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The measured viscoelastic properties of biological tissues is the result of the passive and active response of
the cells. We propose an evolution law of the remodeling process in the cytoskeleton which is able to mimic the
viscous properties of biological cellular tissues. Our model is based on dynamical changes of the resting length.
We show that under the small strain regime, the linear rheology models are recovered, with the relaxation time
being replaced by the cell resistance to remodel. We implement the one-dimensional model into network systems
of two and three dimensions, and show that the same conclusions may be drawn for those systems.

I. INTRODUCTION

It is well recognized that cell viscosity is not solely due
to the fluid part of the cytoplasm (water) but also due to cell
activity [1–4]. However, when retrieving characteristic viscous
coefficients of cells, there is a wide spectrum of values that
have been employed, which range from η = 4.2 10−3 Pa s,
according to the Brownian motion of molecules in embryonic
cells of Drosophila melanogaster [5], to η = 105 Pa s for cells
at its wing imaginal disk, a value deduced from relaxation
experiments [6,7]. While the former values are close to
water viscosity (η = 8.9 10−4 Pa s), the latter coefficient is
in fact similar to the viscosity of olive oil or ketchuplike
materials. Hence, in order to shed light into the mechanisms
that cause the cellular response of the cell, it seems necessary
to bridge the measured viscosity and the cellular biomolecular
processes. This need has been already recognized, for instance,
in Refs. [8,9]. This work aims precisely to present a simple
phenomenologically based model that relates the observed cell
viscosity with the cytoskeleton activity and its protein content,
which in fact may attain up to 40% of the cell volume [10].

The effects of F-actin disruption on the loss and storage
modulus have been experimentally observed in Refs. [11,12].
On the other hand, important efforts on the development of
models that couple motor proteins and the viscoelastic prop-
erties have been carried out. According to these models, the
measured viscoelastic properties of cells are the combination
of the passive cell network [13–15] and also a consequence of
the active response of the motor proteins [2,3,16]. In the latter
case, the cell activity is taken into account by adding active or
motor stresses [16,17], which will influence the cytoskeleton
equilbrium. In particular, the works in Refs. [4,18] consider
a Kelvin-Voigt model with additional myosin contractile
stresses. Similarly, Kruse and Jülicher [8] also consider forces
from motors at the filaments, which are mediated through
diffusion equations.

The introduction of additional cellular stresses may be
interpreted as a Kelvin-Voigt-type extension of the model.
We here instead consider the ability of the actin filaments
to change dynamically their resting length, which may be
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interpreted as a Maxwell-type extension where the cell is
able to change its reference configuration. We interpret such
changes of the resting length as a by-product of either the
(de-)polymerization in the cytoskeleton or the remodeling of
the cytoskeleton cross-links.

In order to ease the description of our model in the
next section, some well-known classical results for one-
dimensional viscoelasticity will be recast. After applying an
oscillatory strain with the form ε(t) = εoe

iωt , the resulting
stresses are in general expressed as

σ (t) = (E′ + iE′′)ε(t),

with E′ and E′′ the storage and loss modulus, respectively,
from which we can also define the phase angle or mechanical
loss δ = arctan(E′′/E′) [1,19]. For a Kelvin-Voigt and a
Maxwell rheological model, depicted in Figs. 1(a) and 1(b),
the values of E′, E′′, and tan δ are given in Table I.

Clearly, biological tissues do not obey the simple discrete
Maxwell and Kelvin-Voigt models but rather a combination
of them [e.g., the standard linear solid in Fig. 1(c)] or, in fact,
a rheological model with a continuous spectrum, which can
be constructed by using Boltzmann linearity assumption of
discrete responses. For a definition of the standard solid model
and other common combinations of springs and dashpots,
the reader is referred, for instance, to Ref. [19]. In the next
section we will focus our attention to a one-dimensional
model with a discrete spectrum and eventually comment in
the discussion section the extension of these results to models
with a continuous spectrum.

