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Abstract	15	

Fish	population	dynamics	are	affected	by	multiple	ecosystem	drivers,	such	as	food-web	interactions,	16	
exploitation,	 density-dependence	 and	 the	 wider	 environment.	 While	 tactical	 management	 is	 still	17	
dominated	by	 single-species	models	 that	 do	 not	 explicitly	 account	 for	 these	 drivers,	more	 holistic	18	
ecosystem	 models	 are	 used	 in	 strategic	 management.	 One	 way	 forward	 in	 this	 regard	 is	 with	19	
individual-based	models	 (IBMs),	 which	 provide	 a	 single	 framework	 in	 which	 these	 drivers	 can	 be	20	
represented	explicitly.		We	present	a	generic	marine	fish	IBM	that	incorporates	spatial	and	temporal	21	
variation	in	food	availability,	temperature	and	exploitation.	Key	features	of	the	model	are	that	it	(1)	22	
includes	realistic	energy	budgets;	(2)	includes	the	full	life	cycle	of	fish;	(3)	is	spatially-explicit	and	(4)	23	
incorporates	satellite	remote-sensing	data	to	represent	the	environmental	drivers.	The	rates	at	which	24	
individuals	 acquire	 and	use	 energy	 depend	on	 local	 food	 availability	 and	 temperature.	 Their	 state	25	
variables,	 including	 life	 stage,	 size	 and	 energy	 reserves,	 are	 updated	daily,	 from	which	population	26	
structure	and	dynamics	emerge.	To	demonstrate	the	use	of	the	model	we	calibrate	it	for	mackerel	27	
(Scomber	scombrus)	in	the	North	East	Atlantic.	Most	parameters	are	taken	from	the	literature,	except	28	
the	 background	 early	 mortality	 rate	 and	 the	 strength	 predator	 density	 dependence,	 which	 were	29	
estimated	 by	 fitting	 the	 model	 to	 data	 using	 Approximate	 Bayesian	 Computation.	 The	 calibrated	30	
model	successfully	matches	the	available	data	on	mackerel	population	dynamics	and	structure.	We	31	
demonstrate	the	use	of	the	model	for	management	purposes	by	simulating	the	population	effects	of	32	
opening	and	closing	a	sector	of	the	North	Sea	to	mackerel	fishing.	Our	model	uses	basic	principles	of	33	
behavioural	and	physiological	ecology	to	establish	how	spatial	and	temporal	variations	in	ecosystem	34	
drivers	affect	the	individuals	in	the	population.	Population	dynamics	and	structure	are	calculated	from	35	
the	collective	effects	on	individuals.	Application	to	a	test	case	shows	the	method	can	fit	available	data	36	
well.	Individual-based	approaches	such	as	this	study	have	potential	for	use	in	strategic	management	37	
because	 they	 can	 account	 for	 spatial	 structuring,	 food-web	 interactions,	 density	 dependence,	 and	38	
environmental	drivers	within	a	single	framework.		39	
	40	
Keywords:	Atlantic	mackerel,	bioenergetics,	energy-budget,	individual-based	model,	spatially-explicit	41	
	42	
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1	Introduction		43	
The	aim	of	fish	stock	assessment	is	to	enable	management	to	maximise	the	long-term	yield	from	a	44	
fishery,	without	doing	irreversible	damage	to	the	stock	or	wider	environment	(Hilborn	and	Walters,	45	
1992).	This	traditionally	involved	estimating	one	or	more	reference	points,	such	as	spawning	stock	46	
biomass	or	the	rate	of	exploitation,	by	fitting	mathematical	models	to	the	available	data	on	the	47	
fishery	and	its	population	dynamics	(Cadrin	and	Dicky-Collas,	2013).	Increasingly,	regulatory	bodies	48	
worldwide	are	adopting	an	ecosystem-based	approach	to	fisheries	management	(Garcia	and	49	
Cochrane,	2005).	This	stems	from	the	realisation	that	a	stock’s	biological	reference	points	will	50	
depend	on	other	components	of	the	ecosystem,	including	food-web	interactions,	the	associated	51	
density-dependent	processes	(e.g.	growth),	and	the	wider	environment	(Skern-Mauritzen	et	al.,	52	
2015).	Accordingly,	a	variety	of	more	holistic	models	have	been	developed	that	can	account	for	53	
these	drivers.	Examples	include	age/size	structured	models	such	as	OSMOSE	(Shin	and	Cury,	2004,	54	
2001)	and	LeMANS	(Hall	et	al.,	2006);	food-web	models	such	as	Ecopath	with	Ecosim	(Polovina,	55	
1984);	and	multispecies	oceanographic	models	such	as	Atlantis	(Fulton	et	al.,	2004).	These	56	
“ecosystem”	models	have	been	applied	to	strategic	management	questions,	such	as	testing	the	57	
response	of	fish	populations	or	communities	to	different	fishing	scenarios	(e.g.	Kaplan	et	al.,	2013;	58	
Thorpe	et	al.,	2016;	Travers	et	al.,	2010).	59	

