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Abstract. Weather and climate models are complex pieces of
software which include many individual components, each of
which is evolving under pressure to exploit advances in com-
puting to enhance some combination of a range of possible
improvements (higher spatio-temporal resolution, increased
fidelity in terms of resolved processes, more quantification of
uncertainty, etc.). However, after many years of a relatively
stable computing environment with little choice in process-
ing architecture or programming paradigm (basically X86
processors using MPI for parallelism), the existing menu of
processor choices includes significant diversity, and more is
on the horizon. This computational diversity, coupled with
ever increasing software complexity, leads to the very real
possibility that weather and climate modelling will arrive at
a chasm which will separate scientific aspiration from our
ability to develop and/or rapidly adapt codes to the available
hardware.

In this paper we review the hardware and software trends
which are leading us towards this chasm, before describing
current progress in addressing some of the tools which we

may be able to use to bridge the chasm. This brief intro-
duction to current tools and plans is followed by a discus-
sion outlining the scientific requirements for quality model
codes which have satisfactory performance and portability,
while simultaneously supporting productive scientific evolu-
tion. We assert that the existing method of incremental model
improvements employing small steps which adjust to the
changing hardware environment is likely to be inadequate for
crossing the chasm between aspiration and hardware at a sat-
isfactory pace, in part because institutions cannot have all
the relevant expertise in house. Instead, we outline a method-
ology based on large community efforts in engineering and
standardisation, which will depend on identifying a taxon-
omy of key activities – perhaps based on existing efforts
to develop domain-specific languages, identify common pat-
terns in weather and climate codes, and develop community
approaches to commonly needed tools and libraries – and
then collaboratively building up those key components. Such
a collaborative approach will depend on institutions, projects,
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1800 B. N. Lawrence et al.: Crossing the chasm

and individuals adopting new interdependencies and ways of
working.

1 Introduction

Weather and climate models have become ever more com-
plex as a consequence of three main drivers: more comput-
ing capacity, greater understanding of important processes,
and an increasing mathematical ability to simulate those pro-
cesses. The first of these has been based on incremental
progress using “more of the same”, with extra computing ca-
pacity coming from a combination of faster clock speeds and
accessible parallelism. This capacity has allowed more sci-
ence areas or processes (“components”) to be assembled to-
gether, each of which is supported by an expert community
who have built and evolved their codes based on adding pa-
rameterisations or increasing the amount of direct numerical
simulation (of “resolved” processes).

In general, these components are within or work with one
or two key dynamical “cores” which solve the Navier–Stokes
equations to simulate fluid flow in the domain of interest
(generally the atmosphere and/or ocean). A complex soft-
ware infrastructure exists to “join” the components and ex-
ploit the parallelism. Developing, maintaining, and executing
these models is extremely challenging, with leading codes
having hundreds of thousands to millions of lines of code
(Alexander and Easterbrook, 2015) supported by large teams
of software engineers and scientists over very long timescales
(Easterbrook and Johns, 2009), often with a lack of useful
code management tools (Méndez et al., 2014).

In the years ahead, the “more of the same” approach will
break down as trends in computer architectures suggest that
a plethora of heterogeneous and complex computing plat-
forms will be the method of providing more capacity. The
“free lunch” arising from faster clock speeds and easily ac-
cessible parallelism is over: more capacity will require ex-
ploiting more complex computer architectures and exploring
new routes to parallelism. This will occur even as the science
codes themselves become more complex and demanding. It
is likely we will see new computing hardware arrive and be
deployed on a timescale of (at most) years, while, if we carry
on as we are, the fundamentals of our code will be changing
on decadal timescales at best. This mismatch of timescales is
problematic: what if we simply cannot migrate our weather
and climate codes in the interval between finding out about
a new computer architecture and its retirement?

In this paper we assert that the challenge ahead can be
thought of as analogous to the problem of bridging a vast
chasm, for which neither a single leap nor a set of small
safe steps are practicable. The chasm exists between our sci-
ence aspirations and the underlying hardware. Our existing
approach of incremental advances may be a dead end given
that no one group has the resources to take a single giant leap.

While we appreciate that some readers may see this analogy
of a chasm as hyperbole, particularly given that the commu-
nity has safely navigated several previous transitions in com-
puting, we believe this time the size of the codes which need
to evolve, coupled with the pressures to keep up scientific
(and operational) productivity at the same time, mean that
new approaches are necessary. We do believe the problem is
tractable, and the way forward involves a better separation
of concerns between science, infrastructure, and platform-
dependent code, the development of a set of well-defined
tools in each area, and clear and appropriate interfaces and
use cases for the tools. With such a separation of concerns,
the problem of crossing the chasm is reduced to a series of
(coding) spans between stable platforms (tools and libraries).
Rapid evolution in any one area (science code or computer
architecture) is isolated from other parts of the system.

In this paper we look at the implications of some of the
different sources of complexity ahead and some of the areas
in which stable platforms might be possible. In doing so we
summarise some of the recent progress in relevant tools and
components. We conclude that in the final analysis, like get-
ting across any great chasm, the solutions which will need to
underpin our future models will involve large community ef-
forts in engineering and standardisation; they will not be built
and/or sustained by relatively small groups acting alone, es-
pecially groups with the prime purpose of advancing science
as opposed to software.

2 Complexity

There are scientific and societal drivers to continuing to im-
prove the fidelity of weather and climate simulations. These
increases in fidelity are achieved by adding more important
processes, but also by increasing ensemble sizes and improv-
ing the quality of the simulation of existing processes. The
latter is accomplished by using higher resolution, better nu-
merics, and better-quality initial and/or boundary conditions
(that is, making better use of observational data, including the
use of data assimilation). In general, better numerics leads
to increasing numerical complexity associated with, for ex-
ample, unstructured and extruded meshes, multiple meshes,
multi-grid methods, and higher-order mixed finite-element
methods. Better initial conditions arise from complex mathe-
matical assimilation techniques. (Larger ensemble sizes and
higher resolution lead to large volumes of data; indeed it is
clear that handling exabytes of data will be a problem for
the community before it has to deal with computers capable
of exaflops, but data handling is not the topic of this paper.)
Many of these axes of improvement involve “scientific busi-
ness as usual”, but in the remainder of this section we address
areas in which ongoing incremental improvement is unlikely
to be productive.

Firstly, these scientific advances need to exploit the chang-
ing computing environment, in which we also see increasing
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complexity: more cores per socket, multiple threads per core,
the changing nature of a core itself, complicated memory hi-
erarchies, and more sockets per platform. In the future any
given platform may assemble compute, memory, and storage
in a unique assemblage of components, leading to major code
development and maintenance problems associated with the
increasing need for engineering resources to exploit poten-
tial performance, particularly in energy efficient, robust, and
fault-tolerant ways. We review these issues and some of the
consequences for weather and climate modelling in Sect. 2.1
(“hardware complexity”) below.

Given this background, numerical teams have been look-
ing at computing trends and making algorithmic choices
aimed at efficient execution on future platforms. Amongst
such choices are horizontally explicit methods (which are
more likely to exploit only neighbour communications) and
horizontally semi-implicit or implicit schemes (often with
solvers requiring more extended communication, potentially
across all processors). The balance of compute time (poten-
tially more in explicit methods) vs. communication time (po-
tentially more in implicit methods), and hence overall execu-
tion time, will vary depending on the algorithmic implemen-
tations and how they interact with the capability of the hard-
ware. Hence, the best mathematical methods to use at any
given time are going to be slaves to the nature of the hardware
and the implementation quality, which will be problematic if
the hardware is changing quicker than the mathematics and
its implementation. We do not further consider the mathe-
matics here, beyond highlighting the importance of facilitat-
ing the ability to quickly translate improvements in mathe-
matics to efficient usable code – one specific application of
the separation of concerns we advocate.

One aspect of such usability will be the ability for the
mathematics to be transposed into code which addresses con-
currency at many more levels than we have done in the past,
and this is happening while we are adding more and more
physical processes and model components. We discuss this
aspect of the problem in Sect. 2.2 (“Software complexity”)
by introducing exemplars of component and software com-
plexity and how they are handled in current models, before
briefly summarising the impact of process complexity on
the need for parallelism in Sect. 2.3 (“Where is the concur-
rency?”).

2.1 Hardware complexity

Significantly, after many years of “computational similar-
ity” based on “multi-core” Intel or Intel-like X86 systems,
the future looks far more heterogenous than ever. There are
a plethora of new architectures available, from evolutions
of X86 with more complex vector processing units, such
as the now terminated Intel Many Integrated Core (MIC, or
“many-core”) line, to new ARM server chips and/or radically
different architectures based on graphical processing units
(GPUs). More exotic processor families are emerging too:

from field programmable gate arrays (FPGAs) to new tech-
nologies such as Google’s Tensor Processing unit (Jouppi
et al., 2017). At the time of writing, one vendor alone, Cray,
is offering very different nodes in their HPC line: multi-core
CPU alone, many-core nodes, or nodes which combine CPUs
with GPUs.

