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Abstract—The fundamental equation of interferometric aper-
ture synthesis radiometry is revised to include full antenna pattern
characterization and receivers’ interaction. It is shown that the
cross correlation between the output signals of a pair of receivers is
a Fourier-like integral of the difference between the scene bright-
ness temperature and the physical temperature of the receivers.
The derivation is performed using a thermodynamic approach
to account for the effects of mutual coupling between antenna
elements. The analysis assumes that the receivers include ferrite
isolators so that the noise wave passing from the receiver toward
the antenna can be modeled as uncorrelated ambient noise. The
effect of wide beamwidth antennas on the polarization basis of the
retrieved brightness temperature is also discussed.

Index Terms—Interferometric aperture synthesis, microwave
radiometry.

I. INTRODUCTION

I NTERFEROMETRIC aperture synthesis was suggested
in the 1980s as an alternative to real aperture radiometry

for earth observation at low microwave frequencies with high
spatial resolution [1]. The first instrument to use this concept
was the Electronically Scanned Thinned Array Radiometer, an
airborne L-band radiometer using real aperture for across-track
direction and interferometric aperture synthesis for along-track
[2]. A radiometer using aperture synthesis in both directions
[the Microwave Imaging Radiometer Using Aperture Synthesis
(MIRAS)] was proposed in [3] to provide soil moisture and
ocean surface salinity global coverage measurements from
space. The selected configuration was a Y-shape structure
having many small receivers evenly distributed along the arms.
In May 1999, the European Space Agency (ESA) approved the
Soil Moisture and Ocean Salinity (SMOS) mission [4] having
MIRAS as the core instrument. Extensive work has already
been done to improve the understanding of such a radiometer
[5], especially regarding its expected performance [6], calibra-
tion [7], and inversion techniques [8]. Airborne instruments
using two-dimensional aperture synthesis have been proposed
by different laboratories [9], [10] and are at different stages of
development. A good review of the recent history of synthetic
aperture radiometer systems can be found in [11].
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Fig. 1. Pair of antennas pointing to a thermal source.

The fundamental theory behind this technique is the same as
the one used for decades in radioastronomy. In summary, the
instrument measures the cross correlations between all pairs of
receivers to get the so-called visibility function. In a first-order
approximation, the brightness temperature of the source is com-
puted as the inverse Fourier transform of this function. However,
the large field of view present in earth observation induces non-
negligible effects of individual antenna patterns, obliquity fac-
tors, and fringe-washing functions. Recent experimental work
[12] has shown that mutual effects of close antennas, as well as
their individual matching, become important to fully understand
the measurements.

In this paper, a complete formulation of the visibility func-
tion, including full antenna characteristics and interactions be-
tween receivers, is presented. The main result is that when these
effects are taken into account, the measured cross correlation be-
tween receiver output signals turns out to be proportional to the
inverse transform of the difference between the brightness tem-
perature of the source and the physical temperature of the re-
ceivers. This effect, which has been never taken into account in
previous approaches, has an important impact on inversion tech-
niques and also on instrument specifications and performance.

II. FREQUENCY DOMAIN CORRELATION MATRIX

Fig. 1 shows a single baseline of an aperture synthesis ra-
diometer, consisting of a pair of antennas pointing to a thermal
source and connected to perfectly matched receivers at physical
temperatures and . The system formed by the antennas and
the space around them is a linear two-port for which an S-pa-
rameter matrix can be defined in the frequency domain. The in-
cident and reflected power waves, denoted by vectors and ,
respectively, are thus related by the general equation [13], [14]

(1)
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where is the vector containing the waves and gener-
ated by the thermal source to which the antennas are pointing.
The correlation matrix of the total outward waves is readily
computed from (1) [15]

(2)

where the dagger indicates Hermitian transpose operation and
the overbar the correlation product. This equation can be ex-
panded to1

(3)

