high vacuum 

conditions  

(10
-9

Torr), which can be considered as stable vacuum 

conditions in a practical sense. However, Outlaw showed that 

an important increase of residual gas phases occurs during the 

decrease of the vacuum conditions from 2x10
-9

Torr to  

2x10
-7

Torr.
52

 The same author reported a significant increment 

of the residual gas even in small vacuum leakages from 1.5 to 

2.5x10
-9

Torr. In ion etching experiments on silicon, Chen et al. 

reported a positive correlation between the excavation of 

more isotropic etches and the increase of the vacuum values.
20

 

These observations would support the fact that even small 

oscillations within the usual range of 10
-9

Torr vacuum pressure 

of the Cameca IMS 1280HR could induce an observable mass 

fractionation. In consistency with this discussion, during this 

study, the vacuum pressure of five quartz analyses went down 

to 10
-8

Torr (4 points) and 10
-7

Torr (1 point). The respective 

averaged IMF of these two groups of analyses differ by ~1‰ 

(10
-8

Torr points) and ~2‰ (10
-7

Torr point) with respect to the 

averaged IMF displayed by the previous five quartz analyses 

made on the same grain at suitable 10
-9

Torr pressure 

conditions (see electronic supplementary information S2)†. 

5.1.4 Primary-ion beam intensity. The primary-ion beam 

intensity showed an unanticipated role over the IMF 

prediction, as the recorded variations of the primary intensity 

during the SIMS session were of pico-ampere (10
-12

A) 

magnitude. The primary intensity ranged from 5.51 to 6.26 nA 

(oscillations of 0.75 nA = 750 pA) in plagioclase, from 5.59 to 

6.19 nA (0.60 nA = 600 pA range) in K-feldspar and from 5.61 

to 6.33 nA (0.72 nA= 720 pA variation) in quartz analyses. 

Although these pico-ampere oscillations can be considered 

small, significant effects on the ion excavation process have 

been reported due to pico-ampere variations of the primary 

current. For example, Prenitzer et al. showed visible changes 

(using SEM) in the shape of the excavated spots and higher 

amounts of redeposited material at primary intensities of 500, 

1000, and 2000 pico-amperes in Ga
+ 

ion milling experiments on 

silicon.
53

 From these observations and from the significance of 

the primary-ion beam obtained in the models, the possibility 

that the pico-ampere oscillations of the primary ion current at 

usual operating conditions of the Cameca 1280HR could 

induce a detectable IMF seems plausible. This effect could be 

even more evident in the SIMS analyses carried out using pico-

ampere primary currents, e.g. the primary ion beams below 

20 pA used in small diameter beams (Page et al.) or the ~1 pA 

primary currents used at the NanoSIMS (Hoppe et al.).
9,54,55

 

5.1.5 Compositional variables. The compositional variables 

played significantly different roles in the K-feldspar and 

plagioclase models. For the K-feldspar model, the orthoclase 

content (Or%) showed low influence over the prediction of 

IMF. The narrow compositional range of K-feldspar used in this 

study could account for this reduced effect. However, a second 

option could be that the composition of alkali feldspars has 

low significance on IMF, as suggested by the difference about 

~0.6‰ among the averaged IMF of albite and K-feldspar 

specimen, the end-members of the alkali feldspar solid 

solution series. In agreement with this observation, Ferry et al. 

reported no significant compositional effect in the range 

orthoclase 75-100%, with an average IMF difference among 

the Amelia albite and two K-feldspar standards about ~0.6‰, 

the same magnitude observed in this study.
56

 

Unexpectedly, the presence of barium presented a significant 

role in the K-feldspar model. The high capacity of barium to 

interact with oxygen would support the hypothesis that small 

percentages of barium (0-2%) could have a perceptible effect 

on IMF.
57,58

 However, as the barium effect was obtained from 

two separated populations of IMF values, it should be checked 

with further experimental work. The exploration of IMF along 

the orthoclase-celsian (barium feldspars) solid solution series 

would permit a better exploration of the barium role. 