This proliferation of architectures is a direct consequence
of the limitations of physics and power constraints in sil-
icon: substantial year-on-year increases in clock speed are
no longer possible, and increased compute capacity has to
come from innovation in what is on the chip rather than
how fast it goes. An additional driver is that the technol-
ogy choices which arise are driven by economics, not the
needs of the HPC community. Further, for big machines,
power constraints dominate thinking, with existing CPU ar-
chitectures consuming too much power. The US exascale
programme has set a goal of 20 MW for an exaflop ma-
chine, but this would not be achievable with current tech-
nology (Kogge, 2015), leading to more pressure on hardware
change – change which is likely to require lower power pro-
cessors and more of them.

With more cores per chip comes a requirement for more
memory, which cannot be met by current technology trends,
particularly memory with low latency and high bandwidth.
The hardware solutions being offered include a range of
types of memory, each with their own characteristics requir-
ing new techniques to manage and control memory interfer-
ence between different cores, agents, and applications that
share the memory system (Mutlu, 2015). Whether caching
algorithms will provide the appropriate performance or pro-
grammers will need tools to directly manipulate data in these
systems is not known. Further, this “near memory” is now
being coupled with large fast storage “close” to the comput-
ing (so-called “burst buffers”), leading to nested hierarchies
in a spectrum from “memory” to “archive” and new problems
(and opportunities) for the workflow around applications.

In most modelling groups, the “modeller” currently has
to have full knowledge of how the entire software stack
works with the hardware even if implementation details are
buried in libraries. The new architectures present the “full-
stack” modeller with many challenges: can one code to ex-
ploit the parallelism and the memory? Is there sufficient par-
allelism in the code itself to exploit the architecture? How
can one obtain performance data upon which to make in-
formed choices? Can one code to exploit multiple different
architectures (and maintain that code)?

Figure 1 shows just one comparison of two relatively sim-
ilar architectures, a multi-core evolution of the traditional In-
tel CPU processor and a many-core node. This schematic is
intended to show both the similarities and differences: both
consist of multiple cores, but there are different arrangements
of cache and main memory, different ways of accessing vec-
tor processing units, and different methods for linking be-
tween the cores.
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Figure 1. Architectural heterogeneity: a schematic comparison be-
tween an Intel Broadwell CPU socket (two sockets to a node,
joined locally by the quick path interconnect, QPI) and an Intel
Knights Landing MIC node. Notable differences include the two-
dimensional mesh linking cores and memory (near and far) on the
MIC node (with up to 16 GB of near memory L3 cache) and the
bidirectional full ring on the CPU linking the cores (and support-
ing up to 50 MB shared L3 cache). The most important difference,
however, is the number of cores: approximately 20 to a socket or 40
to a CPU node and up to 72 on the MIC node. (Not shown in this
diagram is the 256 MB L2 cache in the Broadwell cores and their
internal vector processing units.)

Today, at the most fundamental level, modellers rely on the
compiler to hide most of these details, but with the advent
of coding for GPUs (of which more below), it has become
clear that the better one can express parallelism in the high-
level (e.g. Fortran) code, the better job the compiler can do
even on traditional CPUs. Traditionally (say 10 years ago),
in a weather or climate model one had two levels of concur-
rency in mind associated with shared and distributed mem-
ory.

– Shared memory concurrency involves organising the
code so the compiler could be pre-fetching memory
while doing calculations, i.e. worrying about loop or-
der and organising loops or array declarations to en-
able the efficient use of vector hardware. This requires
“good coding practice”, either gleaned by direct knowl-
edge about how compilers and hardware work or simply
by edict: e.g. “always code nested loops with the inner-
most loop using the left-hand index1, and never mind
why”.

– Distributed memory concurrency typically requires ex-
plicit handling in the science code. Processes (typically
on different nodes) cooperate on a common task util-
ising memory, which is partitioned across nodes (“do-
main decomposition”), and exchange updates using the
message passing interface (MPIs; Gropp et al., 1996,
ideally using libraries that vendors have optimised for
their interconnects).

With the advent of the multi-core CPU (moving from dual
core, to quad core, to now 20 + core) the modeller had to be-
come aware of strategies to exploit the fact that the processor
local cores shared memory and were connected together with
lower latency and higher bandwidth than the interconnect be-
tween processor sockets and nodes.

In most codes now we see one of two strategies: either
MPI is still used across both nodes and node-local cores,
or MPI is used in conjunction with OpenMP (Dagum and
Menon, 1998). In the latter case OpenMP is used to run
some parallel threads on a core (“hyper threading”) or par-
allel threads on a socket, but the threads are sharing mem-
ory, and directives are used to identify where this can occur.
However, this strategy of mixing explicit library calls (MPI)
and compiler directives (OpenMP) does not always work bet-
ter than MPI alone, not least because vendor implementa-
tions of MPI can implement on-node “messages” with highly
optimised libraries exploiting shared memory with perfor-
mance that can be hard to beat. Conversely, MPI decomposi-
tion cannot be changed without paying a synchronisation and
data movement penalty, whereas OpenMP can exploit the dy-
namic scheduling of work and better handle load balancing

1. . . and remember that rule is language dependent; in another
language it might be the“innermost loop using the right-hand in-
dex”.
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around (for example) physics parameterisations such as pre-
cipitation. Hence, the modeller following a hybrid approach
has many issues to consider: how many parallel threads per
node (between zero and the number of hyper-threads sup-
portable on the node) and what parts of the code can take
advantage of this technique? There is a balance to be struck
which depends on knowledge of the code, the hardware, and
the quality of the vendor-supplied compilers and libraries,
and this balance needs to be re-evaluated for each architec-
ture and model version.

Other programming models, such as the partitioned global
address space (PGAS), try to address the problem of the lo-
cality of memory with a single abstraction to address both
shared and distributed memory. Implementations include the
C extension, Unified Parallel C, Coarray Fortran, Chapel, and
the (Open)SHMEM library. However, all of these suffer from
lack of adoption and lack of universal availability, both of
which contribute to the lack of wide use.

OpenMP also provides task concurrency, through which
pools of threads are allocated amongst a set of tasks that can
be done concurrently. However, in climate and weather mod-
els, this feature is not widely used.

Now our hypothetical modellers are dealing with at least
two levels of concurrency, probably a new directive syntax
for declaring what parts of the code can use OpenMP or
a completely different programming model (PGAS). They
may also be having to deal with multiple languages (e.g.
some combination of C++ or Fortran and C) to best use the
hardware and libraries available.

Most processors have vector units, and the trend is for
these to grow both in size (width) and number in new pro-
cessors. This provides another hardware feature that needs to
understood and exploited and further complicates the task of
model development. Then of course there are GPUs, which
many think of as “big fat vector processing units”, but ones
for which the needed levels of data parallelism are very high
and out-of-order memory fetches are very expensive. How-
ever, a cursory look at Fig. 2 shows that GPU architectures
are themselves complex, with sophisticated memory hierar-
chies and onboard methods of thread management.

The big difference between the CPU architectures
(whether multi-cores or many-cores such as MIC) and the
GPUs is the amount of intelligence (complexity providing
extra instruction-level parallelism and caches to hide mem-
ory latency) in the cores and on the package around the cores
and how accessible that intelligence is to the programmer (or
how easily it can be exploited by the compiler without ex-
posing hardware concepts to the high-level code). In CPUs,
much of the silicon is devoted to supporting complexity in the
algorithm (branching multiple instructions, for example) and
in GPUs, much of the silicon is devoted to doing the same
thing to lots of data. However, the compiler directives that
support this parallelism are still rather different and conform
to differing, rapidly evolving, and sometimes poorly defined
standards, so the programmer potentially has to understand

 L2 cache memory

L1 

Instructions

192 
skinny 
cores

++

 

 

       

      

GigaThread engine

PCI

SMX

Memory controllers

Figure 2. High-level schematic of an NVIDA Kepler GPU (adapted
from NVIDIA, 2012). Up to 15 streaming multiprocessor (SMX)
units share a 1.5 MB common dedicated L2 cache, and up to six
memory controllers allow access to main memory. Thread control
exists across the entire chip (the GigaThread engine) and in each
SMX. The SMX units include 192 single precision cores, 64 dou-
ble precision cores and other special function units, and an internal
interconnect so that blocks of 32 threads can be managed internally.
They also include 64 KB of L1 memory that can be configured in
a combination of shared memory or L1 cache, and 48 KB of read-
only L1 memory.

not only both hardware architectures, but also how best to
exploit them. Requiring all modellers to have detailed hard-
ware knowledge – and keep such knowledge up to date – is
obviously not a tenable proposition.

Compounding all these difficulties is the fact that future
processors are likely to have to operate at both low power
and high processor counts; both factors are likely to lead to
increased node failure rates. Existing software tools expect
perfectly reliable hardware, with checkpointing as the only
viable strategy to deal with hardware failure, so there will be
a need for new mechanisms for handling hardware failure,
which will undoubtedly add further complexity to the hard-
ware programming environment.

2.2 Software complexity

Weather and climate models traditionally differ primarily in
three areas:

1. the duration of a simulation (days vs. years),

2. component complexity (climate models typically in-
clude more components associated with longer-
timescale processes), and

3. how they are initialised (weather models by complex
data assimilation systems and climate models by very
long duration “spin-up” runs for components with poor
observational coverage).