II. MODEL DEFINITION AND SOLUTION

Our physical picture is the following. When a set of
cross-linked actin filaments in the cytoskeleton is subjected
to a macroscopic strain, it stretches as a result of two
combined phenomena: (i) a reversible (elastic) deformation
and a (ii) nonreversible remodeling and lengthening. The latter
is illustrated in Fig. 2 and phenomenologically explained as
the remodeling of the cross-links and a (de-)polymerization
process of the filaments. In addition, we hypothesize that (iii)
the current resting length L of the combined filaments, that is,
the total length of the filaments when subjected to zero loads
at their ends, is proportional to the elastic strain. The previous
picture may be mathematically described in a simple manner
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FIG. 1. Representation of (a) Kelvin-Voigt, (b) Maxwell, (c)
standard solid models, and (d) proposed elastic element with changing
resting length.

by assuming that the resting length satisfies the following
evolution law:

L̇

L
= γ εe, (1)

that is, the relative changes of the resting length is proportional
to the current elastic strain. The latter will be assumed as a
linear measure of the deformation and, thus, will be defined
as εe = (l − L)/L, with l the current total length of the
network. This strain measure differs from the apparent strain
ε = (l − L0)/L0, with L0 the initial length and resting length
of the one-dimensional element, which, due to Eq. (1), will
differ from L. The parameter γ will be called the remodeling
rate, which represents the resistance of the network to adapt
its configuration to the new imposed deformation.

The relation in (1) is a simple linear law for the rate
of remodeling, but without further experimental evidence, it
seems as yet unnecessary to test more complicated relations.
We note that the relation between actomyosin activation
and the viscous properties of the tissue have been recently
reported in Ref. [11], where an inhibition of the actomyosin
cytoskeleton induces an increase of the viscous properties of
the tissue. The main implications of the proposed law in Eq. (1)
are that (i) no lengthening occurs if the filament is not subjected
to stretch and that (ii) the filament tends to reduce the amount
of elastic strain.

We will next apply the evolution law in (1) to a single
one-dimensional element with initial length L0 and prescribed
displacement u(X = 0) = 0 and analyze the response when
subjected to different boundary conditions at X = L. We will
assume that the total deformation of the filament is solely due
to the changes in the resting length and to a purely linear
elastic deformation. For reasons that will be made clear in our

TABLE I. Values of storage modulus E′, loss modulus E′′, and
tangent of phase angle for Kelvin-Voigt and Maxwell rheological
models.
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FIG. 2. Schematic of strain-induced changes in the resting length
L of a reduced system with two filaments and a cross-link (white
circle). (a) Initial configuration with resting length equal to L0. (b)
Configuration under an applied load. (c) New unstrained configu-
ration with modified resting length L > L0. Dotted lines indicate
extensions of the filament due to filament polymerization.

discussion, we will compare the response of this active model
with a linear elastic Maxwell model.

A. Constant stress (creep)

We will next apply a constant stress σ0 at the end X = L0.
Combining the evolution law in Eq. (1) with the equilibrium
equation of a purely elastic element yields the following
differential equation:

L̇

L
= σ0

k
γ.

After integrating this equation with the initial condition
L(t = 0) = L0 we obtain the following expressions of the
apparent strain and resting and total lengths:

ε(t) =
(

σ0

k
+ 1

)
eσ0γ t/k − 1, L(t) = L0e

σ0γ t/k,

(2)

l(t) = L0

(
σ0

k
+ 1

)
eσ0γ t/k.

Instead, in a linear Maxwell element, the governing equa-
tion reads

ε̇ = σ̇

k
+ σ

η
,

where the total strain ε is the sum of the elastic and viscous
components, i.e., ε = εe + εv . The apparent strain and total
length are given in this case by

ε(t) = σ0

k

(
1 + t

τ

)
,

(3)

l(t) = L0

[
1 + σ0

k

(
1 + t

τ

)]
,

with τ = η/k the relaxation time of the Maxwell element.
Although the apparent (total) strain differs in the two cases,
the elastic strain εe, which is given by the constitutive law
σ = kεe, is the same and equal to σ0/k for the active and
Maxwell element. The inspection of Eqs. (3) and (2) reveals
that close to the initial configuration (t → 0) and for small
elastic strains (σ0/k → 0), the apparent lengths are equal in the
two elements if γ is replaced by τ−1, as the plot of the evolution
of l in Fig. 3(a) confirms. Consequently, for a constant applied
load, the active lengthening may be thought as a resistance to
the stretching of the material.
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FIG. 3. (Color online) Comparison of the Maxwell and active
model. (a) Evolution of the apparent length l on a creep test (constants
stress equal to σ0 = 1.0). (b) Evolution of the stress σ on a stress
relaxation test (constant displacements and an initial strain equal to
ε0 = 1.0).