The	population	effects	of	ecosystem	drivers,	including	the	wider	environment,	food-web	interactions	60	
and	associated	density-dependent	processes,	often	arise	from	their	effects	on	the	constituent	61	
individuals	(Ward	et	al.,	2016).	Modelling	these	individual-level	effects	requires	inclusion	of	62	
processes	such	as	adaptive	traits	(e.g.	physiology),	variation	among	individuals	and	local	interactions,	63	
which	traditional	population	models	cannot	easily	accommodate	(DeAngelis	and	Grimm,	2014).	One	64	
way	forward	in	this	regard	is	with	individual-based	models	(IBMs,	also	called	agent-based	models)	65	
(Grimm	et	al.,	2005).	In	IBMs	the	lives	of	individual	animals	are	simulated	as	they	interact	with	each	66	
other	and	their	environment	(DeAngelis	and	Grimm,	2014).	Individuals	have	a	unique	set	of	state	67	
variables	(e.g.	size	and	location),	while	the	landscapes	are	often	dynamic	and	characterised	by	68	
environmental	drivers	(McLane	et	al.,	2011;	van	der	Vaart	et	al.,	2016).	Individual’s	state	variables	69	
are	updated	when	they	interact	with	each	other	and	their	environment,	and	it	is	from	simulation	of	70	
all	the	individuals	that	population	dynamics	and	structure	emerge.	In	this	way,	IBMs	can	incorporate	71	
food-web	interactions,	density	dependence	and	environmental	drivers,	and	predict	the	fate	of	72	
populations	in	defined	spatially-explicit	landscapes	that	vary	over	time.		73	

IBMs	have	long	been	applied	to	fish	populations.	A	major	area	of	interest	has	been	the	merger	of	74	
IBMs	with	bioenergetics	as	a	way	to	model	the	response	of	populations	to	their	physical	and	75	
biological	environment	(Lett	et	al.,	2009).	Initial	focus	was	on	the	food	and	temperature	dependence	76	
of	growth	and	survival	in	young-of-the-year	fish	(e.g.	Bartsch	and	Coombs,	2004;	Rose	et	al.,	1999;	77	
Scheffer	et	al.,	1995).	Since	then,	increasing	computer	power	has	permitted	the	development	of	78	
multi-generational	bioenergetics	IBMs	that	include	the	full	life	cycle	(e.g.	Politikos	et	al.,	2015).	It	is	79	
these	IBMs	that	can	address	strategic	management	questions,	including	the	effects	of	environmental	80	
drivers	on	migrations	and	reproductive	output,	and	the	effects	of	fishing	scenarios	(Lett	et	al.,	2009).	81	
Because	of	their	complex	nature,	existing	full	life	cycle	bioenergetics	IBMs	are	typically	species-82	
specific	(e.g.	Pethybridge	et	al.,	2013;	Politikos	et	al.,	2015).	Yet,	there	are	many	similarities	among	83	
species	in	terms	of	their	energy	budgets	and	the	way	they	scale	with	body	size	and	temperature.	The	84	
same	functional	forms	often	well	describe	the	rates	of	energy	uptake	and	its	expenditure	on	vital	85	
processes	such	as	maintenance,	growth	and	reproduction	(Clarke	and	Johnston,	1999;	Peters,	1983;	86	
Sibly	et	al.,	2013),	raising	the	hope	that	a	minimum	generic	bioenergetics	model	can	be	developed.		87	

We	present	a	generic	marine	fish	IBM	built	on	basic	principles	of	behavioural	and	physiological	88	
ecology	(Sibly	et	al.	2013;	van	der	Vaart	et	al.	2016).	Our	model	is	spatially-explicit,	includes	a	89	
realistic	energy	budget	and	the	full	fish	life	cycle.	The	model	landscape	consists	of	dynamic	maps	of	90	
two	variables	derived	from	satellite	remote-sensing	(RS):	sea	surface	temperature	(SST),	and	91	
chlorophyll	concentration,	a	proxy	for	phytoplankton	biomass,	which	we	use	to	represent	baseline	92	
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food	availability.	Individuals	respond	to	their	local	food	availability	and	SST	according	to	their	energy	93	
budgets.	To	demonstrate	the	use	of	the	model	we	calibrate	it	for	the	western	component	of	the	94	
North	East	Atlantic	mackerel	(S.	scombrus)	stock.	We	chose	this	particular	stock	to	demonstrate	the	95	
potential	of	the	IBM	approach	because	(1)	it	is	well-defined	and	subject	to	a	specific	management	96	
regime;	(2)	density	dependence	within	the	stock	is	strong,	both	in	terms	of	passive	competition	for	97	
food	(Jansen	and	Burns,	2015)	and	cannibalism	(Fortier	and	Villeneuve,	1996);	(3)	its	population	98	
dynamics	are	sensitive	to	environmental	drivers	(e.g.	recruitment)	(Borja	et	al.,	2002;	Villamor	et	al.,	99	
2011);	(4)	it	is	widely-distributed	and	has	distinct	spawning,	feeding,	overwintering	and	nursery	100	
areas	(Petitgas	et	al.,	2010),	meaning	spatial	variation	in	exploitation	and	environmental	drivers	are	101	
important;	(5)	its	wide	distribution	raises	important	management	questions	that	cut	across	102	
international	jurisdictions;	and	(6)	there	is	much	field	data	available	on	its	population	dynamics	and	103	
structure,	and	experimental	data	for	parameterizing	the	energy	budget.	We	report	that	the	model	104	
fits	data	on	mackerel	population	dynamics	and	structure	well,	and	demonstrate	how	it	may	be	105	
applied	by	simulating	the	consequences	of	hypothetical	spatial	management	scenarios.		106	