As expected, the anorthite content played a major role in the 

plagioclase model. The variation magnitude of the averaged 

IMF vs. An% content was about ~3.5‰ from An100 to An0 

(Fig. 16a), in agreement with previous linear regressions fitted 

by Eiler et al., Coogan et al., Kita et al., Ferry et al., 

Winpenny & Maclennan and Borisova et al.
5,45,56,59–61

 Despite 

these previous work and our study that clearly state the 

correlation of IMF vs. anorthite content for plagioclase, special 

care should be taken during the prediction of IMF using only 

the linear regression of averaged IMF vs. the anorthite content 

of the standards. The excecution of six separate Monte Carlo 

simulations (n = 10
5
) of the main compositional intervals of the 

plagioclase series, using in each time the complete range of 

the instrumental variables of this study, showed that these 

different plagioclase compositions can share a broad range of 

IMF values (Fig. 16b) due to the instrumental influence. These 

simulations (Fig. 16b) strongly suggested that the linear 

regression of the averaged clusters of IMF vs. the averaged 

plagioclase compositions should be carefully applied during 

IMF corrections. 

5.2 Estimation of the uncertainty 

The uncertainty of the response surface predictions showed in 

this study included two main sources of variability: (1) The 

variance presented by the n fluorination determinations of 

each standard and (2) the single standard error associated 

with each prediction of the response surface models. The 

internal error of each analysis (reproducibility) was not 

considered a significant source of uncertainty since in all 

observations it was one order of magnitude lower than the 

response surface prediction error. 

The standard error of the n fluorination analyses (σfluor) of each 

standard (see Table 1) was considered as the uncertainty 

associated to the bulk material. The magnitude of this 

standard error depends on a number of n analyses of each 

standard and on the isotopic homogeneity of the standard 

crystals. 

The standard error of the model predictions (σpred) of each 

point i was calculated as the uncertainty generated by the 

response surface models. This standard error of the prediction 

depends on the goodness of fit of the model in the region of 

the predicted point. Therefore, for a given point � = 1,2, … , �, 
the total uncertainty Q(,�  can be calculated as the combined 
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uncertainty of the corresponding fluorination RFGH)*,� 	and 

prediction R<*+=,�  uncertainties by Eq. (14): 

Q(,� = SRFGH)*,�
 + R<*+=,�
 (14) 

Thus, by equation (14), the combined uncertainties averaged 

0.23±0.05 (1σ), 0.24±0.05 and 0.32±0.02‰ for plagioclase,  

K-feldspar, and quartz points respectively. 

Equation (14) is able to predict the uncertainty for IMF 

predicted in the standard measures but the problem consists 

in the translation of this combined uncertainty to the analyses 

of samples where the “true” fluorination value is unknown. To 

estimate the magnitude of this uncertainty, IMF was calculated 

again for each point i by including in the denominator the 

reference fluorination values 18O 16O⁄ fluor of each specimen 

plus their corresponding standard error σfluor (see Table 1), by 

Eq. (15): 

?@AH,�= 18O 16O⁄
SIMS, i

18O 16O⁄
fluor +σfluor

 (15) 

This IMFu,i was used as the new output variable to build up 

three additional response surface models called "�H 	for 

plagioclase, K-feldspar, and quartz, by forcing each new model 

to include, respectively, the same model terms as the principal 

response surface models showed before in this study (see 

electronic supplementary information S3)†. The two response 

surface models available for each mineral delimited a 

“sandwich” separated at each point by the difference among 

both IMF and IMFu predictions. The total uncertainty Q(,� , � = 1,2,… , � was calculated as the maximum possible 

difference between both predictions, i.e. the maximum 

thickness of the “sandwich” for each point i, by Eq. (16): 

Q(,� = S\$]18B^C6,�+R^C6,�& − $]18B^C7,� − R^C7,�&_
 (16) 

Being ]18B^C6,�  and R^C6,�  (in ‰ VSMOW) the corrected 

isotope deviations and their corresponding standard error 

using the main models of this study and, ]18B^C7,� 	and R^C7,�  
the corrected isotope deviations using the additional response 

surface predictions and their associated standard errors, 

respectively. 

The total uncertainties (in ‰ VSMOW) calculated by Eq. (16) 

averaged 0.48±0.10, 0.52±0.20, and 0.64±0.07‰ (1σ) for 

plagioclase, K-feldspar and quartz, respectively (see electronic 

supplementary information S3)†. Despite these averaged 

values that are about double than values calculated by Eq. 

(14), this method has the advantage, to allow the estimation of 

the total uncertainty in analyses of unknown samples. 

Additionally, this method further approximates the uncertainty 

of the whole isotopic analytical process, involving the initial 
18δOVSMOW fluorination determinations of the standards and 

the IMF corrections of the SIMS results. 