These differences have become blurred as weather predic-
tion has begun to exploit ocean, snow, and ice models and
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with the advent of seasonal prediction. But for the purposes
of the discussion here, what they have in common is more
important anyway:

1. the importance of executing the model at a satisfactory
speed (e.g. a year per day);

2. multiple interconnected but often independently devel-
oped sub-models (oceans, atmospheres, wave models,
etc.), sometimes with extra versions to provide nested
grids and or local refinement;

3. an interconnection framework or coupler (to exchange
information amongst model components);

4. at least one component with an expensive dynamical
core (atmosphere and/or ocean), with

5. a significant number of physics routines (radiation, mi-
crophysics, clouds, gravity waves etc.);

6. an internal diagnostics system (to accumulate variables
or calculate extra diagnostics beyond the prognostic
variables carried in the model components);

7. systems to manage ensemble methods (for the extra
simulations needed to address uncertainty); and

8. an I/O subsystem (to manage efficient input and output).

These common attributes can be linked together in very com-
plex ways.

At the high level, Alexander and Easterbrook (2015)
showed some permutations of how large components can be
coupled together in eight Earth system models and at the
same time indicated the relative complexity of the key com-
ponents. In general, the most complexity was found in the
atmospheres of these models, although some Earth system
models of intermediate complexity (EMICs) were dominated
by oceans. The relative distribution of complexity also dif-
fered significantly between models aiming at the chemistry
thought to be significant in coming decades and those aim-
ing at longer-timescale processes associated with the carbon
cycle.

The interconnection between all the large-scale compo-
nents requires a specialised framework and/or coupler to pro-
vide methods for exchanging fields between components.
Valcke et al. (2012) provide a comparison of coupling tech-
nologies used in CMIP5, but it is interesting to note that of
the six technologies discussed in this paper, only two (ESMF;
Theurich et al., 2015, and OASIS, Craig et al., 2017) have
any widespread use, and many large institutes feel it neces-
sary to build their own coupling systems.

One key piece of software complexity arises from the a pri-
ori necessity to find parallelism within the large components
such as the atmosphere and oceans of any but the lowest-
resolution models. With only a handful of large-scale com-
ponents and machines with hundreds to thousands of nodes,

exploiting the machine efficiently requires splitting compo-
nents across nodes exploiting “domain decomposition” –
splitting the multi-dimensional (potentially all of longitude,
latitude, and height) space into “domains”, each of which is
integrated forward each time step on just one node (with the
necessity of passing information between nodes after each
time step so that “cross-domain” differences can be calcu-
lated).

The relationship between the dynamics and physics within
an atmosphere is also complex, with even more scope for
different arrangements of data flow between internal com-
ponents and processes. Figure 3 provides a glimpse into the
interplay of dynamics and physics in three different atmo-
sphere components from the ECMWF Integrated Forecast
System, IFS (IFS 41R1; https://www.ecmwf.int/en/forecasts/
documentation-and-support, last access: 29 April 2018), the
GFDL HiRAM (2012 public release; https://www.gfdl.noaa.
gov/hiram/, last access: 29 April 2018; Zhao et al. , 2009),
and the Met Office UM (v6.6; Davies et al., 2005). This fig-
ure describes the flow of data associated with model prog-
nostics within a model time step.

IFS is a spectral transform model. The key property of
such a model is that due to the properties of the Lapla-
cian operator, equations for vorticity, divergence and diffu-
sion can be easily calculated in spectral space, with advec-
tion and physics calculated on a grid distributed in physi-
cal space. The model exploits two time levels and a semi-
implicit, semi-Lagrangian time-stepping routine. The time
step begins with variables held in spectral space, which are
then converted back to grid point space for the physics to be
executed sequentially, after which they are converted back to
spectral space via a fast Fourier transform (FFT) in longitude
and a Legendre transform (LT) in latitude to spectral space,
for which the Helmholtz equation resulting from the semi-
implicit time stepping is solved and horizontal diffusion is
computed.

HiRAM, the GFDL high-resolution atmospheric model, is
a grid point model based on finite volumes and the cubed-
sphere grid. The dynamics uses a two-level split explicit
time-stepping scheme. The physics components use an im-
plicit algorithm in the vertical (including fast coupling with
land and ocean surfaces) integrated using a tridiagonal solver
which splits into a down and up sequence. The down, dry
processes are calculated first with the increments from the
physics and dynamics solver calculated in parallel and then
summed. The down physics processes are calculated sequen-
tially. These are then summed and fed into the sea ice and
land surface, and then the up, moist processes are calculated;
again the increments from the physics and dynamics solver
are calculated in parallel and summed at the end of time step.

The UM is also a grid point model. In this case the physics
is split into “slow” and “fast” processes calculated before and
after the main dynamics, which also exploits a semi-implicit
semi-Lagrangian time-stepping scheme. The slow physics
processes use the state of the previous time step, but the faster
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Figure 3. A programmer view of data flow and the interaction of dynamics and physics in the atmosphere of three prominent models:
ECMWF IFS, GFDL HIRAM, and the Met Office UM. Red boxes show the start and finish of time steps, yellow boxes show dynamics, blue
boxes increment physics, beige boxes physics with full values, and external coupling or library routines are shown in the white boxes. Not
all prognostic variables and associated routines are shown!
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processes are integrated using the latest state calculated se-
quentially using the incremented versions.

It can be seen that these three examples show rather dif-
ferent methodologies. The first two use semi-implicit time
stepping and the last explicit time stepping; as a consequence
they have quite different communications patterns. The data
layouts are very different, at least for the dynamics: IFS
uses spectral transforms which necessarily means data ma-
nipulation between spectral and grid point space. Each has
their own take on how to organise the sequence of physi-
cal processes and involve many independent pieces of code,
each of which could need configuration and compiler- or
even hardware-specific optimisation to take advantage of any
given hardware environment.

Figure 3 does not describe actual code blocks or expose
details of the internal time splitting, and it is important to note
that any implicit parallelism shown may not be mirrored in
the model code. Nonetheless, there are important differences
in information flow which will feedback on opportunities for
concurrent parallelism. For example, the UM does not use
the updated state of the variables for the slow physical pa-
rameterisations so they could be calculated in parallel, and
some subcomponents, e.g. radiation, are expensive enough
that they may not be executed at every time step. Such sub-
components are large enough to treat, in terms of concur-
rency, in the same way as full model components. Balaji et al.
(2016) show results from experiments with the same code
family as HiRAM, doing exactly that. Their results show that
this extra concurrency can be exploited in a range of ways
(to shorten the radiation time step or to speed up model inte-
grations, albeit with a potential increase in resources used).
However, the actual performance of the necessary changes,
both in terms of the effect on simulation quality and speed,
will differ with the different model approaches to informa-
tion flow.

Model formulations also take a range of approaches to pro-
viding diagnostic, ensemble, and I/O services, with no com-
mon practice as far as we are aware beyond some emerg-
ing community use of the XIOS I/O server (http://forge.
ipsl.jussieu.fr/ioserver/wiki, last access: 29 April 2018). I/O
servers provide a method of offloading (primarily) output to
one set of processors to happen in parallel with computa-
tions happening on other processors. XIOS provides an XML
interface which allows not only output offloading, but also
some diagnostic processing en route, and work is underway
to extend it to support ensemble management as well.

2.3 Where is the concurrency?

The most obvious paradigm for concurrency in weather
and climate models is the domain decomposition introduced
above, exploiting MPI, but clearly there are multiple levels
of parallelism being provided by the hardware and/or ex-
ploitable in the software:

1. vectorisation within a GPU core or accelerator (using
compiler directive languages such as OpenACC), with
or without

2. vectorisation within a CPU core (handled by the com-
piler, but only if the code is prepared appropriately, pos-
sibly by embedding explicit compiler directives);

3. shared parallelism across CPU and accelerators and/or
GPUs (e.g. see Mittal and Vetter, 2015);

4. threading providing shared memory concurrency within
nodes or sockets (e.g. by inserting OpenMP directives
in code);

5. distributed memory concurrency across nodes, either by

– utilising MPI (traditional “domain decomposition”;
directly or with a library such as YAXT or GCOM)
or

– exploiting an implementation of a partitioned
global address space, such as Coarray Fortran (e.g.
Mozdzynski et al., 2012, or language-neutral inter-
faces, such as GPI; Grünewald and Simmendinger,
2013);

6. component concurrency, whether using a framework
such as ESMF or handled manually with, for example,
OpenMP tasks (e.g. Balaji et al., 2016);

7. coupled model components either

– as part of coupled model executed independently
and concurrently using a coupler such as OASIS or
executed together and concurrently using a frame-
work (Valcke et al., 2012) or

– concurrent models running as part of a single exe-
cutable ensemble, handcrafted (e.g. Bessières et al.,
2016) or via a framework such as the GFDL flexi-
ble modelling system used in Zhang et al. (2007);
and

8. I/O parallelism (using an I/O server such as XML I/O
Server, XIOS, or a parallel I/O library such as parallel
NetCDF; Li et al., 2003).