B. Linear displacements

We apply the linear monotonic boundary conditions
l(X = L0) = L0 + ct,t > 0, with c as an arbitrary constant.
According to the evolution law in (1), the resting length L and
elastic strain εe are given by

L = L0 + ct + c

γ
(e−γ t − 1),

(4)

εe = 1 − e−γ t

γL0/c + γ t + e−γ t − 1
,

which are independent of the stiffness k. For a Maxwell model
with relaxation time τ , the elastic strain is instead given by

εe = σ

k
= τc

L
(1 − e−t/τ ).

Figure 4(a) shows the trend of the elastic strains for the
Maxwell viscoelastic element, and for the active lengthening
with γ = 1 and γ = 0.25, when using the parameters c = 1.0
and L0 = 1.0. While in a viscoelastic material the elastic strain
and the stress approach a constant value, in the element with
active lengthening they attain a maximum value and eventually
asymptotically converge to zero, that is, the difference between
the apparent length l and the resting length L is equal to
l − L = γ (e−γ t − 1)/c, which approaches the value c/γ as t

increases. However, due to the increase of the resting length
L, the elastic strain converges towards 0. As expected, the
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FIG. 4. (Color online) (a) Evolution of the elastic strains εe when
applying a linearly increasing displacement on a Maxwell model and
on an active element with γ = 1 and γ = 0.25. (b) Relation between
the maximum elastic strain εe

max and the remodeling rate γ . The curves
were obtained using the parameters c = 1.0 and L0 = 1.0.

smaller the remodeling rate, the slower the cell rearranges,
and, consequently, the larger the maximum strain becomes.
Figure 4(b) shows the maximum elastic strain εe

max as a
function of the remodeling rate, which confirms this trend.
The reduction on εe

max can be interpreted as a maximum yield
stress, similarly to the model considered in Ref. [20], which in
our case depends on the remodeling rate of the cell.

Note that the trend of εe as t → ∞ substantially differs for
γ > 0 and for γ = 0, that is, when assuming a remodeling
process or not. In the latter case, we have that L = L0 and
εe = c

L0
t , while, in the former case, εe approaches the value 0

as t → ∞. Consequently, according to the proposed model, the
cell activity has effects not only on the apparent viscoelasticy
but also on the maximum and asymptotic value of the
stresses.

C. Constant displacements (stress relaxation)

We will analyze the stress relaxation process by, first,
applying a monotonic displacement during a short period of
time T such that l(T ) = L1 and subsequently maintaining the
apparent length of the element. From the result in Eq. (4),
and using the fact that L1 = L0 + cT , we have that during
the time period t ∈ [0,T ], the resting length is given by
L(T ) = L1 + c/γ (e−γ T − 1). If we consider a sudden pre-
scribed displacement [T = (L1 − L0)/c → 0], we have that
L(T ) → L0, that is, the resting length remains unchanged after
subjecting the element to a sudden prescribed displacement.
The evolution of L(t) after t = T is then given by the solution
of Eq. (1) with l(t) = L1, which yields

L(t) = L1 − ε0L0e
−γ t , σ (t) = k

ε0e
−γ t

1 + ε0(1 − e−γ t ),

with ε0 = (L1 − L0)/L0. The comparison of the last ex-
pression with the stress evolution after applying the same
experiment to a Maxwell element [19],

σ (t) = ε0ke−t/τ ,

reveals that although the values of σ (t) for t = 0 and t → ∞
are the same in both cases, their evolutions slightly differ.
However, for the particular case of small strains (ε0 � 1), the
stress relaxation curves approach each other. The plot of the
stress evolution in Fig. 3(b) shows the similarity of the two
cases for ε0 = 1.0.