5.3 Design of the sample mounts 

To obtain confident IMF predictions of analyses from unknown 

samples by RSM, the range of values of the predictor variables 

(inputs) obtained from the accompanying standards should 

enclose the values of the predictor variables obtained from the 

unknown samples. In routine SIMS sessions, parameters, such 

as chamber pressure and primary-ion beam intensity, use to 

slightly differ from the initially defined operational values. In 

addition, the electrostatic deflectors will be auto-adjusted for 

each analysis, remaining “out” of the immediate control of the 

investigator. These variables under partial “control” are the X 

and Y position and the chemical composition of the standards. 

Thus, the use of standards properly placed in X-Y positions to 

display a central composite design (CCD) can be helpful for the 

fitting of response surfaces models (Fig. 17a). The number of 

standards placed in each part of the design would depend on: 

(i) the number of different mineral species to analyze or (ii) the 

compositional range covered for a given solid solution series. 

The CCD design permits a better fitting of expected second 

order terms of the polynomial, at least for the X and Y 

positions. However, this type of design requires a larger 

number of analyses, so it could be excessively material 

(standards) and time-consuming. Alternatively, the standards 

could be placed on the X-Y positions following a 2
2
 factorial 

design with central points (Fig. 17b) or a 2
2
 factorial design 

(Fig. 17c). A practical solution in SIMS sessions to fit a second 

order polynomial could be e.g., the alternated use of mounts 

with standards placed in CCD and 2
2 

factorial designs. To 

properly constrain the regression coefficients and the residuals 

of a given response surface model, it would be desirable to 

obtain at least 10-20 analyses for each variable expected to 

participate in the model.
62

 

5.4 Example of application of RSM to IMF prediction 

The three response surface models of this study were applied 

to the IMF correction of the SIMS 
18

O/
16

O analyses carried out 

on plagioclase, K-feldspar, and quartz crystals from several 

granites samples originating from the Hercynian basement of 

the Eastern Pyrenees and the Catalan Coastal Ranges, NE 

Spain.
63

 The model-corrected δ
18

OVSMOW values of the Ca-

bearing plagioclase (7-9‰), the Na-rich plagioclase (10-12‰), 

and K-feldspar (10-14‰) were in agreement with the δ
18

O 

order of plutonic feldspars 
18

δOalbite ≈ 
18

δOK-feldspar > 
18

Oδanorthite 

and situated the whole rock 
18

δOVSMOW of the granites within 

the range of High δ
18

O magmas.
64

 The quartz results presented 

a bimodal distribution, with one group situated at 9-12‰ and 

a second one displaying significant lower values of 6-8‰. 

To compare with the corrections achieved by RSM, the IMF of 

several analyses of the granite samples were also calculated 

applying the usual method of the bracketing standards for 

each subset of points. For the plagioclase, the response 

surface corrected δ
18

OVSMOW results went from 6.99 to 9.28‰, 

whereas the bracket corrected values ranged from 8.58 to 

10.85‰ (Fig. 18). The differences point-by-point oscillated 

from -0.77 to -1.60‰, with an average of -1.28±0.30‰ (1σ) 

and an absolute average difference of 1.28±0.30‰ (1σ). For 

the K-feldspar, the response surface corrected δ
18

OVSMOW 

values went from 10.42 to 13.81‰, while the bracket 

corrections took from 9.66 to 14.22‰ (Fig. 18). Point-by-point, 

the difference went from -0.95 to +2.33‰, with an average 
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difference of 0.67±0.89‰ (1σ) and an absolute average 

difference of 0.90±0.64‰ (1σ). For the quartz, the response 

surface corrected δ
18

OVSMOW values ranged from 6.39 to 

11.89‰, whereas the bracket corrections went from 5.85 to 

10.97‰ (Fig. 18). The quartz differences reach from -1.66 to 

+3.23‰, with an average difference of 0.41±1.44‰ (1σ) and 

an absolute average difference of 1.23±0.82‰ (1σ). Despite 

the averaged differences among the two correction methods 

could seem rather small, both procedures gave significantly 

different corrections for most of the compared analyses 

(Fig. 18). 