Most of these levels of parallelism require decisions as to
where and how the code should be refactored and/or restruc-
tured to take advantage of them, and it may not be possible
to utilise them all in one code stack, not least because on any
given platform implementations may not exist or they may
be poorly implemented (in terms of performance or feature
coverage).

In the discussion to follow we use the nomenclature intro-
duced by Balaji et al. (2016) to term the first three of these
modes as “fine-grained” concurrency and the last four as
“coarse-grained” concurrency. The key distinction between
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these modes of concurrency is that the former involve organ-
ising codes to take advantage of single instruction multiple
data (SIMD) hardware (such as vector units), and the latter
involve higher-level assemblages interacting, mainly using
the multiple programme multiple data (MPMD) pattern (ex-
cept for the distributed memory options, which utilise the sin-
gle programme multiple data, or SPMD, paradigm). We do
not categorise threading (4) as either fine- or coarse-grained
concurrency, since in practice from a programmer point of
view it can be used following either mode (e.g. to parallelise
loops in the same way as one parallelises them for a vec-
tor processor or to provide extra models of parallelisation for
domain decomposition).

The current best practice for addressing these modes of
concurrency is to

1. code for hierarchies of parallelism (loops, blocks, do-
mains),

2. use standard directives (OpenMP or OpenACC),

3. optimise separately for many-core GPUs, and

4. try to minimise the code differences associated with ar-
chitectural optimisations.

However, this is no longer seen as a long-term successful
strategy, at least on its own, because the strategies needed
for different architectures may be fundamentally different
(e.g. for memory optimisations). With the advent of exas-
cale systems, entirely new programming models are likely to
be necessary (Gropp and Snir, 2013), potentially deploying
new tools, or even the same tools (MPI, OpenMP), to deliver
entirely new algorithmic constructs such as thread pools and
task-based parallelism (e.g. Perez et al., 2008). Weather and
climate models will undoubtedly target such systems, so their
disruptive influence is likely to necessitate the wider use of
these new programming models.

3 Progress

None of the domains of complexity listed above were unex-
pected: the clock-speed free lunch was over before the end
of the first decade of the current millennium, and models
have always been evolving by adding processes and more so-
phisticated mathematics in their dynamical cores. Since the
first vector registers in supercomputers, the pursuit of concur-
rency has been the key to running fast models, and the tran-
sition from massively parallel complex cores to even more
massively parallel simpler cores with smaller local memory
began with the BlueGene (e.g. Dennis and Tufo, 2008) and
has accelerated with GPU entering mainstream computing.

Early work with GPUs began with computationally inten-
sive physics modules for which it was clear that different
approaches may be possible in different components, and

some of the first investigations into the use of new archi-
tectures took this route by rewriting particular components;
e.g. Michalakes and Vachharajani (2008) and Hanappe et al.
(2011). The latter rewrote (in another language) the radia-
tion code in a widely used fast low-resolution climate model
for a custom chip – an effort which took 2.5 person years
and delivered a significant speed-up on the new processor
over the original version. However, although this rewrite
achieved significant speed-ups even in the CPU version, it
is no longer being actively used, primarily because of the
downstream technical and scientific burden associated with
assimilating and maintaining (both technically and scientifi-
cally) a rewrite in another language. This downstream burden
is one of the main issues associated with re-engineering code:
if the code “owner” is not engaged, then rewrites are unlikely
to survive.

By contrast, Fuhrer et al. (2014b), in a partnership be-
tween meteorologist code owners and computer scientists,
have rewritten ab initio the dynamical core of the COSMO
weather forecasting model using a domain-specific language
approach (see Sect. 3.1), and it is now operational on a hybrid
CPU–GPU machine. Their team is now working on exten-
sions into the physics. One of the lessons learned was that,
as with the Hanappe et al. (2011) experience, rewriting for
good GPU performance resulted in speed-ups on the CPU as
well.

Govett et al. (2014, 2017) have compared and contrasted
several generations of compiler implementations of Ope-
nACC and OpenMP on a range of hardware using their
next generation Non-hydrostatic Icosahedral Model (NIM).
While they have successfully implemented a single-source
code model which supports a range of hardware platforms,
their experiences exposed multiple compiler issues and de-
pended on ab initio design constraints on their Fortran source
code (e.g. basic language constructs and minimal branching).
Like Fuhrer et al. (2014b) their initial work has concentrated
on the dynamical core, and one suspects that this code can-
not be easy to maintain – examples show that in places the
number of directives in a code block exceed the number of
lines of Fortran. This would be consistent with the observa-
tion that wide disparities in coding effort between the vari-
ous directive-based approaches exist (e.g. see Memeti et al.,
2017, for a comparison of coding effort in terms of lines of
code). The NIM work on radiation codes yielded less than
compelling results (Michalakes et al., 2016) as memory bot-
tlenecks were identified, demonstrating that more work was
needed on invasive and time-consuming refactoring to ready
codes for emerging hardware. Experience in other groups
also suggests that unless this work is carried out by paral-
lelisation experts, gains in performance may be outweighed
by the introduction of subtle errors that can be very difficult
to find and fix.

Early experiments with new and disruptive parallel pro-
gramming models are also underway. For example, the
OmpSs programming model (Duran et al., 2011) is being
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used to investigate the performance of OpenIFS, but the port-
ing involved is not straightforward, and it is clear that the full
benefit of the new programming model cannot be exploited
starting from the code – the developer needs to begin with
a deep knowledge of the algorithm (as opposed to its expo-
sition in legacy code) to fully exploit any benefits accruing
from a new programming approach.

Fu et al. (2016) took another approach in a directed port
of an entire model, in this case the much larger code of the
Community Atmosphere Model. This work involved exten-
sive refactoring and optimisation, albeit with a conscious ef-
fort to minimise manual refactoring (and downstream main-
tenance issues) and mainly relying on source-to-source trans-
lation tools. In this case, because the target platform (the Sun-
way TaihuLight supercomputer) is constrained in memory
performance, much of the effort was on minimising mem-
ory footprints. Without this work, the unique architecture of
the TaihuLight would not have been fully utilised; with it,
a speed-up of a factor of 2 was possible. Notable in their
list of key activities was the design of tools to manage the
process: a loop transformation tool and a memory footprint
analysis and reduction tool.

All these approaches were effectively addressing fine-
grained parallelism in some way or other without address-
ing coarser-grained concurrency, and they all involved var-
ious levels of “intrusion” into code, from adding or chang-
ing codes to complete rewrites or translations. Such changes
all risk the ongoing evolution of the codes – it is important
that codes remain easy to work with so the scientific content
can continue to evolve. All found that performance improve-
ments were modest, primarily because weather and climate
codes do not have “hot spots” that can be identified and opti-
mised. Typically, the low-hanging fruit of such optimisation
has already been harvested, and this with the complicated
inter-relationships between dynamics and physics discussed
in Sect. 2.2 coupled with the sheer number of geophysical
processes involved has led to very “flat” codes. For example,
the atmosphere component of a current climate model run-
ning using 432 MPI tasks, has no subroutines that take more
that 5 % of runtime except for halo exchanges (more below).
Only 20 of the 800+ subroutines involved take 1 % or more
of the runtime! However, despite the fact that performance
improvements were modest, in all but the earliest work the
lessons learned form the basis of ongoing endeavours.

The obvious solution to these problems is to attempt a sep-
aration of concerns to break the overarching modelling prob-
lem into more discrete activities and somehow address the
flat computational profile within that paradigm. In most of
the remainder of this section we introduce a range of cur-
rent activities which span the breadth of weather and climate
modelling that are aimed at some part of such a separation of
concerns which we (and the institutions, projects, and part-
nerships we represent) are applying in the context of weather
and climate modelling.

All are activities carried out in the context of wanting to
address four primary aspects of modelling:

1. ensuring model quality (the models available are meet-
ing the advancing scientific requirements),

2. delivering performance (in simulated years per wall-
clock day),

3. supporting portability (so that they can run on all the
relevant platforms currently in use or likely to be in use
in the foreseeable future without excessive lead times
associated with porting), and

4. productivity (the ability to work with the codes from
a scientific perspective by changing algorithms, adding
processes, etc., in a reasonable period of time and with-
out inadvertently compromising on the reliability and/or
accuracy of code).

We conclude the “Progress” section with a brief review of
how this work complements related work in other disciplines.

3.1 Domain-specific languages

As discussed above, much parallelisation in weather and cli-
mate codes is delivered by individuals constructing or modi-
fying code-using libraries (such as MPI) and directives (such
as OpenMP); this is despite decades of research into paral-
lelising tools. The dominant reason for this is that humans
can inspect an algorithm, and with knowledge of the hard-
ware, further exploit domain-specific knowledge to reason
about how to improve performance, but the domain-specific
knowledge is not available to generic parallelisation tools.
The result is that humans currently deliver science code that
performs much better than that produced by generic tools
(although this is not the case with compilers, which gener-
ally produce vectorised assembly code which performs better
than that produced by humans)

So what are the domain-specific characteristics which are
being exploited by the humans? Not surprisingly, they de-
pend on the domain – the narrower the domain, the more
a priori knowledge is available. Some of the earliest exam-
ples of this approach include the use of kinetic preprocessors
for atmospheric chemistry. These take reaction specifications
and generate code for specific processors (e.g. Linford et al.,
2009).