2	Methodology	107	
2.1	Model	overview	108	

In	broad	terms,	the	model	landscape	consists	of	dynamic	maps	of	sea	surface	temperature	SST	and	109	
food	availability	(Fig.	1).	Fish	are	grouped	into	super-individuals	(hereafter	termed	individuals),	which	110	
comprise	a	number	of	individuals	with	identical	variables	(Scheffer	et	al.,	1995).	Individuals	move	111	
around	the	landscape	according	to	their	life	cycles	(e.g.	to	spawn	or	feed)	(Fig.	1).	Each	individual	has	112	
an	energy	budget	which	determines	how	its	characteristics	(e.g.	body	size,	life	stage,	energy	113	
reserves)	change	in	response	to	local	food	availability	(including	smaller	fish)	and	SST.	Fishing	114	
pressure	at	different	locations	determines	the	rate	of	mortality	from	exploitation.	The	abundance	115	
represented	by	each	super-individual	when	it	enters	the	model	at	the	egg	stage	is	determined	by	the	116	
amount	of	energy	the	spawning	stock	has	put	into	egg	production.	Abundance	reduces	as	mortality	117	
is	applied	throughout	life.	Population	measures	are	calculated	as	the	sum	of	the	characteristics	of	all	118	
the	individuals	including	their	abundances.	The	model	is	implemented	in	Netlogo	5.3.1	(Wilensky	119	
1999).		120	
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	121	
Figure	1.	An	example	model	interface	showing	potential	spawning	S	(solid	line),	feeding	F	(dashed	122	
line),	overwintering	OW	(dotted	red	line)	and	nursery	(white	filled)	areas	(referred	to	later).	Black	fish	123	
are	adults,	brown	fish	are	juveniles	and	the	colour	of	the	landscape	corresponds	to	phytoplankton	124	
biomass.	Phytoplankton	biomass	and	SST	are	obtained	from	satellite	remote	sensing,	and	the	125	
landscape	is	updated	at	regular	intervals.	This	example	is	taken	from	the	case	study	of	Atlantic	126	
mackerel	described	later.	127	

In	the	following	we	describe	the	generic	model	and	its	application	to	Atlantic	mackerel.	For	a	full	128	
technical	specification	see	the	“TRAnsparent	and	Comprehensive	model	Evaludation”	(TRACE)	129	
document	(Augusiak	et	al.,	2014;	Grimm	et	al.,	2014;	Schmolke	et	al.,	2010)	in	the	supplementary	130	
material.	In	section	2	of	the	TRACE	we	provide	a	model	description	in	the	standard	Overview,	Design	131	
Concepts	and	Details	(ODD)	format	(Grimm	et	al.,	2010,	2006).			132	
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2.2	Generic	model	description	133	

2.21	State	variables	and	scales	134	
The	model	landscape	comprises	a	two-dimensional	grid	of	patches	of	sea	surface	(Fig.	1).	Each	patch	135	
is	characterised	by	its	baseline	food	density	(phytoplankton	biomass),	sea	surface	temperature	(SST),	136	
latitude,	longitude,	area	type	(e.g.	spawning,	feeding,	transitory),	fishing	division	(see	ICES.dk),	137	
whether	or	not	it	is	open	to	fishing,	and	depth.	Fish	populations	are	represented	by	a	number	of	138	
individuals,	characterised	by	age,	gender,	life	stage	(egg,	yolk-sac	larvae,	larvae,	juvenile	or	adult),	139	
length,	mass	(structural,	lipid	and	gonad)	and	abundance.	The	model	proceeds	in	discrete	daily	time-140	
steps.	141	

2.22	Model	schedule	142	

Full	details	of	the	model	processes	are	given	in	section	2.23	(Sub-models).	In	each	daily	time-step,	143	
phytoplankton,	SST	and	fishing	mortality	F	are	updated	first.	Individuals	begin	their	daily	schedule	by	144	
calculating	their	mortality	(see	Mortality).	Next,	they	calculate	their	swimming	speed	(Swimming	145	
speed)	and	move	(Movement).	Individuals	then	calculate	their	energy	budgets,	except	for	146	
reproduction	(Energy	budget).	Energy	is	allocated	to	different	components	of	the	energy	budget,	147	
depending	on	life	stage	and	time	of	year	(Fig.	2). Most	state	variables	have	been	updated	at	this	148	
point.	If	certain	conditions	are	met,	individuals	proceed	to	the	subsequent	life	stage	149	
(Transformation).	If	in	the	spawning	period,	adults	then	calculate	the	costs	of	reproduction,	allocate	150	
energy	to	reproduction	(Energy	budget),	and	spawn.	This	involves	the	introduction	of	new	individuals	151	
(eggs)	into	the	model	in	each	year.	Eggs	then	calculate	their	development	(Egg	development)	and	all	152	
individuals	age	by	one	day.	At	the	end	of	each	time-step	population	measures	are	recorded.		The	153	
order	in	which	individuals	or	patches	carry	out	a	given	process	is	random.		154	