The standardization of these differences (dividing by the 

standard deviation) presents a positive trend versus the 

combined standardized differences among the samples and 

the standards values of the LT1DefX and LT1DefY deflectors 

and of the radial position (Fig. 19a). Thus, when the sample 

and the standard are close from each other and display similar 

deflector values, the results are similar, independently of the 

used correction method (Fig. 19a). In Figure 19b the case of 

two K-feldspar analyses is represented. The b.1-pair is located 

very close, showing similar X-Y deflector and radial location 

values, in this case, the correction using any of the two 

methods arises to similar values. In contrast, the b.2-pair 

corresponds to a sample analysis with the standard used for 

bracket correction located in a different radial location of the 

mount and with different LT1DefX-LT1DefY values. Therefore, 

the correction of the b.2 sample analysis by the bracket 

method or by the RSM method gives very different results 

(Fig. 19a). 

Figure 19c shows two plagioclase analyses; in this case, c.1 and 

c.2-pairs have similar distances between the sample and the 

standard (used for bracket correction) but the radial location 

of every pair is very different and accounts for differences 

observed in the Y-axis (Fig. 19a). Thus, the difference between 

both correction methods is lower for the c.1-pair. 

Finally, Figure 19d shows two pairs with the typical relation 

also observed in Figure 19b (d.1 and d.2-pairs). However, the 

sample analysis and the standard of the d.3 pair have very 

different radial location inside the mount and LT1DefX and 

LT1DefY deflectors values too, but the RSM and the bracket 

correction arise to similar values. In this particular case, the 

“personalized” IMF given by the RSM function has the same 

value than the real IMF calculated for the standard used in the 

bracket correction but it can be considered as a coincidence. In 

fact, all the quartz analyses with Y-axis < 1 and high X-axis 

values correspond to analyses performed in the same mount 

and under the same conditions (Fig. 19a). This effect can also 

account for the high dispersion observed in the graph of 

Figure 19a. 

The observed differences between the response surface and 

bracket corrected results could lead to significantly varying 

conclusions in the studies of micro-textural features e.g. zoned 

grains, reaction rims, grain overgrowths, micro-crack fillings or 

intragrain diffusion, where each single SIMS result becomes 

important by itself. 

6 Conclusions 

The results of this study showed that RSM can be confidently 

applied to IMF prediction in stable isotope SIMS analyses by 

using instrumental and compositional variables. Importantly, 

the proper predictions of IMF are achieved when the range of 

values of the variables from the unknown analyses (i.e. the 

samples to correct) are situated within the range of values of 

the standards used to fit the model (i.e. RSM predicts by 

interpolation). It is not recommended to extrapolate the 

predictions beyond the operational region of the variables. 

The models showed that IMF prediction is strongly dominated 

by the instrumental parameters, in particular the X and Y 

positions and the electrostatic deflectors values. The chamber 

pressure and the primary-ion beam intensity are also 

significant for IMF prediction in most of the cases but are not 

too critical if their oscillations within a session remain one 

order of magnitude below the defined working conditions. 

Concerning the compositional parameters, the anorthite 

content is essential for plagioclase IMF prediction, while 

orthoclase content has a smaller influence on K-feldspar IMF 

prediction, at least in the orthoclase extreme member of the 

alkali feldspars solid solution series. The barium content 

pointed to a potential role in IMF prediction of K-feldspar but 

needs to be confirmed by further experiments. Notably, quartz 

IMF can be adequately predicted by the only use of 

instrumental variables. These results confirm that RSM is 

effective for IMF correction in solid solution series and in 

individual minerals. 

From a qualitative vision, obtaining satisfactory SIMS results 

requires a large economic and time-consuming effort (i.e. 

samples and standards preparation, pre-SIMS SEM-EDS, CL and 

EPMA analyses, SIMS session, post-SIMS EPMA analyses, data 

processing, IMF calculation…). Importantly, RSM provides a 

new powerful IMF-correction method that complements the 

traditional standard-bracketing method, and, as the most 

significant variables affecting IMF can be simultaneously 

screened, permits SIMS researchers to improve the control 

and confidence on their IMF corrections. Likewise, RSM has 

proven to be useful dealing with situations where one or 

several subsets of results obtained from the bracketing-

standards used for correction are not satisfactory enough. 

Furthermore, RSM could be applied to the SIMS analysis of 

large mm-scale polycrystalline rock fragments, where the 

standards and the unknown sample analyses could present 

important differences in values of X-Y positions and 

electrostatic deflectors. Likewise, RSM can also be used for the 

design of experiments (DOE) to explore the IMF behavior 

under determinate instrumental and compositional conditions. 