Extending these ideas more widely means taking advan-
tage of the knowledge that weather and climate models
typically employ finite-difference, finite-volume, or finite-
element discretisations of the underlying equations. As
a consequence,

– operations are performed over a mesh,

– the same operations are typically performed at each
mesh point, volume, or element,
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– many operations are independent of each other, allow-
ing for data parallelism,

– operations at a mesh point, volume, or element can ei-
ther be computed locally or depend on neighbouring el-
ements (leading to nearby neighbour – stencil – com-
munication patterns), and

– reductions are required for convergence and/or conser-
vation (leading to requirements for global communica-
tion).

In addition, the meshes themselves typically

– have fixed topologies,

– are structured or semi-structured (quasi-uniform),

– have resolution in the vertical which is much smaller
than the horizontal (leading to 2-D + 1-D meshes rather
than full 3-D meshes), and

– have data structured or unstructured in the horizontal
and structured in the vertical.

We can further note that

– dynamical cores are mostly independent in the vertical,
and

– physics (parameterisations) are mostly independent in
the horizontal.

These characteristics fundamentally affect how to effi-
ciently parallelise a code. For example, one would parallelise
a 3-D finite-element model of an engine, which would typ-
ically be unstructured in all dimensions, very differently to
a finite-element model of an atmosphere. In the latter case
optimisations can make use of the knowledge that one direc-
tion – the vertical – is typically more structured and has lower
dimensionality.

Domain-specific languages (DSLs) provide constructs that
are suitable for the domain in question, rather than be-
ing general purpose. This approach can lead to a more in-
tuitive (higher-level) interface for scientific programmers,
since they will be dealing with a much simpler, more con-
strained language (in comparison with general-purpose lan-
guages). It can also lead to a better separation of concerns
between the algorithmic description (using the DSL) and op-
timisation. For example, weather and climate codes in the
form described above have two main communication pat-
terns: nearest neighbour (stencil) accesses and global reduc-
tions. Therefore, the optimisation scheme associated with
such a DSL need only understand and reason about these two
forms of communication pattern.

DSLs are not necessarily designed for entire communities;
they can be targeted at particular requirements within com-
munities. For example, there are two exemplars of the DSL
approach currently in use by the weather and climate com-
munity.

– GridTools (Fuhrer et al., 2014a), which was initially
for the COSMO consortium. The GridTools project in-
cludes a wide range of activities, some of which are
discussed further below, but the DSL component of the
work has evolved from an earlier DSL (Fuhrer et al.,
2014b and Leutwyler et al., 2016).

– PSyclone, which was for a new UK model – LFRic.
PSyclone has evolved from the Gung Ho dynamical
core project (Ford et al., 2013).

Each has been expressly developed to separate the science
specification from the hardware optimisation so that the sci-
ence writer only needs to write the science code, with sep-
arate implementation and optimisation for parallelism. This
allows the science to be written once, with (potentially mul-
tiple) implementations tailored to particular architectures in
such as way that they do not intrude on the maintainability
(and evolution) of the science code. Both groups are already
exploiting this potential to separately target different archi-
tectures (see e.g. the discussion in Sect. 3.2 below).

Both GridTools and PSyclone make use of domain-
specific embedded languages (DSELs); i.e. their languages
are embedded within an existing language, C++ and Fortran
respectively. In both cases this choice was made as it was felt
that the combination of available tools and community famil-
iarity bought important benefits, but clearly different choices
as to those benefits were made.

They also differ in their original target domains. The origin
of GridTools was a DSL designed for a finite-difference reg-
ular latitude–longitude local area model, whereas PSyclone
was designed for a finite-element model with an irregular
mesh. However, the GridTools formalism is being extended
to support irregular finite-difference models and PSyclone is
being extended to support regular finite-difference models.

The approach to optimisation in the two systems is also
quite different. In GridTools a particular back end (optimised
by an HPC expert) is chosen and the science description is
mapped to that particular back end via C++ templates. In
PSyclone, an HPC expert specifies a recipe of optimisations
which are then used by Psyclone to process the DSL input to
produce code optimised for a particular architecture.

Despite these differences, both approaches rely on HPC
expertise to deliver architecture-dependent performance. The
DSL approach expedites the separation of concerns in such
a way that computational experts can concentrate on the opti-
misation for given hardware, allowing different individuals to
concentrate on different parts of the problem (e.g. Schulthess,
2015).

The use of DSLs has also expedited the involvement of
vendors who usually have insight into how best to exploit
their hardware. However, their ongoing deep engagement
will be dependent on the size of the market; clearly for any
given DSL, the more widely it is used, the more incentive
there is for vendor engagement. Both projects recognise the
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importance of “growing their market” to maintain this incen-
tive, but this is a complex issue (see Sect. 4.2).

3.2 Weather and climate dwarfs

As already noted, many components within weather and cli-
mate models have very flat computational profiles, but one
approach to dealing with this is to identify “mini-apps” (anal-
ogous to the so-called Berkely dwarfs; Asanovic et al., 2006),
which are exemplars of patterns in the code (e.g. common
communication behaviours), so that performance issues can
be investigated (or predicted) by using a small code base,
typically a fraction of the size of the larger code (Her-
oux et al., 2009). When combined with a DSL approach,
lessons learned from investigating mini-apps could be ex-
ploited more widely within the codes with minimal human
intervention.

The ESCAPE (Energy-efficient Scalable Algorithms for
Weather Prediction at Exascale; http://www.hpc-escape.eu,
last access: 29 April 2018) project is investigating this ap-
proach for weather and climate with a specific focus on
energy efficiency and emerging processor technology. ES-
CAPE initially defined dwarf categories (Table 1) which ad-
dress key aspects of such models by including key compo-
nents of the ECMWF spectral model IFS, its semi-implicit
time-stepping formulation, and the semi-Lagrangian advec-
tion scheme. These allowed for an investigation of aspects
of both global and limited-area prediction in the context of
wave, ocean, and land surface components.

The IFS model takes one approach to the discretisation
of prognostic partial differential equations and their evo-
lution in time defined on a grid. However, alternative dis-
cretisations are also realised with a finite-volume approach,
which added dwarfs related to the advection scheme (Kühn-
lein and Smolarkiewicz, 2017) and a 3-D grid-point-based el-
liptic solver (Smolarkiewicz et al., 2016), explored with both
structured and unstructured grids. Two further dwarfs have
also been chosen as representatives of the (many) physics pa-
rameterisations in models – a cloud microphysics and radia-
tion scheme (Mengaldo, 2014; Geleyn et al., 2017). Different
dwarfs would probably be necessary for other dynamics for-
mulations such as those introduced in Sect. 2.2.

The computational performance challenges are fundamen-
tally different between dwarfs just like their functional sep-
aration within an Earth system model. For example, spectral
transforms are very memory and communication bandwidth
intensive. Three-dimensional elliptic solvers are compute in-
tensive and affected to a greater extent by communication
latency. The semi-Lagrangian advection scheme is also com-
munication intensive and depending on implementation may
suffer from load-balancing issues. All three of these dwarfs
have limited scalability because they involve data transfer
and computations of global or regional fields, which is oppo-
site to the nearest-neighbour principle. By contrast, param-
eterisations for cloud microphysics and radiation are very

compute intensive but scalable, as they are applied to indi-
vidual vertical columns that can be distributed across both
threads and tasks in chunks aligned with the available mem-
ory. Hence, performance enhancement options need to be ex-
plored differently for each dwarf based on the range of avail-
able processor types and considering that all these processes
need to be present in an Earth system model.

For each dwarf, ESCAPE targets performance on exist-
ing and emerging processor technologies (specifically Intel
Xeon, Xeon Phi, and NVIDIA GPGPU and a novel tech-
nique employing optical interferometry particularly suitable
for Fourier transforms), but it is also targeting programming
methodologies. Of necessity this involves comparing mod-
ified and existing MPI and OpenMP implementations with
new OpenACC- and DSL-based implementations (the latter
using GridTools).

3.3 Data models

The earliest weather and climate models discretised equa-
tions using a grid with one data point per cell. This led to
easy data layouts, with data contiguous in memory, and rela-
tively straightforward algorithms to find vectorisation. Mod-
ern grids and meshes are more complicated, not always struc-
tured, and often with multiple points per cell. Finite-element
methods add additional complexity: instead of points repre-
senting values associated with each cell, basis functions are
defined within each cell, and field “values” are established by
parameters per cell known as “degrees of freedom (DOFs)”,
which for each basis function establish how the field varies
within the cell. These DOFs are then associated with mesh
entities such as volumes, surfaces, edges, and vertices.