	155	
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 156	
Figure	2.	Conceptual	model	showing	the	processes	that	individuals	implement	between	time	t	and	157	
t+1.	Individuals	start	as	eggs,	then	become	yolk-sac	larvae	at	the	end	of	their	development	period.	158	
They	then	grow	to	become	larvae,	juveniles	and	finally	adults	when	reaching	size	thresholds.	159	
Juveniles	can	only	become	adults	at	a	certain	time	of	year.	The	first	process	in	each	day	is	obtaining	160	
energy,	generally	by	ingestion,	although	yolk-sac	larvae	absorb	energy	from	the	yolk-sac.	Obtained	161	
energy	is	allocated	first	to	maintenance,	with	the	remainder	going	equally	to	growth	and	energy	162	
reserves	(except	yolk-sac	larvae	which	do	not	store	energy,	and	larvae	which	prioritise	growth).	Red	163	
boxes	indicate	an	effect	of	SST,	and	grey	boxes	an	effect	of	SST	and	food	availability.		164	

2.23	Sub-models	165	

In	this	section	we	provide	details	of	the	model	processes.	See	TRACE	section	2	for	a	full	list	of	166	
parameters;	values	of	most	parameters	are	taken	from	the	literature.		167	

Swimming	speed:	The	speed	at	which	individuals	can	sustainably	swim	Sa	is	given	as	a	function	of	168	
their	body	length	L	and	their	caudal	fin	aspect	ratio	Ar	(Sambilay	Jr,	1990).	From	this	their	daily	search	169	
radius	is	calculated.	170	

Movement:	Movement	patterns	are	species-specific	so	we	do	not	provide	a	generic	model.		171	

Energy	budget:	The	following	sub-models	describe	the	energy	budgets	of	larvae,	juveniles	and	adults	172	
(for	overview	see	Fig.	2)	in	terms	of	individual	physiology.	We	assume	the	yolk-sac	provides	sufficient	173	
energy	for	eggs	and	yolk-sac	larvae	to	achieve	maintenance	and	maximal	growth/development	rates.		174	
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Temperature	dependence:	We	use	the	exponential	Arrhenius	function	to	describe	the	effects	of	175	
temperature	SST	on	rates	of	energy	uptake	and	allocation.	This	has	the	form	𝑒"#$/&	((),	where	Ea	is	176	
the	activation	energy	and	K	is	Boltzmann’s	constant.		177	

Food:	Other	individuals	within	the	focal	individual’s	search	radius	and	≥	3.5	times	smaller	(see	Shin	&	178	
Cury	2001)	constitute	potential	prey.	If	multiple	prey	are	available	then	one	is	chosen	at	random	to	179	
be	eaten.	Food	density	(g	m-2)	is	calculated	from	the	mass	of	the	chosen	prey	and	the	predator’s	180	
search	area.	The	energy	content	of	prey	depends	on	how	much	lipid	it	has	stored.	When	individuals	181	
do	not	overlap	with	potential	fish	prey	they	instead	eat	phytoplankton,	which	has	an	energy	content	182	
Ep.	Although	most	fish	do	not	feed	directly	on	phytoplankton,	we	use	it	as	a	proxy	for	baseline	food	183	
availability	because	it	provides	a	synoptic	view	of	the	base	of	the	food	chain.	184	

Ingestion	and	energy	uptake:	Ingestion	rate	IR	is	given	as	a	function	of	predator	density	D,	food	185	
density	X,	SST	and	body	surface	area	(body	mass2/3)	(Kooijman	and	Metz,	1983),	according	to	the	186	
Beddington-DeAngelis	functional	response	(Beddington,	1975;	DeAngelis	et	al.,	1975).	IR	is	converted	187	
from	g	day-1	to	kJ	day-1	using	the	energy	content	of	food	(kJ	g-1).	A	proportion	of	ingested	energy,	an	188	
assimilation	efficiency	Ae,	becomes	available	for	allocation	to	the	processes	in	Fig.	2.		189	

Maintenance:	Standard	metabolic	rate	SMR,	the	level	below	which	an	individual	cannot	survive	(Fry,	190	
1971),	is	used	as	a	baseline	measure	of	maintenance.	SMR	scales	with	body	mass	M	and	with	SST.	191	
For	many	species	migrations	represent	a	significant	energy	cost.	We	incorporate	this	by	substituting	192	
SMR	for	an	elevated	active	metabolic	rate	AMR	(kJ	day-1)	when	migrating,	given	as	a	function	of	M,	193	
SST	and	swimming	speed.		194	

Growth:	Fish	growth	typically	has	a	different	form	and	rate	in	the	first	growing	season	than	in	later	195	
life.	We	use	the	sigmoid	Gompertz	function	to	describe	growth	rate	in	optimal	conditions	as	a	196	
function	of	L	and	SST	in	the	first	growing	season	(Gluyas-Millan	et	al.,	1998;	Goldman,	2005;	Sirnard	197	
et	al.,	1992).	After	reaching	an	age	threshold	Gthresh,		growth	switches	to	von	Bertalanffy	form	(von	198	
Bertalanffy,	1938),	again	as	a	function	of	L	and	SST	(Goldman,	2005).	We	assume	that	fish	species	199	
which	exhibit	fasting	periods	grow	only	when	feeding.	Daily	growth	increment	∆L	(cm)	is	converted	200	
to	the	difference	in	structural	mass	∆M	(g)	using	a	standard	allometric	relationship	(see	FishBase	201	
weight-length	table	at	www.fishbase.org	and	TRACE	section	3).	We	define	structural	mass	as	body	202	
mass	minus	lipid	stores	and	gonads.	Growth	costs	are	calculated	using	𝛥𝑀	 𝐸. + 𝐸0 ,	where	𝐸. 	is	the	203	
energy	content	of	flesh	(kJ)	and	𝐸0	is	the	energy	costs	of	synthesising	flesh	(kJ	g