Although IMF-correction by RSM appears to be a complex and 

time-consuming task, fitting RSM models using adequate 

statistical software requires a relatively short and 

straightforward learning. Using good quality SIMS data, a 

trained researcher can fit a useful RSM model in several hours, 

even faster than the normal data processing for standard-

bracketing correction. 
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Further experimental work could expand the prediction of IMF 

by RSM to other isotopes, mineral phases, and types of ion 

microprobes. In addition, data mining and machine learning 

techniques like, e.g. artificial neural networks (ANN) could 

improve the fitting and improving IMF prediction models in 

stable isotope SIMS analyses. 
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Figure 1  

 

Fig. 1 (a) Mount to mount reproducibility of raw 18δOVSMOW results was 0.29‰ (1σ), estimated as the 
standard deviation among four grains of Gstd0010. The internal average of each grain was calculated using 
five spots. (b, c, d) Time series of the raw 18δOVSMOW results for plagioclase (b), K-feldspar (c) and quartz 
(d) analyses. Grey vertical dashed lines indicate the mount changes. (e) Schematic X-Y coordinates of the 
analyses on plagioclase and K-feldspar standards grains in the representative mount Pattern1.  
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Figure 2  

 

Fig. 2 Time series of the calculated IMF values for plagioclase (a), K-feldspar (b) and quartz (c) analyses. 
Vertical dashed lines indicate the mount changes.  
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Figure 3 

 

Fig. 3 Graphs of standardized residuals for the plagioclase model. (a) Cumulative normal probability plot 
of standardized residuals. (b) Random distribution of standardized residuals vs. fitted IMF values. (c) 
Histogram of standardized residuals. (d) Random time series of standardized residuals. 
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Figure 4 

 

Fig. 4 Plagioclase normal probability plots of the actual (blue) and the Monte Carlo (MC) simulated using 
the RSM model (red dashed) IMF values. The close alignment of both populations supports that the model 
is properly centered on the real operational region of the input variables. 
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Figure 5 

 

Fig. 5 Scatterplot of the RSM-predicted vs. the actual plagioclase IMF. The points follow a 1:1 slope, 
supporting the predictive power of the plagioclase model. 
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Figure 6 

 

Fig. 6 (a-h) Time series of the plagioclase standards showing the 18δOVSMOW  raw SIMS (blue symbols) and 
their corresponding RSM-corrected values (red symbols). Error bars are ±2σ. σ represents the internal 
error of each SIMS point for the raw results and the standard error of the predictions for the RSM-
corrected values. The grey horizontal dashed lines delimit the ±2σ interval (95% confidence) of the 
reference fluorination value of each plagioclase standard. As the set of plagioclase analyses covers all the 
SIMS session, the plagioclase RSM-model presents valid predictive power for all the session. 
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Figure 7 

 

Fig. 7 Plots of standardized residuals for the K-feldspar model. (a) Cumulative normal probability plot of 
standardized residuals. (b) Randomly distributed standardized residuals vs. fitted IMF values. (c) Normal 
histogram of standardized residuals. (d) Random time series of standardized residuals. 
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Figure 8 

 

Fig. 8 K-feldspar normal probability plots of the actual (blue) and the Monte Carlo (MC) simulated using 
the RSM-model (red dashed) IMF values. The good agreement of the two populations supports that the 
model is situated on the real operational region of the input variables. 
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Figure 9 

 

Fig. 9 (a) Scatterplot of the RSM-predicted vs. the actual K-feldspar IMF. The points are scattered along 
the 1:1 slope, supporting the predictive power of the K-feldspar model. (b, c) Time series of K-feldspar 
standards showing the 18δOVSMOW raw SIMS (blue symbols) and their corresponding RSM-corrected value 
(red symbols). Error bars are ±2σ. σ represents the internal error of each SIMS point for the raw results 
and the standard error of the predictions for the RSM-corrected values. Grey horizontal dashed lines 
delimit the ±2σ interval (95% confidence) of the reference fluorination value of each standard. As the 
sequence of K-feldspar analyses covers the complete SIMS session, the K-feldspar model presents 
predictive power for the entire session. 

 

 

Pu
bl

is
he

d 
on

 1
0 

Fe
br

ua
ry

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
ite

cn
ic

a 
de

 C
at

al
un

ya
 o

n 
14

/0
2/

20
17

 1
1:

31
:3

6.
 