There is no established convention or standard for layout
in memory of these more complicated grids and meshes or
how the various cell entities are associated with each cell.
The current best practice is tightly coupled to knowledge
of the grid being used; the ECMWF IFS model, for exam-
ple, has a data structure designed specifically for the reduced
Gaussian grids which arise from exploiting the spectral trans-
forms used in the dynamical core (Hortal and Simmons,
1991). But the spectral transform method may no longer be
attractive on future architectures due to its inherent all-to-
all global communication pattern, and this is recognised in
the exploration of alternative approaches via the extra dwarfs
discussed above. Some of these other approaches rely on
nearest-neighbour communication patterns and may even be
applied to unstructured grids, leading to the requirement for
different data structures to get maximum performance, po-
tentially with different variants depending on the target hard-
ware!

The Atlas library (Deconinck et al., 2016, 2017) is an at-
tempt to address these issues. It provides a general frame-
work for representing model data structures on different grids
and meshes relevant to NWP and climate simulation. It is
an open-source object-oriented C++ library with a mod-
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Table 1. The ESCAPE dwarfs – a set of mini-apps providing a sample of characteristic behaviours of weather and climate model subcompo-
nents. The “D” category dwarfs are related to the dynamics, the “I” dwarf is general purpose, and the “P” dwarfs represent physics-related
issues.

D Spectral transform; SH Spherical harmonics based transform to facilitate semi-implicit solvers on the sphere.
D Spectral transform; biFFT A 2-D Fourier spectral transform for regional model applications.
D Advection; MPDATA A flux-form advection algorithm for sign preserving and conservative transport of prognostic

variables and species.
I 3-D interpolation; LAITRI Interpolation algorithm representing a wide class of interpolation and remapping uses in NWP

and climate.
D Elliptic solver – GCR An iterative solver for the 3-D elliptic problem arising in semi-implicit time-stepping algo-

rithms.
D Advection – semi-Lagrangian An implementation of the semi-Lagrangian advection algorithm.
P Cloud microphysics; CloudSC Cloud microphysics scheme from IFS, an exemplar of a range of physical parameterisations.
P Radiation scheme; ACRANEB2 An exemplar radiation scheme used in regional NWP modelling.

+ xy()         : Iterator
+ size()       : Integer

<<constructor>> Grid( name : String )
<<constructor>> Grid( configuration : Config )

Grid

+ xy( n : Integer ) : PointXY

UnstructuredGrid

+ xy( i : Integer, j : Integer) : PointXY
+ nx( j : Integer )             : Integer
+ ny()                          : Integer

StructuredGrid

+ x( i : Integer )  :  Real
+ y( j : Integer )  :  Real
+ nx()              :  Integer
+ ny()              :  Integer

RegularGrid

Figure 4. Object orientation and the Grid classes supported in Atlas. Specific model grids can be constructed as instances of one of these
classes. For example, the current ECMWF high-resolution (9 km) octahedral reduced Gaussian grid is an instance of the StructuredGrid, but
can be referred to by the name Ø1280, which it inherits from the Grid class.

ern Fortran interface designed to be maintainable and non-
intrusively adapt to emerging hardware technologies and pro-
gramming models. This is achieved by a design with a clear
separation of concerns that, for example, provides a clean
interface for exploitation by a DSL and allows multiple back
ends for actual field data storage: a CPU back end and a GPU
back end with the capability to synchronise with each other
seamlessly.

The Atlas library provides a toolkit of functionalities rang-
ing from low-level field containers to high-level mathemati-
cal operators and remapping operators. One example of the
Atlas object-orientated design is the way that the grid struc-
tures are designed and exploited. We have already noted in
Sect. 3.1 that weather and climate models have common
properties that can be exploited, and grid type is one such
common property, although the grids used vary, with regular
grids, reduced Gaussian, icosahedral, and cubed-sphere grids
all in common use. As a consequence, Atlas provides a clas-

sification of grid objects and supports their configuration for
different model variants at different resolution via simple res-
olution parameters. Figure 4 shows how such grid objects
can be constructed as specialisations of common characteris-
tics with resolution parameters. More specific grids may be
added non-intrusively by exploiting the object-orientated de-
sign.

Figure 5 sketches how these Grid objects can be used in
a workflow to configure how memory structures can be set up
using Atlas. A MeshGenerator can, using a given Grid, gen-
erate a parallel distributed Mesh. A Mesh partition provides
an unstructured ordering of nodes that connected through
lines (also called edges) form two-dimensional elements (tri-
angles or quadrilaterals). Connectivity tables essentially link
elements, edges, and nodes. Atlas further provides function-
ality to grow each Mesh partition with a halo so that paralleli-
sation strategies requiring halo exchanges can be formulated.
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Figure 5. Conceptual workflow on how to use Atlas with most ap-
plications.

Using a Grid or a Mesh, a FunctionSpace can be created,
which sets up how fields are discretised and parallelised.

A NodeColumns FunctionSpace is available to describe
for every node of a horizontal mesh a contiguous-in-memory
structured vertical column. A Spectral FunctionSpace de-
scribes a field with spectral coefficients. Additional Func-
tionSpace types can be created to describe discretisation for
continuous or discontinuous spectral element methods (e.g.
Marras et al., 2016).

Within ESCAPE, Atlas is being used as the foundation for
the evolution of the NWP and climate dwarfs. As a conse-
quence Atlas acquired improved mesh-coarsening strategies,
a GPU-capable Field data storage, and support for regional
grids with projections and checkerboard domain decomposi-
tion. Clean interfaces in both Atlas and GridTools are being
used to exploit Atlas memory storage to allow GridTools to
compute stencil operations on unstructured meshes.

3.4 MPI libraries, coupling, and I/O

All methods of coarse-grained parallelisation which do not
use global address spaces exploit the MPI paradigm, whether
it is managing domain decomposition, coupling components,
or exploiting I/O servers.

Exploiting MPI directly is difficult, and models typically
exploit some sort of middleware library such as Generalised
COMmunications (GCOM) used by the Met Office UM or
YAXT (Yet Another eXchange Tool; https://doc.redmine.
dkrz.de/yaxt/html/da/d3c/concept.html, last access: 29 April
2018) under testing for use in ICON. Such tools can simplify

Figure 6. The influence of using a library to manage MPI com-
munications for domain decomposition: experiences using YAXT
to replace the existing ECHAM usage of MPI in a T63L47 model.
The YAXT optimised library (green) can lead to factors of 10 im-
provement in the time taken to do transpositions of data over simple
implementations (blue) and factors of 2 over manual optimisation
(red, which was effectively an aggregation of multiple transposi-
tions into bigger messages). In this case the two main optimisations
in YAXT were avoiding additional data copies by the usage of MPI
data types and reordering of messages to avoid congestion, with the
latter becoming more important with higher core counts.

the usage of MPI and therefore make the performance poten-
tial of data layout and data independence accessible (see e.g.
Fig. 6).

The complexity of data transpositions and MPI communi-
cations increases in the context of coupling, and these also
need to be understood in terms of how best to obtain perfor-
mance. Many groups are investing in coupling tools, such as
the OASIS coupler widely exploited in Europe. Recognising
that there is much to be learnt from these various activities,
the community has held a series of workshops on coupling,
which led to the identification of a range of parameters which
influence coupling and can be used in a benchmarking strat-
egy (Table 2).

With these characteristics in mind, the IS-ENES2 project
established a programme of investigation into coupling per-
formance by developing some stand-alone components suit-
able for coupling tests and carried out some initial investi-
gations testing the impact of the number of cores per com-
ponent, the grid sizes, the grid aspect ratios and orientations,
and having different numbers of cores for different compo-
nents.

As a proof of concept, these coupled test cases were run
using five different coupling technologies in different con-
figurations on three different platforms: Bullx at CINES in
France, Cray XC40 at the UK Met Office, and the Broadwell
partition of Marconi at CINECA in Italy. Thus far the work
has demonstrated the utility and versatility of the benchmark-
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Table 2. A set of characteristics that influence coupler performance.

Grid type of the coupled components
Grid size of the coupled components
Number of processes for each component
Layout of the components on the available cores
Number of fields exchanged between the components
Disparity in the grids between components
Scheduling of the components and coupling

ing environment; future work will focus on learning lessons
from comparisons of performance (Valcke et al., 2017).

3.5 Tools to support porting, optimisation, and
performance portability

Automatic code-parsing tools provide a route to code migra-
tion (e.g. Fu et al., 2016, as discussed above), but their effi-
ciency depends on the internal models of how codes are and
can be organised, in particular the presence or absence of
pre-existing manual optimisations, which if not understood
by the tool, can require significant manual effort to remove
(before and/or after the use of the tool).

It is clear that achieving performance requires a compre-
hensive understanding of what existing model components or
dwarfs are doing, and performance portability requires de-
signing code that will still have performance on alternative
architectures. With the complexity of modern codes, this can
no longer be efficiently done with access to simple timing
information, and more complicated information needs to be
gathered and presented for analysis by developers. Such in-
formation is normally provided by performance tools.

Performance tools can provide the support and the free-
dom to the developer to view all the different levels
of concurrency (from the hardware counters underpinning
fine-grained concurrency to the load-balancing involved in
coarse-grained concurrency). While it is possible to collect
a vast amount of information by relinking entire codes to
performance monitoring libraries, results are often enhanced
by manually identifying hot spots and extracting additional
trace information, and automatically generated call trees can
be enhanced by additional instrumentation.