D. Oscillatory displacements and stresses

In order to mimic standard rheology analysis of tissues
with oscillatory boundary conditions at variable frequencies,
we will analyze the behavior of the active element for such
conditions. When the element is subjected to the displacement
boundary condition l(t) = L0[1 + ε0 sin(ωt)], the current ac-
tive lengthening L(t) is given by the solution of the differential
equation in (1) as follows:

L(t) = L0 + L0ε0

γ 2 + ω2
[γωe−γ t + γ 2 sin(ωt) − γω cos(ωt)].

It follows that the elastic strain is equal to

εe(t) =
ε0

γ 2+ω2 [γωe−γ t + γ 2 sin(ωt) − γω cos(ωt)]

1 + ε0
γ 2+ω2 [γωe−γ t + γ 2 sin(ωt) − γω cos(ωt)]

.



FIG. 5. (Color online) Scheme of the cell-centered model:
Spheres represent cell nuclei, thin lines cell-cell contacts, and thick
lines the cell boundaries. All forces between neighboring cells are
represented by a single truss element, which is constructed by using
a Delaunay trinagularization of the cell-nuclei. The cell boundary
corresponds to the Voronoi diagram of the triangularization. (See, for
instance, Ref. [21] for the definitions of Delaunay triangularization
and the Voronoi diagram.)

By assuming small strains, and a linear elastic relationship
σ = kεe, the steady-state response of the stresses at t → ∞
has the following expression:

σ (t)
t→∞= kε0

ω2 sin(ωt) + γω cos(ωt)

γ 2 + ω2 + ε0γ 2 sin(ωt) − ε0γω cos(ωt)
,

Due to the small strains assumption (|εe| � 1), we can then
compute the dynamic moduli and phase angle δ as

E′ = kω2

ω2 + γ 2
, E′′ = kγω

ω2 + γ 2
,

(5)
δ = arctan(γω−1).

It can be verified that if instead of oscillatory strains we
apply the oscillatory stresses σ (t) = σ0 sin(ωt), the equilib-
rium condition kε(t)e = σ (t), together with the evolution law
in (1) with L(t = 0) = L0, we obtain the same expressions
of the dynamic moduli and the phase angle for |σ0/k| � 1.
By comparing the expressions in (5) with the relations in
Table I, we have that, again, the active element behaves like
the Maxwell element but replacing γ with k/η = τ−1.

III. ANALYSIS OF NETWORKS

We now extend the one-dimensional model to a network
system of trusses, where each node represents the cell nucleus,
and each truss carries the intra- and intercellular forces
between two adjacent cells. Figure 5 shows a portion of such
a network, where the position of the nuclei is determined by
nodal equilibrium. The figure also depicts the cell boundaries,
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FIG. 6. Nodal forces due to the presence of truss e between nodes
i and j .
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FIG. 7. (Color online) Two-dimensional mesh employed for
the oscillatory boundary conditions, stress relaxation and linear
monotonic displacements.

which correspond to the Voronoi diagram of the node-to-node
connectivity, constructed by Delaunay triangularization [21].

We have implemented the one-dimensional model de-
scribed in the previous section for each truss of the network,
which can deform in any arbitrary direction and which can
include arbitrary nonlinear viscoelastic laws for Kelvin-Voigt
and Maxwell models. The positions of the cell nuclei are found
by imposing that the sum of all the forces acting on each node
i must be equal to zero, i.e.,

Ni∑
e=1

ge = 0, i = 1, . . . ,Nnodes,

where ge is the force along truss e and the sum is computed for
all the Ni elements e connected to node i. Figure 6 illustrates
the forces acting on a generic element e between nodes i

and j . This force acts along the direction of the truss, but
its magnitude is given by the rheological law described in the
previous section, where l is now the apparent distance between
nodes i and j . Further details of the implementation may be
found in Ref. [22]. We will verify in this section whether the
response analyzed so far for one truss is also inherited by the
truss network.