-1).	If	insufficient	204	
energy	is	available	to	support	maximum	growth,	the	growth	rate	is	reduced	accordingly.		205	

Reproduction:	The	energy	cost	of	producing	a	maximum-sized	batch	of	eggs	Bmax	(kJ	day-1)	is	206	
modelled	as	Bmax	=	Fp	M0	(Ec	+	Es)	/	Nb,	where	Fp	is	potential	fecundity,	𝑀1	is	egg	mass,	Ec	is	the	energy	207	
content	of	flesh,	Es	is	the	cost	of	synthesising	tissue	and	Nb	is	the	number	of	batches	produced.	Fp	is	208	
often	related	to	body	size	(see	FishBase	fecundity	table).	For	total	spawners	(i.e.	Nb	=	1)	Bmax	equals	209	
the	maximum	total	energy	costs	of	spawning.	For	batch	spawners	energy	is	allocated	to	each	batch	210	
over	the	inter-batch	intervals.	If	less	energy	than	Bmax	is	available,	batch	size	is	reduced	accordingly.	211	
We	define	gonad	mass	as	equal	to	the	mass	of	the	eggs	produced	in	a	batch.	This	increases	as	energy	212	
is	allocated	to	a	batch,	then	is	reset	to	zero	when	that	batch	is	spawned.	The	egg	production	of	all	213	
females	is	divided	equally	among	n	new	individuals	each	year.	We	assume	that	male	and	female	214	
investment	in	reproduction	is	equal.		215	

Energy	reserves:	Fish	typically	store	energy	as	lipid	(Martin	et	al.,	2017).	We	propose	that	when	216	
feeding	individuals	can	store	lipid	up	to	their	maximum	possible	energy	reserves	Emax.	The	energy	217	
costs	of	synthesising	lipid	is	accounted	for	when	assimilated	energy	is	converted	to	energy	stores.	218	
The	mass	of	stored	lipid	and,	for	adults,	the	gonads	are	added	to	structural	mass	to	get	total	mass	M.	219	



8 
 

Egg	development:	Egg	development	time	De	typically	depends	on	temperature	(Pepin,	1991)	and	can	220	
be	modelled	with	an	Arrhenius	function.	221	

Transformation:	The	transformations	of	eggs	into	yolk-sac	larvae	at	length	Lhatch,	yolk-sac	larvae	into	222	
larvae,	larvae	into	juveniles	and	juveniles	into	adults	(sexual	maturation)	are	defined	using	body	223	
length	thresholds.		224	

Mortality:	The	ways	in	which	the	number	of	individuals,	or	their	sub-individuals,	decrease	are	as	225	
follows.	Starvation:	If	an	individual’s	total	mass	reduces	to	its	structural	mass	it	dies.	Explicit	226	
predation:	Individuals	die	from	the	explicit	portion	of	predation	at	rate	Mpred,	given	as	ingestion	rate	227	
of	the	predator	(g	day-1)	/	mass	of	prey	(g).	Background	mortality:	Eggs	and	larvae	are	susceptible	to	228	
background	mortality	Mback	at	(typically	very	high)	rate	Me.	Juvenile	susceptibility	at	length	L	is	given	229	
by	Mback	=	Ma	(Lmat	/	L),	where	Ma	is	a	constant	equal	to	adult	mortality	susceptibility	(day-1)	and	Lmat	230	
is	the	threshold	length	at	which	juveniles	can	sexually	mature	(Brodziak	et	al.,	2011).	Because	Mback	231	
decreases	with	life	stage	or	L,	cumulative	mortality	depends	on	growth.	Fishing	mortality:	Fishing	232	
mortality	rates	F	(day-1)	at-age	vary	between	years	and	are	applied	each	day.	F	is	set	to	0	in	areas	that	233	
are	closed	to	fishing	(see	Hypothetical	management	scenarios	in	section	2.3).	Individuals	with	234	
abundance	<	1	are	removed	from	the	model.		235	
	236	

2.3	Application	of	the	model	to	Atlantic	mackerel	237	
In	the	following	we	describe	the	model’s	application	to	S.	scombrus	in	the	North	East	Atlantic.	238	

Model	landscape:	The	model	landscape	spans	from	-30⁰	W	to	10⁰	E	and	from	47⁰	to	75⁰	N.	239	
Landscape	patches	represent	30	x	30	km.	Potential	spawning,	feeding,	overwintering	and	nursery	240	
areas	are	shown	in	Fig.	1.	The	spawning	area	corresponds	to	the	priority	areas	for	sampling	of	S.	241	
scombrus	eggs	in	the	mackerel	egg	survey	(MEGS,	ICES,	2014b)	in	which	10°C	<	SST	<	12°C	(Sette,	242	
1943).	The	feeding	area	comprises	all	patches	≥	62°	north	and	the	northern	North	Sea	(division	4a),	243	
above	the	lower	temperature	limit	SSTlim	(>	7°C)	(Nottestad	et	al.,	2016).	The	overwintering	area	is	244	
assumed	to	be	ICES	divisions	6a	(west	of	Scotland)	and	4a	(northern	North	Sea).	The	nursery	area	245	
includes	all	patches	that	are	≤	200	m	deep	(Jansen	et	al.,	2014)	to	the	west	of	the	British	Isles	(<	4°	246	
west).		247	