View Article Online
DOI: 10.1039/C6JA00397D

http://dx.doi.org/10.1039/c6ja00397d


 

Figure 10 

 

Fig. 10 Standardized residuals of the quartz model. (a) Cumulative normal probability plot of standardized 
residuals. (b) Random standardized residuals vs. fitted IMF values. (c) Histogram of standardized residuals. 
(d) Structureless time series of standardized residuals. 
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Figure 11 

 

 

Fig. 11 Quartz chamber pressure values showing a significant vacuum drop during five analyses (red 
points) of the sample CHR10. These points were deleted during the backward elimination process of the 
model terms due to their severe influence (high Leverage and Cook’s distance values). 
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Figure 12 

 

Fig. 12 Quartz normal probability plots of the actual (blue) and the Monte Carlo (MC) simulated using the 
RSM-model (red dashed) IMF values. The good adjustment of both distributions supports that the quartz 
model was situated on the real operational region of the input variables. 
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Figure 13 

 

 

Fig. 13 (a) Scatterplot of the RSM-predicted vs. the actual quartz IMF. The points follow a 1:1 slope, 
supporting the predictive capability of the quartz model. (b) Time series of quartz showing the 18δOVSMOW 
raw SIMS (blue triangles) and the RSM-corrected (red triangles) values. Error bars are ±2σ. σ represents 
the internal error of each SIMS point for the raw results and the standard error of the predictions for the 
RSM-corrected values. The grey horizontal dashed lines indicate the ±2σ interval (95% confidence) of the 
reference fluorination value of quartz. Importantly, as the whole set of quartz analyses covers all the SIMS 
session, the quartz model presents predictive power for the complete session. 
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Figure 14 

 

Fig. 14 3D surfaces of IMF vs. X and Y position obtained from: (a) Response surface model of plagioclase. 
(b) EDA of the quartz data. (c) Response surface model constructed with the published data of Śliwiński 
et al. on dolomite- ankerite.15 (d) Response surface model built up using the published data of Pollington 
et al. on quartz.46  
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Figure 15 

 

Fig. 15 3D surfaces IMF vs. LT1DefX and LT1DefY (or equivalents ones) obtained from: (a) Plagioclase 
response surface model. (b) EDA of the K-feldspar data. (c) EDA of the quartz data. (d) Response surface 
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model constructed using the published data of Śliwiński et al. on dolomite-ankerite.15 (e) Response surface 
model fitted using the published data of Pollington et al. on quartz.46 (e.2) Zoom of the surface (e). 
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Figure 16 

 

Fig. 16 (a) Main effect plot of mean IMF vs. anorthite content for the plagioclase model. The vertical axis 
represents the averaged IMF values obtained for any fixed anorthite content applying the real interval of 
values of the rest of variables. (b) Monte Carlo simulations using the plagioclase RSM-model for the six 
intervals of plagioclase composition, applying in each of them the real intervals of values of the 
instrumental variables recorded for the plagioclase analyses of this study. The MC-simulated Gaussian 
distributions of each standard overlap among them for a wide range of IMF values, highlighting the strong 
influence of the instrumental variables on IMF. 
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Figure 17 

 

 

Fig. 17 Schematic X-Y positions for sets of standards (green symbols) and the unknown samples (red 
symbols) in the mounts, proposed to improve the fitting of response surface models. (a) Position of the 
standards following a central composite design (CCD), with the potential capacity to generate a response 
surface model to correct four sample fragments. (b) 22 factorial design with central point able to correct 
two sample fragments. (c) 22 factorial design with one sample located in the core of the mount. The grey 
polygons indicate the area covered by a potential response surface model. 
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Figure 18 

 

Fig. 18 Scatterplot of the RSM-corrected vs. the bracket-corrected 18δOVSMOW results. Notably, the three 
mineral groups display trends that fall away from the 1:1 slope, indicating that for most of the analyses, 
both methods gave significant different corrections. 

 

 

 

Pu
bl

is
he

d 
on

 1
0 

Fe
br

ua
ry

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t P

ol
ite

cn
ic

a 
de

 C
at

al
un

ya
 o

n 
14

/0
2/

20
17

 1
1:

31
:3

6.
 

View Article Online
DOI: 10.1039/C6JA00397D

http://dx.doi.org/10.1039/c6ja00397d


Figure 19 

 

 

Fig. 19 (a) Standardized absolute difference between the response surface and bracket corrected results 
vs. the vector of the standardized differences among the standards and the samples for the LT1DefX and 
LT1DefY deflectors’ values and the radial location. (b, c, d) Positions of the samples (full symbols) and the 
corresponding bracket standards (empty symbols) joined by black lines. Continuous lines indicate 
situations with low radial position difference, while dashed lines indicate a high difference in the radial 
position. 
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