(4)

where the subscripts and have values 1 or 2. Since the
analysis is performed in the frequency domain, represents
the power spectral density (total power in a 1-Hz bandwidth) of
the noise wave and the cross-power spectral density of

and , both having dimensions of watts per hertz.
In general, the thermal noise emitted by the input ports of the

receivers of Fig. 1 depends on the specific receiver design [15].
Typically, an isolator is placed at the input of each receiver. In
this case, the temperature of the noise traveling from the receiver
to the antenna equals the physical temperature of the isolator so
that

(5)

where is Boltzmann’s constant. The noise waves and
are also uncorrelated in this case. If no isolator is present or has
poor isolation, then this partial correlation must be taken into
account.

The power and cross-power spectral density of the waves gen-
erated by the extended thermal source and are the sum
of the contributions coming from all points in space. Assuming
lossless antennas

(6)

(7)

where is the solid angle subtended by an elementary source
at angular coordinates and the brightness tem-
perature of the source in that direction (see discussion below).
The exponential term accounts for the phase difference of the
waves coming from a source element to each antenna, so

and is the wavenumber where is the
frequency and the velocity of light. The term in (6) is
the radiometric antenna temperature seen by the receiver in the
conditions of Fig. 1 and in (7) a correlation temperature
called visibility due to the similarity of the term used in radioas-
tronomy [16]. The only difference between both is that the ra-
dioastronomy visibility is defined as a function of the source

1Due to the reciprocity theorem, S = S , but this is not a restriction for
the present analysis.

spectral brightness instead of its brightness temperature, so it
has dimensions of flux power spectral density (watter per square
meter per hertz) instead of kelvin. The rest of the parameters ap-
pearing in (6) and (7) are defined in the following discussion.

The directional characteristics of an antenna are fully char-
acterized by its normalized field pattern , which is a
complex vector proportional to the radiated electric field at the
given direction. In the far-field region, it has two transversal
components that are usually referred to the local coordinate
system defined by the copolar and cross-polar fields according
to the third Ludwig definition [17] or its extension to ellip-
tical polarization. Thus, the field pattern can by expressed as

where is the scalar com-
plex pattern appearing in (6) and (7), and is a unit vector
having the polarization and orientation information. It is im-
portant to point out that each antenna pattern appearing in (6)
and (7) includes the effect of the other antenna with matched
output. In other words, is the normalized voltage pat-
tern of the structure formed by both antennas, measured at port
and assuming both ports connected to the reference impedance.
The term is the maximum directivity associated to the ra-
diation from port . This means that is the ratio
between the radiation intensity produced by the structure trans-
mitting from port to the total radiated power divided by ,
computed in the direction .

The brightness temperature appearing in (6) should
be computed from the component of the electric field parallel to

(i.e., the scalar product of the field with the unit vector).
For an unpolarized radiation, such as atmospheric emission, this
effect is irrelevant, but for off-nadir ground emission, a rotation
matrix [18] must be applied at each direction in order
to refer the measurements to the standard horizontal and ver-
tical polarization basis. In this case, in (6) is in fact a
combination of the Stokes parameters of the source. If the an-
tenna beam is narrow this effect is negligible and the power col-
lected by the antenna turns out to be directly related to the ver-
tical and horizontal brightness temperature of the ground spot.
An interferometric aperture synthesis radiometer, however, uses
wide-beam antennas.

Similarly, the brightness temperature appearing in
(7) should be computed as the cross correlation between the two
field components parallel to each one of the two antenna polar-
ization unit vectors. If both have the same direction, then this
is equivalent to the definition in (6), so both equations become
consistent and the same comments apply. On the other hand,
if both antennas have orthogonal polarization, is a complex
function having as real and imaginary parts the rotated third and
fourth stokes parameters of the source. This is the basis of the
polarimetric mode of MIRAS [19].