Life	cycle	and	spatial	patterns:	In	broad	terms,	eggs	and	larvae	drift	from	the	spawning	towards	248	
nursery	areas	at	a	fixed	rate;	juveniles	move	locally	in	the	nursery	areas	until	maturing	as	adults;	and	249	
adults	cycle	between	spawning,	feeding	and	overwintering	areas.	Migration	triggers	imposed,	but	250	
arrival	times	in	destination	areas	depend	on	an	individual’s	swimming	speed.	Adults	fast	from	251	
November	until	after	spawning	the	following	year.	See	TRACE	section	2	for	full	details.	252	

Data:	Input	data	includes	fishing	mortality	F	(day-1),	phytoplankton	biomass	(g	m-2),	SST	(kelvins)	and	253	
bathymetry.	F	comes	from	the	stock	assessment	as	age-specific	rates	that	vary	annually.	254	
Phytoplankton	biomass	and	SST	were	derived	from	data	from	the	MODIS	sensor	on	NASA’s	Aqua	255	
satellite	(NASA	OBPG,	2017a,	2017b).	Eight-day	composites	are	used	at	a	spatial	resolution	of	30	x	30	256	
km.	Bathymetric	data	was	obtained	from	the	British	Oceanographic	Data	Centre.	See	TRACE	section	3	257	
for	details	of	data	processing.		258	

The	model	was	calibrated	with	indices	of	spawning	stock	biomass	(SSB)	(Nøttestad	et	al.,	2016,	259	
2015),	total	annual	egg	production	(TEP)	(ICES,	2017)	and	recruitment	(Jansen	et	al.,	2014).		260	

Data	on	population	structure	used	to	validate	the	model	included	maturity	ogives	(from	261	
stockassessment.org),	average	weight-at-age	(Nøttestad	et	al.,	2016),	monthly	variation	in	the	262	
weight	of	36	cm	fish	(Olafsdottir	et	al.,	2016),	and	age	(Nøttestad	et	al.,	2016)	and	length	263	
distributions	(ICES,	2017).	Details	of	all	data	are	given	in	section	2	of	the	TRACE.	264	
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Initialization:	The	population	size	and	structure	on	January	1st	2007	was	approximated	using	265	
estimates	of	spawning	(SSB)	and	total	stock	biomass	(TSB),	and	length	and	age	compositions	from	266	
commercial	catch	samples	(ICES,	2008)	and	bottom-trawl	surveys	(ICES,	2017).	This	population	is	267	
then	apportioned	into	150	super-individuals.	Each	simulation	begins	with	a	20-year	spin	up	using	268	
2007	data	in	an	annual	loop.	See	TRACE	section	2	for	full	details.	269	

Model	simulations:	The	model	simulates	the	mackerel	population	from	Jan	1st	2007	to	December	31st	270	
2015.	We	represent	the	population	with	150	individuals,	representing	a	compromise	between	271	
computational	demands	and	realism.	See	TRACE	section	8	for	the	sensitivity	of	model	outputs	and	272	
execution	speed	to	changes	in	the	number	of	individuals.	Simulations	are	forced	by	F,	phytoplankton	273	
biomass	and	SST.	F	at-age	is	updated	each	year	and	applied	each	day.	SST	and	phytoplankton	274	
biomass	are	updated	every	eight	days.			275	

Outputs	that	are	recorded	annually	include:	SSB,	the	average	weight	at	age,	adult	age	distribution	on	276	
the	feeding	grounds,	TEP,	recruitment	(age	0),	maturity	ogives	and	length	distributions	at	two	times	277	
of	the	year.	The	average	weight	of	36cm	individuals	is	also	recorded	monthly.	All	outputs	are	278	
recorded	to	match	the	times	at	which	corresponding	data	was	collected	(full	details	in	TRACE	section	279	
2).			280	

Local	sensitivity	analysis:	The	sensitivities	of	predicted	SSB,	recruitment	and	egg	production	are	281	
presented	as	the	change	in	output	relative	to	10%	change	in	the	energy	budget	parameters	in	Table	282	
1.	Changes	in	outputs	were	averaged	over	an	increase	and	decrease	in	the	parameter,	and	over	five	283	
simulations.	While	one	parameter	was	tested	all	others	were	kept	at	their	baseline	values	(TRACE	284	
section	2).	See	TRACE	section	7	for	a	full	list	of	parameters.	285	

Model	calibration:	We	calibrated	the	parameters	background	early	mortality	Me	and	the	strength	of	286	
predator	density	dependence	c	using	rejection	approximate	Bayesian	computation	(ABC),	generally	287	
following	the	methodology	of	van	der	Vaart	et	al.	(2015).	This	involved	running	the	model	4500	288	
times,	drawing	Me	and	c	from	uniform	prior	distributions	and	“accepting”	the	values	that	minimised	289	
the	sum	of	the	squared	differences	between	the	model	outputs	and	the	data.	See	TRACE	section	3	290	
for	full	details.	291	