In particular, like automatic code migration tools, the tools
which generate trace files, such as the EXTRAE library un-
derpinning the generation of trace files for PARAVER or
DIMEMAS, depend on an internal understanding of the pro-
gramming models in use in the target codes. It is this un-
derstanding that allows them to automatically trap library
calls and read hardware counters without code invasion, but
it is precisely because of this dependence on generalised
programming models that extra manual intervention can be
necessary to capture domain-dependent information in trace
files.

Figure 7. Understanding model performance on existing machines
generally requires instrumenting the model code to output “trace”
information that can be analysed and visualised by a dedicated ap-
plication. This information can also be used, when combined with
machine information, to predict performance (issues) on alterna-
tive architectures. This figure depicts the use of PARAVER (Labarta
et al., 2005) for collecting trace information and DIMEMAS (Gon-
zalez et al., 2011) for simulating performance on alternative archi-
tectures.

The resulting trace files can be analysed directly to help
improve performance on any given architecture and also be
used to predict performance on alternative architectures (see
Fig. 7). Any extra levels of invasive alteration of code add
further levels of programming complexity, and even with in-
tuitive analysis tools (see e.g. Fig. 8), considerable time and
expertise is required to interpret the outputs. However, the
regular use of such tools by DSL developers and those eval-
uating dwarfs is one route to maximising the benefit of these
tools without the community needing to gather the relevant
expertise.

3.6 Related work

Weather and climate computing is not alone in facing these
problems. For example, the notion of DSLs as a solution has
a tried and tested heritage – examples include the Kokkos ar-
ray library (Edwards et al., 2012), which like GridTools uses
C++ templates to provide an interface to distributed data
which can support multiple hardware back ends, and from
computational chemistry, sophisticated codes (Valiev et al.,
2010) built on top of a toolkit (Nieplocha et al., 2006), which
facilitates shared memory programming. Arguably DSLs are
starting to be more prevalent because of the advent of better
tooling for their development and because the code they gen-
erate can be better optimised by autotuning (Gropp and Snir,
2013). However, in our case, we still believe that human ex-
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Figure 8. Example trace information generated with EXTRAE used to analyse high-resolution coupling in EC-Earth. This view shows MPI
calls during the execution (one colour per call). Top: 512 MPI tasks for the IFS atmospheric model. Bottom: 128 MPI tasks for the NEMO
ocean model. This fine-grained performance information yields information as to how to get better performance out of coarse-grained
concurrency.

pertise has a primary role to play, but this expertise can be
better deployed by supporting DSLs than entire code bases.

The mini-app or dwarf approach we describe above is also
starting to become more widely prevalent, mainly because it
provides a tractable route to both predict performance and
develop and test performance optimisations for new hard-
ware. Its applicability to weather and climate modelling fol-
lows directly from the fact that the source of the methodology
was in disciplines for which similar flat multiphysics pro-
files were involved. The concept of attempting to represent
a cross section of applications or application characteristics
is becoming well recognised (e.g. Martineau et al., 2016),
and others are investigating applicability to environmental
models (e.g. Stone et al., 2012) and noting the importance
of representativeness in the selection of the mini-apps.

Problems of establishing appropriate data structure, gen-
erating meshes, and simplifying the related interfaces and
workflows are prevalent across all communities addressing
the solutions to partial differential equations, whether on
a sphere or not, with decades of relevant research for de-
ployment on parallel computers. More recently, work on data
structures has begun to address cache awareness and the use
of space filling curves (e.g. Günther et al., 2006), and a wide
range of mesh generators are available. The issue for weather
and climate modelling is not so much what relevant work
there is, but how best to establish domain-specific tooling
which yields scientific and software development productiv-
ity across the community.

Further up the software stack, model couplers, frame-
works, and I/O servers are all tools for which the domain
specificity dominates, although many communities have
analogous problems. Tools for evaluating code performance
are common across communities, with important related

work in the establishment of standards for trace file formats
(e.g. the Open Trace Format; Knüpfer et al., 2006) and com-
mon notations for adding directives for extra performance-
related information.

4 Discussion

We have introduced a range of modes of hardware and soft-
ware complexity, requirements for concurrency, and recent
progress in addressing the evolution and performance of
weather and climate codes. We have done this in the context
of wanting to ensure model quality, keep and improve perfor-
mance, sustain portability (in the face of the Cambrian explo-
sion in computing), and maintain productivity – the continual
increase in the scientific capability of the models.

In our discussion we address these requirements and their
dependency on current trends in complexity. It will be seen
that we contend that progress cannot be maintained on the
existing trajectory, so in the final part of the discussion we
outline our manifesto as to what the community needs to do.

4.1 Requirements

Existing models are known to have high levels of software
quality (Pipitone and Easterbrook, 2012), and maintaining
quality models in the face of increasing scientific demands on
what is simulated, ensemble size, and resolution will be cru-
cial. It is these that define scientific quality – a model could
be very high performance and portable, but not be suitable
for the scientific objectives, and there is a spectrum between
“not suitable” and “ideal”. In fact, some level of model qual-
ity is often compromised for performance; for example, res-
olution and complexity are routinely sacrificed to fit weather
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forecasts in a particular time window or to reach a requisite
number of simulated years per day for climate.

It is not so well known that quality is also often compro-
mised for productivity and portability. One of the reasons
for the popularity of the Weather Research and Forecasting
model (WRF; Skamarock et al., 2005) is that it is easy to
modify and run, and this productivity–portability benefit out-
weighs the use of alternative models even when they are per-
ceived to deliver better-quality weather simulations.

Until recently, given the dominance of X86 systems, per-
formance has been relatively independent of platform; once
compiler differences have been negotiated, getting the best
performance has been mostly about understanding how to ex-
ploit processor decomposition given the interconnect and ig-
nored by much of the modelling community, except by those
with the most demanding applications (typically in weather
predictions in tight wall-clock time windows or in long, com-
plex, or high-resolution climate runs). Nonetheless, perfor-
mance also involves the need to optimally fill machines (or
execute large ensembles), so optimising performance can
also mean addressing throughput rather than speed (Balaji
et al., 2017), meaning that performance optimisation should
not only be about good fast code, but also about evaluating
speed for a variety of situations within a large potential pa-
rameter space (e.g. processor decomposition and placement).

Portability, which is the ability to migrate codes between
architectures and achieve acceptable performance (with con-
fidence that the code is delivering the same scientific results;
e.g. Baker et al., 2015) is very important, whether to ensure
that codes can be executed on many platforms by a wide
community or to ensure that the codes will work on future
architectures. In many groups it is seen as one of the most im-
portant considerations (e.g. Norman et al., 2017). However,
as we have seen, obtaining ideal performance on multiple
architectures with the same code is problematic, so perfor-
mance portability is always a compromise. In fact, it has been
said that “the real goal is probably better labelled maintain-
ability than strict portability” (Norman et al., 2017, again).

The difficulty we now face is the fact that because of the
oncoming heterogeneity, even vendors are suggesting that the
community is facing a world in which one can only have two
of the three factors of performance, portability, and produc-
tivity – a happy compromise is no longer possible. While
this is again to some extent hyperbole, it is certainly true
that much more effort needs to be devoted to achieving these
simultaneously and that quite major changes in approach
(e.g. the use of DSLs) are needed: so it is the amount of
effort needed, the change in approaches required, and the
timescales in play that lead to the “cliff edge chasm” motif
for this paper.

4.2 Making progress

To make progress in the science, existing weather models
are being extended to seasonal and decadal scales by run-

ning with additional components (ocean, sea, and land ice),
and existing climate models are confronting the need to start
from prescribed initial conditions and run at increased res-
olution. New models are being developed, but the existing
timescales from development to production science serving
large communities are currently of the order of a decade. All
these models need to exploit all the avenues of concurrency
outlined in Sect. 2.3 and at the same time support multiple
architectures. How then can we make progress?

There are essentially four strategies to sustaining a mod-
elling programme:

1. develop a model and all the supporting components
from scratch,

2. build a particular piece or pieces of a model and utilise
components and/or infrastructure from elsewhere,

3. utilise someone else’s model, but tinker with some as-
pects of it, or

4. simply configure and run models developed elsewhere.

Which strategy is most appropriate depends primarily on the
resources and skill sets available and the productivity pos-
sible. Only a handful of groups can afford the first strategy,
and the further down the list one goes, the less control one
has over the future trajectory that is possible for that mod-
elling programme because of the external dependencies.

Risks range from not being able to move fast enough to
meet science goals, to having key capability removed be-
cause the external group has chosen either to do something
completely different or change key aspects of the interfaces
upon which the model depends. In the worst case, hav-
ing outsourced some capability, the internal group may no
longer have the capability to replace that capacity. Mainly
for these reasons, large (primarily) national modelling en-
deavours prefer to keep as much development as possible
in house. However, looking forward, it is not obvious that
even large national groups have the internal resources to both
keep up a production line of incremental model improve-
ments associated with meeting near-term scientific (and/or
operational) requirements and identify and take the requi-
site steps necessary to develop codes which can hit qual-
ity + performance + portability + productivity requirements
using next generation computing, particularly when the latter
is unlikely to be achievable with small steps. This is recog-
nised in some large institutions; for example, the Met Office
is investing in OASIS, NEMO, and XIOS, all of which have
replaced or will replace internal developments.