It must be noted that the treatment of the cellular tissue
as a truss network substantially differs from the continuum
hypothesis. We have chosen the former approach for its sim-
plicity in dealing with nonlinear variations of the resting length
and with phenomenologically based remodeling process. Note
that relating the stresses and the strains in the continuum
requires the definition of the remodeling rate in a tensorial
manner (different rates for different directions and deformation
modes). We here circumvent these difficulties by constructing
the network system, which in fact is also closer to the network
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FIG. 8. (Color online) Comparison of the phase angle δ for the
one-dimensional case (continuous lines) and the two-dimensional
network (dots), computed from the analysis of the reactions when
applying oscillatory displacements. (a) Kelvin-Voigt and Maxwell
models. (b) Active element.
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FIG. 9. (Color online) Resulting meshes for a network subjected to an increasing displacement x = X0 + 0.5t and simultaneously to a
Delaunay triangularization. Snapshots correspond to times t = 0, t = 2, t = 4, and t = 6.

structure of the cytoskeleton. We recognize that the network
discretization of continua has some restrictions with respect
to the continuum media [23]. Among them we highlight that
(i) the material properties of a continuous material such as the
Poisson’s ratio depend on the topology of the truss network
and that (ii) a continuous nodal stress field compatible with
the tractions field will not exist in general or, in other words,
a stress field σ such that the truss tractions g satisfy at each
node g = σ n, with n the direction of the truss, will not exist.
This is due to the fact that our traction field is not derived from
a continuous stress field but instead computed from nodal
equilibrium. Despite these differences, we have tested that for
the examples we show here, the actual network topology has
minimal effects on the behavior of the remodeling process.

A. Model analysis under oscillatory loads

We have used the two-dimensional patch shown in Fig. 7.
The left end has been fixed, while the right end has been
subjected to oscillatory loads or displacements. The material
properties are such that τ = 1.

In order to determine the phase angle for the patches, a
Fourier analyses of the oscillatory response of the reactions and
the imposed displacements at one of the ends was performed.
The values of δ for different imposed frequencies are given
in Fig. 8, which shows that the two-dimensional values
are slightly greater than the corresponding one-dimensional
results. This difference is presumably due to the contribution
of the diagonal trusses, which have a different response than
the horizontal trusses. In both cases, though, the trends of a
single truss and the network patch are very similar.
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FIG. 10. (Color online) Resulting three-dimensional meshes for
an increasingly deforming solid cylinder. Its initial dimensions are
D × H = 1 × 3, and the cylinder is retriangularized at each time
step using a Delaunay algorithm [24]. The cylinder is subjected to an
imposed height h = H + 0.5t . Snapshots correspond to times t = 0,
t = 2, t = 4, and t = 6.

B. Stress relaxation analysis

We aim to test whether the one-dimensional strain evolution
described in Sec. II C carries over to a network system. In the
latter case, though, it is very likely that when the material is
subjected to large deformations, cell rearrangements due to
changes in the cell-cell connectivities will occur. In order to
simulate these macroscopic topology changes, some authors
have considered the presence of yield stresses in the constitu-
tive law of the material [20]. We have here resorted to explicitly
redefining the connectivity of the network by using a Delaunay
triangularization, which has been applied with the help of
the Qhull library [24]. We note that other discretizations and
criteria to define the connectivity changes are possible, which
may in turn affect the macroscopic stress-strain relationship.
The analysis of these strategies is out of the scope of this
work, but the interested reader may find a review, for instance,
in Ref. [25].

We have analyzed the response of a two-dimensional and
a three-dimensional network, forming, respectively, a 2D
patch and a cylinder with a vertical axis. The 2D patch
(see Fig. 7) is subjected to a linearly increasing displacement
x = X0 + 0.5t , while the 3D cylinder has been stretched
through the application of a prescribed height h = H + 0.5t .
Figures 9 and 10 show the resulting deformed networks during
the six initial time units of the simulation, where the elements
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FIG. 11. (Color online) Stress evolution in a test with linearly
increasing displacements for one element (1D), the 2D patch in
Fig. 7, and a three-dimensional network that forms a vertical cylinder.
The stresses in the 2D (3D) analysis have been computed by adding
all the reactions at one end and dividing by the length (surface)
at this end. Simulations with cell rearrangements indicate that the
connectivity has been modified at each time step with a Delaunay
triangularization.