Hypothetical	management	scenarios:	To	demonstrate	the	model’s	potential	to	test	spatial	292	
management	strategies,	we	implemented	two	hypothetical	scenarios:	(1)	closing	the	northern	North	293	
Sea	(ICES	division	4a,	see	Fig.	5)	to	mackerel	fishing	all	year;	and	(2)	opening	division	4a	all	year.	In	294	
reality	(and	all	other	simulations)	division	4a	is	closed	from	15th	February	to	1st	September	(ICES,	295	
2014b).	The	closure	of	division	4a	is	designed	to	protect	the	smaller	North	Sea	component	of	Atlantic	296	
mackerel	which	are	found	in	the	area	(ICES,	2014b).		297	

3	Results	298	
3.1	Local	sensitivity	analysis	299	
The	sensitivities	of	SSB,	recruitment	and	egg	production	to	key	model	parameters	are	shown	in	300	
Table	1.	SSB	is	the	most	robust	variable	(relative	sensitivities	<	1	generally),	and	recruitment	the	301	
least.	In	particular,	recruitment	is	highly	sensitive	to	the	background	early	mortality	rate	Me	and	the	302	
Gompertz	growth	constant	k1.	This	is	expected	because	Me	is	very	high	and	individuals	are	only	303	
susceptible	to	it	until	reaching	a	size	threshold	(3	cm),	the	duration	of	which	is	affected	by	k1.	Hence	304	
these	parameters	jointly	determine	cumulative	early	mortality	and	recruitment.		305	

Table	1.	Sensitivities	of	SSB,	recruitment	and	TEP	to	10%	changes	in	parameter	values,	presented	as	306	
the	change	in	output	relative	to	change	in	parameter,	averaged	over	ten	simulations,	and	over	an	307	
increase	and	decrease	in	the	parameter	value.	Only	the	energy	budget	parameters	are	shown,	along	308	
with	their	standard	deviations			309	
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	310	
3.2	Model	calibration	311	
Me	and	c	were	calibrated	from	indices	of	SSB,	TEP	and	recruitment	using	ABC.	The	values	that	312	
resulted	in	the	best	fits	were	Me	=	0.325	day-1	with	credible	interval	0.292	–	0.327,	and	c	=	0.98x	10-12	313	
with	credible	interval	1.18	x	10-13	–		4.86	10-12.	These	were	obtained	from	the	best-fitting	1%	of	the	314	
4500	simulations.	The	posterior	credible	intervals	were	significantly	narrower	than	those	of	the	315	
priors	(Levene’s	test,	p	<	0.01),	meaning	the	data	had	leverage	over	their	values.	See	TRACE	section	3	316	
for	cross	validation	and	a	comparison	of	the	prior	and	posterior	distributions.	317	

To	determine	the	goodness	of	fit	between	the	model	predictions	and	the	survey	indices	of	318	
population	dynamics	used	for	calibration,	we	used	the	coefficient	of	determination	(R2),	i.e.	the	319	
proportion	of	the	variance	explained.	The	model	predictions	and	survey	indices	for	SSB,	TEP	and	320	
recruitment	are	shown	in	Figs.	3a,	b	and	c,	respectively.	Overall	the	fits	are	good,	as	indicated	by	R2	321	
values	of	0.70,	0.97	and	0.80,	respectively.	The	data	used	for	calibration	are	relative	indices,	but	see	322	
TRACE	section	8	for	a	comparison	with	the	stock	assessment’s	estimates	of	SSB	and	recruitment	on	323	
an	absolute	scale.	324	

	 																Relative	sensitivity	of	output		 	
Parameter	 SSB	 Recruitment	 TEP	
Normalizing	constant	for	AMR	(A0)	 0.14	±	0.07	 1.67	±	1.25	 1.31	±	0.64	
Assimilation	efficiency	(Ae)	 0.38	±	0.06	 1.38	±	0.48	 0.95	±	0.41	
Strength	of	predator	density	
dependence	(c)	

0.14	±	0.05	 1.58	±	0.90	 1.46	±	1.07	

Maximum	consumption	rate	(Cmax)	 0.35	±	0.08	 1.19	±	0.50	 1.31	±	0.71	
Activation	energy	(Ea)	 0.24	±	0.10	 3.01	±	0.82	 1.38	±	0.72	
Half	saturation	constant	(h)	 0.22	±	0.07	 1.68	±	1.87	 1.53	±	0.81	
Bertalanffy	growth	constant	(k)	 0.17	±	0.09	 1.72	±	1.30		 1.06	±	0.51	
Gompertz	growth	constant	(k1)	 0.18	±	0.10	 7.12	±	1.66	 1.68	±	0.68	
Maximum	length	after	the	first	
growing	season	(L1)	

0.10	±	0.06	 2.37	±	1.28	 1.38	±	0.76	

Asymptotic	length	(L∞)	 0.74	±	0.05	 1.44	±	1.04	 2.0	±	0.84	
Background	adult	mortality	(Ma)	 0.17	±	0.05	 1.65	±	0.98	 1.45	±	1.10	
Background	early	mortality	(Me)	 0.11	±	0.07	 9.0	±	1.90		 1.77	±	0.98	
Normalizing	constant	for	SMR	(S0)	 0.15	±	0.11	 1.46	±	0.94	 1.58	±	0.86	
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	325	