If the existing incremental development method will not
provide more than modest improvements in performance at
very low levels of computational efficiency, how then can
progress be made? We would assert that the way forward has
to involve the community making better use of the collec-
tive resources and more groups utilising components, partic-
ularly infrastructure components, developed elsewhere. It is
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such shared libraries and tools that we see as the “spans” that
will need to be utilised to cross the “chasm” of model devel-
opment ahead. That said, we fully recognise the importance
of competitive evolution: the optimal number of libraries and
tools is not one of each; two or three might be the right an-
swer, but it should certainly not approach N , where N is the
number of large modelling groups.

We have introduced a range of such tools, libraries, and
methodologies for making progress such as the identifica-
tion of dwarfs, the publication of data structures, and the ele-
ments necessary to establish a comparison of coupling tech-
nologies, and to evaluate performance. Within some of that
work there is a clear aim to develop and specify interfaces
that can be reused in different ways (for example, the inter-
faces which allow GridTools to interface directly with the At-
las data structures), but many of these (and similar) projects
have still mainly been developed by small groups who have
not had the time, mandate, or wherewithal to publicly pro-
mulgate requests for requirements or specifications and then
build to documented interfaces.

Progressing at the community level will require improved
methods to allow the community to discuss, specify, design,
develop, maintain, and document the necessary libraries and
tools. The weather and climate community does not have
a great track record at sharing such tools, although in recent
years necessity has begun to influence practice, with tools
such as OASIS becoming more prominent in more places.
One of the reasons for this lack of sharing is in part the lack of
a commonly deployed structured approach to sharing, specif-
ically one that maximises the delivery of requirements while
minimising risk of future technical burden – this is the sort
of approach that has delivered the MPI libraries upon which
nearly all of high-performance computing depends. While
a fully fledged standards track is probably beyond the will
of the community at this point, it is certainly possible for the
community to investigate and then engage in more collabo-
rative working.

Such steps would begin with institutions and modelling
groups recognising the scale of the problem ahead and recog-
nising the following:

– business as usual, consisting of modest incremental
steps, is unlikely to deliver the requisite next generation
models;

– they do not have enough internal resources to take the
leap to the next generation alone; and, most importantly,

– there are library or tool projects which they can exploit
and through which they can collaborate rather than com-
pete, some of which may be from outside the traditional
communities of collaborators.

Institutions which are most likely to be able to seize these
collaborative opportunities are most likely to share certain
characteristics. They will do the following:

– understand the issue fully at the management level, the
science level, and in the infrastructure teams;

– be able to reward individuals for innovation in and/or
contributions to external projects;

– recognise the benefit of external scrutiny and avoid sit-
uations in which they are forever arguing that their code
is “not ready to share”;

– have the courage to stop existing activities and pick up
and use or integrate third party libraries and tools;

– have the ability to recognise the cost–benefit trade-off
between “doing it themselves” and contributing intel-
lectually and financially to third party solutions; and

– be ready to apply more sophisticated and complex soft-
ware engineering techniques and encourage more com-
putational science research.

Projects which would be suitable for collaborative work-
ing will share some common characteristics. They will do the
following:

– be open source and have an open development process,

– have clear goals, scope, and where appropriate, deliver
stable software interfaces,

– have a mechanism to understand and respond to the
timescales of collaborators (that is, some sort of gov-
ernance mechanism which assimilates and responds to
requirements),

– potentially be able to accumulate and spend funds to
provide user support, training, and documentation,

– be not initially disruptive of existing solutions, and ide-
ally

– engage both the scientific community and vendors
(compare with MPI for which vendor implementations
are often key to enhanced MPI performance and relia-
bility).

The advantages of good responsiveness to requirements
and/or vendor engagement cannot be underestimated – where
potential users see a project which is responsive to prob-
lems or one with good vendor support they are more likely
to commit to dependencies on that software. Where they
see dependencies on software with inadequate or obscure
support, commitment is more difficult. There are examples
of such governance for libraries; for example, both ESMF
and OASIS (Sect. 2.2) have established credible community
governance. However, the issue is exacerbated for toolchain
software dependencies – if the software dependency is a li-
brary, one can at least contemplate a substitution; if it were,
for example, a DSL, then the room to manoeuvre is far
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more limited. This probably means that the use of DSLs
(and other critical toolchain infrastructure) is most likely
to spread slowly based on closer collaborations rather than
loosely coupled relationships until there is a visible cross-
institutional developer community and/or they become com-
mercially supported. Even then, the scope of such depen-
dency rather depends on the scope of the DSL itself, and
it may be more appropriate for the community to aspire to
interoperability and exploitation of libraries within more nar-
rowly focused DSLs which do not themselves support large
communities.

5 Conclusions

Having recognised the scale of the problem, the characteris-
tics of institutions which can work collaboratively, and the
nature of good collaborative projects, the question then be-
comes the following: what are the important tools, compo-
nents, or dwarfs that will be needed to bridge the metaphori-
cal chasm between current practice and what is necessary to
sustain weather and climate modelling?

Clear scope is crucial, from tools to software aiming at
particular parts of the problem. We have already seen a list of
types of concurrency categorised into fine grained and coarse
grained and a list of “weather and climate” dwarves being
investigated within one project – but a more sophisticated
taxonomy will be required to allow the community to better
develop complementary shared tools and libraries.

Such a taxonomy will cover at least the following:

– tools for exposing mathematical algorithms for imple-
mentation on a sphere (domain-specific languages),

– tools for describing and using data models for the vari-
ables in those algorithms (including stencils for compu-
tation),

– mathematical libraries such as fast Fourier and spherical
transforms,

– solvers which can exploit specific data models and al-
gorithms,

– interpolation and regridding libraries,

– embedded and stand-alone visualisation tools,

– exchange libraries (for problems ranging from domain
halo exchanges to 3-D field exchange between high-
level components),

– fully fledged couplers (e.g. OASIS) and frameworks
(e.g. ESMF),

– I/O servers (such as XIOS),

– data assimilation tools such as minimisers and adjoint
compilers,

Figure 9. The GridTools separation of concerns provides some el-
ements of the taxonomy of components needed by modelling pro-
grammes and identifies some of the interfaces needed.

– clock, calendar, time-stepping, and event-handling li-
braries (events such as at “do at first time step” or “do
every 3 h”),

– testing frameworks,

– performance and debugging tools, and

– domain-specific tools for automatic code documenta-
tion.

Many of these elements have been subject to classifica-
tion, whether as part of specific projects (e.g. ESMF or Grid-
Tools; Fig. 9) or in more theoretical approaches such as Ru-
gaber et al. (2011), but a more comprehensive and complete
approach is needed before it will be possible for groups to
commit to building for, sharing with, and depending on each
other. In particular, the interfaces between the various ele-
ments need attention so that a more a la carte approach can be
established as elements progress through phases of maturity
and/or usability. Such interface definitions would eventually
include strong software contracts allowing for the construc-
tion of complex software systems that would reliably meet
requirements and expectations.

The ESCAPE approach provides a generic template for
both bottom-up and top-down approaches to the problem.
The top-down direction is driven by the needs of NWP and
climate and the subsequent selection of critical subcompo-
nents used in time-critical global, limited-area, coupled, or
uncoupled Earth system simulations. The bottom-up direc-
tion lays the foundation for exploiting different types of pro-
cessor technologies by developing specific and scalable (nu-
merical methods) research support libraries and performs
code adaptation to address computing bottlenecks that are
dwarf specific. However, this project-driven and historically
short-term form of collaboration is unlikely on its own to pro-
vide the stable foundations necessary to establish the neces-
sary community-wide element–interface consensus, not least
because of insufficient guarantees of long-term maintenance
and evolution.
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Given the existing lack of consensus around approaches
and key interfaces, it may be that progress still needs to be
based around such ad hoc consortia, but within that we be-
lieve it is crucial that projects and consortia strive towards
the open requirements gathering and open development pro-
cesses outline in Sect. 4.2 and attempt to go beyond just solv-
ing their own problems. This will require projects to commit
more effort towards outward engagement before, during, and
after development as well as to more extensive documenta-
tion and training, but the benefit to institutions and funders
will outweigh the initial costs, not least because the more
standardised and widespread weather and climate tooling be-
comes, the more incentive there will be for industry to invest
in contributing to solutions.

Getting projects established which do this will require
managers, scientists, and software engineers to all recognise
the scale of the problem and the need to go beyond the short-
term aims of their institutions. This will be especially prob-
lematic since most of the relevant institutions are focused on
delivering advances in environmental science (individually
or collaboratively), and in most cases orthogonal activities
aimed at collaborative advances in the underlying software
infrastructure are harder to achieve!

Code availability. This paper describes a range of models,
tools, and projects. There are three models discussed; fur-
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