FIG. 12. Scheme of the two consecutive tests being analyzed: a
horizontal displacement is applied on the right end of the 2D patch
(Test 1), and a vertical displacement is applied on the top end of the
patch after Test 1.

with higher positive elastic strains have been indicated in
red (dark gray). The movies S1_movie and S2_movie in
the Supplemental Material [26] also illustrate the deformed
configurations and the Delaunay remeshing process.

The resulting stresses at one end of the domain measured
as the sum of the horizontal (vertical) nodal forces per unit of
length (surface) in the 2D (3D) network have been plotted in
Fig. 11. For the two- and three-dimensional cases, simulations
with and without cell rearrangements have been distinguished.
In the former case, the network topology is modified at each
time step, and the connectivity is triangularized with the
Delaunay algorithm. It can be observed that the changes in the
topology of the network also contribute to the softening process
of the tissue. This is a numerical artifact, due to the presence
of new elements that replace elements that had a larger strain
energy. In fact, such numerical softening can be controlled by
improving the approximated stress state of the new elements.
In our model, we have averaged the stress state of the new
elements from their nodal stress values. On the other hand,
though, cells do rearrange, and do so with a consequent strain
energy reduction. More accurate quantification of the energy
cost of the cell rearrangement is needed in order to better
account for the stress difference between deformations with
constant and variable topology. Despite these differences, the
trend of the curves in Fig. 11, and the instant of the maximum
stresses coincide in the five cases considered here.
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FIG. 13. (Color online) Evolution of the reactions for the two
consecutive tests depicted in Fig. 12. The horizontal traction (Rx)
is measured at the right boundary for Test 1 during the first 6 time
units, while the vertical traction (Ry) is measured at the top boundary
for Test 2 during the last 6 time units. The total test lasts 12 time
units.

We have further analyzed the effects of the cell remodeling
by applying an orthogonal strain after the two-dimensional
test previously described. Figure 12 depicts the two sequential
tests. After comparing the horizontal reaction per unit of length
in Test 1, Rx, and the vertical reaction per unit of length during
Test 2, Ry (see the plot in Fig. 13), we observe that the evolution
of the reaction Ry without Delaunay is much lower than the
values when using Delaunay triangularization. The difference
may be explained by the fact that in the former case the trusses
are in general very much horizontal after Test 1, which renders
them much softer in the orthogonal direction. When using
Delaunay triangularization, no preferred direction is adopted,
and a similar trend of the total reaction is measured in Test 1
and Test 2.

IV. DISCUSSION

In this work we have proposed an evolution law of the
macroscopic remodeling process which mimics the apparent
measured viscosity. The proposed law in Eq. (1) aims to (i)
reproduce the ability of the cell to adapt to the current strains
and (ii) respond with a limited amount of sustained stress.
Despite its simplicity, this evolution law is able to reproduce
the viscoelastic response at small strains. The resting length
changes have been combined with a purely linear elastic law,
and the resulting active model has been compared against a
linear Maxwell model. It has been shown that by using the
following relation:

γ ≈ k

η
, (6)

the active model is equivalent to the Maxwell model, overall
for the stress relaxation test and when applying oscillatory
displacements. Although the responses of the two models are
very similar, the active model provides a different physical
interpretation of the resulting viscosity: the viscous response
of the cell may be due to the resistance of the cell to remodel
and not to the resistance of the fluid content to the strain rates.

The active model relays on the alternative expression of
the cell rheological law given in (1) which explicitly includes
controllable cell activity and whereby the viscous strain rate is
replaced by the active lengthening. The model has been applied
to tissues with large strains, but further experiments at this
regime and more sophisticated rheology models are necessary
in order to better match the observed nonlinear response of
tissues such as cell stiffening [27] and cell softening [28]. The
active element may be also combined with other rheological
configurations in order to design more general active standard
solid models, equivalent to the one depicted in Fig. 1(c).