Substituting (5)–(7) in (3) and (4)

(8)

(9)

which show that the power and cross-power spectral density of
the output waves are function not only of the antenna temper-
ature and the visibility, but also of the noise generated by the
receivers, characterized by their temperatures. If one assumes
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that the antennas are well matched and their coupling is negli-
gible , then and become only related to
the power and cross-power density of the output waves. To our
knowledge, in all the preceding analysis this assumption was al-
ways implicit. However, as it will be shown in the next section,
these S-parameters cannot be made equal to zero, especially for
small antenna spacing. Moreover, since the antenna tempera-
ture is usually large, the approximation has low impact in (8),
but it is important in (9) because of the usually low value of the
visibility. It can be argued that the visibility is larger for small
antenna spacing, but in this case the antenna coupling is also
larger.

A special case of interest is that in which both receivers are
at the same temperature . Then, (8) and (9)
become

(10)

(11)

In the following subsections, a general relation between S-pa-
rameters and antenna patterns is obtained, which will be used to
write the above equations in a more compact form.

A. Thermodynamic Equilibrium

The above equations must also hold if the thermal source con-
sists of a microwave absorber completely surrounding the an-
tennas (anechoic chamber) at a constant temperature , and
the receivers are also at the same temperature (thermodynamic
equilibrium). In this situation, application of the Bosma theorem
[14], [20], shows that, independent of the antenna design

(12)

Introducing this known result in (10) and (11), he following
relations are found while in thermodynamic equilibrium:

(13)

(14)

which could also have been directly obtained by application of
the Bosma relation valid for any linear
passive two-port at constant temperature [14], [20].

Now, using (6) and (7) with for the left-hand side
terms of (13) and (14), it follows that the antenna patterns must
satisfy the following relations:

(15)

(16)

It should be stressed that this is a general result, since it has
been obtained using only a power balance approach. Moreover,
it has been checked for several kind of antennas by numerical
computation using the method of moments [21]. If the separa-
tion between both antennas is large, assuming properly designed
antennas, all S-parameters are null, so the right-hand side of (15)
becomes unity that of (16) vanishes.

B. General Case

The relations (15) and (16) can now be used to write the gen-
eral equations (10) and (11) in a convenient form by grouping
terms and using (6) and (7)

(17)

(18)

where the explicit dependence on of the brightness tem-
perature and of the antenna patterns has been omitted to simplify
the notation. The term in (17) is defined as

(19)

and should always be much lower than unity and zero for dis-
tant antennas. These equations assume that the temperature
of both receivers is the same. Obviously this is a simplification,
but allows to show an important result. In general, the cross cor-
relation of the total output waves (18) depends on the difference
between the brightness temperature of the source and the re-
ceivers physical temperature, provided that the receivers have
good input isolators.

This important result deserves further comments. If the an-
tennas are sufficiently separated apart so that (16) equals zero,
then there is no need to subtract to in (18), since the
weighted contribution of with the antenna pattern vanishes.
In this case, the correlation of the receivers’ outputs becomes di-
rectly proportional to the visibility, which can also be seen from
(11). An example of this situation is the Very Large Array in
New Mexico, intended to measure a distant star. For earth ob-
servation, the drawback of having the antennas too separated is
that the alias-free field of view reduces drastically [8], so the in-
strument would only be useful for measuring sources of small
extent. To get more insight in this matter, Fig. 2 shows the com-
putation of the left-hand side of (16) using the measured an-
tenna patterns of the units fabricated by EADS-Casa Espacio
for MIRAS. They are dual linear polarization patch antennas
having 10-dB directivity. The circles in the figure indicate the
nominal antenna separation of the instrument, showing clearly
that the impact of this effect may be not negligible and should
be taken into account in the inversion process.