So far, qualitative experimental evidence of the relation-
ship between polymerization activity and tissue viscosity
is reported in Refs. [11,29]. In the former reference, actin
activity inhibition (smaller remodeling rate) results in a higher
viscosity, similar to the equivalence between γ and τ−1 in
our results. In this work, we have suggested other quantitative
analyses that may help to verify some of the outcomes of
the model. For instance, the long-term evolution of the elastic
strain (or stress) or the dependence of the maximum stress on
the remodeling and (de-)polymerization rate shown in Fig. 4
could be experimentally analyzed.



We note that despite the similarities between the Maxwell
model and active element with γ = τ−1, the physical inter-
pretation of the two models substantially differ. For instance,
in the creep analysis with a linearly increasing applied load
in a volume V , the viscous strain rates ε̇v = ε̇ − ε̇e of the
Maxwell model are associated to the dissipated power Pdis =∫
V

ε̇vσdv. Instead, in the active element, the inelastic energy
contributions correspond to the power spent by the cell to
remodel. More specifically, disregarding passive dissipations
powers, the energy balance of the active element reads

Pext = Pe + Pr, (7)

where the external power (Pext), elastic power (Pe), and
remodeling power (Pr ) contributions are given by

Pext =
∫

V

l̇fext dv, Pe =
∫

V

ε̇eσ dv, Pr =
∫

V

L̇Y dv.

The quantity Y corresponds to the necessary energy to
stretch one unit the resting length of the filament. In a Maxwell
model instead, the term Pr must be replaced by the dissipated
power Pdis. We note that if the active stresses are also accounted
for, as in the case of the models in Refs. [4,8,18], this additional
energy source should be incorporated in the left-hand side of
Eq. (7).

The same basic ideas can be extended to continua. In this
case, though, the definition of multiple parameters γ for each
direction is required. In the present implementation, we have
resorted to a 1D rheology model, which allows us to obtain the
anisotropic response as a result of the different orientations of
the elements. Moreover, the development of the nondiscrete
spectrum may be considered by resorting to unidimensional
linear superposition of Boltzmann and the use of the general
creep function and relaxation functions [1].

We expect to further extend the model to nonlinear elastic
constitutive laws that may include stiffening [2] and softening
[28] phenomena and also quantify more accurately the relation
between cell viscoelasticity and intracellular remodeling and
intercellular topology changes.

We also note that we have not simulated the chemical
signaling that triggers the remodeling of the cytoskeleton but
just the observed macroscopic deformations that represent

such remodeling process. Models where the dynamics of
biopolymers and the cytoskeleton are explicitly represented
have been published elsewhere [30–33]. Notwithstanding the
simplified representation of our model, we have been able
to simulate cell-cell interactions and the global response of
tissues by extending the essential ideas of the unidimensional
model. We have showed that the simulated multidimensional
cellular networks inherit the properties of the unidimensional
formulation, such as the relative evolution of the stresses or
the frequency dependence of the phase angle.

The role of cell activity and its effects on cell rheology
has been well reported in the literature. These models contain
two main ingredients: changes in the cell reference (stress
free) configuration and additional stresses due to cell activity.
Examples of the first case are the seminal model of Huxley
[34], where relative sliding of actin and myosin are considered,
or the work in Ref. [35] where the material is able to flow to a
different well in the energy landscape due to the rearrangement
of drops. In the context of embryogenesis, stress-dependent
deformations of the reference configuration are considered, for
instance, in Refs. [36,37], following the ideas of Beloussov’s
restoration hypotehesis [38]. Examples of the second case may
be found, for instance, in Refs. [3,4,8,16–18]. Our present
model could be included in the first group. However, we have
additionally analyzed the effects on the cell rheology that
the changes in the reference configuration may induce. We
have shown that, for the particular form employed here and in
the small strain regime, the two phenomena are closely related.

The resulting picture of the proposed model is in fact closer
to a solid with active changes than a passive viscoelastic mate-
rial, as it is often used in numerical simulations. Consequently,
we are more inclined to relate the cell viscosity to the cell
activity and its remodeling capability rather than to its fluid
content, whose viscous properties are orders of magnitude
lower than those of the cellular tissue.
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[35] P. Sollich, F. Lequeux, P. Hébraud, and M. E. Cates, Phys. Rev.
Lett. 78, 2020 (1997).
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