Experimental evidence of (18) is given in [12], which presents
measurements of cross correlation between pairs of receivers at
different positions inside an anechoic chamber. Using simply
(7) with constant, it follows that the cross correlation should
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Fig. 2. Computation of (16) from actual measurements of MIRAS antennas.
The circles show the antenna location in the instrument.

be equal to the left-hand side of (16), which from figure (2)
is clearly nonzero for close antennas. However, the experiment
showed always zero cross correlation, which is consistent with
(18) if the anechoic chamber is at the same temperature as the
receivers.

III. FILTERING AND TIME-DOMAIN CORRELATION

In practice, the instrument performs measurements in time-
domain using a correlator and an integrator after filtering the
signals, as shown in Fig. 1. In the Appendix, it is shown that
assuming infinite integration time, the mean power and cross
correlation of the time-domain analytic signals at the output of
the receivers are given by

(20)

(21)

where the frequency dependence of and has been explic-
itly shown, and is the complex frequency-domain transfer
function of receiver . Introducing (17) and (18) into these equa-
tions, interchanging the order of integration, and adding the term
due to the noise generated by the receivers that flows toward the
correlator, the following time-domain formulas are obtained:

(22)

(23)

where is defined in (19), is the noise equivalent tempera-
ture of receiver , is the wavenumber at the center frequency

, is the power gain of receiver , and the noise bandwidths
and fringe washing function are defined as

(24)

(25)

It should be noted that if the input isolators of the receivers
have poor isolation, then (23) must include an additional term to
take into account the partial correlation between the noise waves
generated by the receivers, as discussed in Section II.

From (23), it is useful to redefine the visibility in terms of the
actually measured time-domain cross correlation

(26)

The final equation for this visibility comes from (23) after
changing variables from angular coordinates to director cosines
( , ), writing the differential solid
angle as a function of these variables

(27)

and assuming parallax approximation for the computation of
, considering both antennas in the – plane

(28)

With these modifications, this newly defined visibility func-
tion can be written as

(29)

where

(30)

and and are the projections over the – axes of the vector
defined between the two phase centers of the antennas normal-
ized to the wavelength , .

Finally, using (22) and (26), the normalized visibility is given
by

(31)
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where is the visibility (29), and is the system
temperature of receiver

(32)

in which for most practical situations the approximation
can be applied.

IV. CONCLUSION

A formal derivation of the fundamental equation of interfer-
ometric radiometry is presented. This is a Fourier-like integral
transformation between the brightness temperature map of the
source and the visibility function . The main
difference between the present result and the usual equation
found in the literature [22] is that the transformed function is not
solely the brightness temperature, but instead the difference be-
tween this and the receivers physical temperature. This is due to
the combined effect of mutual coupling and matching of the an-
tennas and the thermal noise generated by the receivers. Another
difference is that, due to the wide beamwidth of the individual
antennas, the brightness temperature map does not correspond
to a single polarization. Instead, at each direction of space, the
brightness temperature follows the orientation of the polariza-
tion vector of the antennas at that direction.

APPENDIX

DETAILED DERIVATION OF (20) AND (21)

The power and cross-power spectral densities of the output
signals in Fig. 1 can be written as a function of those of
the input signals by using the following standard relations
(e.g., see [23, eqs. (10-38) and (10-46)])

(33)

(34)

where is the frequency-domain transfer function of re-
ceiver . The terms 1/2 are included for consistency with the
definition of given in Section II as the total power in a
1-Hz bandwidth. The correct definition of power spectral den-
sity must include this factor to take into account positive and
negative frequencies. Now, according to the equation without
number after (10-57) in [23], the spectral densities of the corre-
sponding analytic signals are

for
for

(35)

for
for

(36)

where the hat is used to denote analytic signal. Using now [23,
eqs. (10–16) and (10–20)], the auto- and cross-correlation func-
tions of the time-domain analytic signals at the origin

are found by integrating over all frequencies the corresponding
spectral densities

(37)

(38)

Now, by inserting (33) and (34) into these, (20) and (21) are
readily obtained except that, in order to simplify the notation,
the hat to denote analytic signal has been omitted.
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