Figure	3.	Fits	of	the	best-fitting	1%	of	simulations	from	ABC	(transparent	lines	with	the	single	best-326	
fitting	simulation	in	black)	to	the	survey	indices	(red	circles)	of:	a)	SSB	from	the	International	327	
Ecosystem	Survey	in	the	Nordic	Seas	(IESSNS)	on	the	feeding	grounds	in	July-August	of	2010	and	328	
2012	to	2015;	b)	TEP	from	MEGS	in	2007,	2010	and	2013;	and	c)	recruitment	(see	Jansen	et	al.,	329	
2014).	Only	outputs	from	the	years	with	data	are	presented.	Outputs	and	data	were	each	330	
normalized	by	dividing	by	their	maximum	value.	R2	values	from	the	best-fitting	simulations	are	331	
presented	on	the	plots		332	

3.3	Model	validation	333	
To	validate	the	model,	we	compared	the	predicted	population	structure	to	data.	Fig.	4	shows	the	334	
model	predictions	and	data	averaged	over	2007	to	2015,	except	Fig.	4d	where	the	data	is	averaged	335	
over	1984	to	2013.	The	proportion	of	each	age	class	that	is	sexually	mature	in	February	is	shown	in	336	
Fig.	4a.	The	model	and	data	agree	that	most	individuals	reach	sexual	maturity	when	aged	two,	337	
although	there	is	more	variability	in	the	age	at	maturity	in	the	data.	Fig	4b	shows	the	age	distribution	338	
on	the	feeding	grounds	in	summer.	The	model	predicts	an	absence	of	one	or	two-year-olds.	The	data	339	
suggests	that	there	are	few	one	year	olds,	but	that	two	year	olds	are	among	the	most	abundant	age	340	
groups.	From	the	age	of	three	both	the	model	and	data	show	a	characteristic	type	3	survivorship	341	
curve,	i.e.	declining	abundance	at	age.	Fig.	4c	shows	the	mean	weight	at	age	three	to	ten	in	summer.	342	
The	model	matches	the	data	well,	albeit	with	a	slight	overprediction	in	older	individuals.	Fig.	4d	343	
shows	the	average	weight	of	36	cm	mackerel	(approximately	5	years	old)	from	April	to	September.	344	
The	model	and	data	show	a	similar	increase	in	weight-at-length	each	month.	Figs.	4e	and	f	show	345	
length	distribution	in	ICES	division	6a	(West	of	Scotland)	in	quarters	1	(Q1)	and	4	(Q4).	The	346	
distributions	have	multiple	modes,	each	representing	a	cohort.	Predicted	modal	length	of	ages	zero	347	
to	two	are	all	matched	to	within	one	cm,	other	than	age	two	in	Q1.	However,	within	each	cohort	348	
predicted	length	has	considerably	less	variability	than	the	data.	Overall	the	model	matches	the	349	
observed	population	structure	well,	which	supports	our	representation	of	the	energy	budget.	350	
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Figure	4.	Comparisons	of	the	IBM	predictions	with	various	data	averaged	over	2007	to	2015	on:	a)	352	
proportion	mature	at	age	from	sampling	of	commercial	catches	in	quarter	1;	b)	the	age	distribution	353	
on	the	feeding	grounds	in	July	from	the	International	Ecosystem	Survey	in	the	Nordic	Seas	(IESSNS);	354	
c)	the	average	weight-at-age	from	the	IESSNS	in	July;	d)	monthly	variation	in	the	average	weight	of	355	
36	cm	fish	(Olafsdottir	et	al.,	2016);	and	e)	and	f)	length	distributions	from	the	Scottish	West	Coast	356	
International	Bottom-Trawl	Survey	(SWC-IBTS)	in	quarters	1	and	4	respectively.	Dots	show	mean	357	
values	and	whiskers	the	standard	deviation	358	

3.4	Hypothetical	management	scenarios	359	
To	demonstrate	how	the	model	may	be	used	in	a	management	context,	we	simulated	two	360	
hypothetical	scenarios,	in	which	ICES	division	4a	was	(1)	closed	year-round	and	(2)	open	year-round,	361	
in	addition	to	the	baseline	(closed	15th	February	to	1st	September).	Figs.	5a	–	c	show	how	SSB,	362	
recruitment	and	the	length	distribution	of	large	individuals	(≥	33cm)	on	February	1st	differ	under	363	
each	scenario.	Fig.	5d	shows	the	proportion	of	adults	in	division	4a	averaged	over	each	month	of	the	364	
year	for	reference.	SSB	and	recruitment	are	highest,	and	length	distribution	is	more	skewed	towards	365	
large	individuals,	when	division	4a	is	closed,	followed	by	the	baseline	then	open.	These	results	are	366	
expected	but	highlight	the	model’s	ability	to	test	the	consequences	of	spatial	management	367	
scenarios.				368	
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Figure	5.	Simulated	a)	SSB,	b)	recruitment	and	c)	length	distributions	of	large	(≥	33cm)	fish,	all	on	370	
February	1st,	when	ICES	division	4a	was	open	to	fishing	year	round	(open),	open	to	fishing	only	from	371	
Feb	15th	to	Sep	1st	(baseline)	and	closed	year	round	(closed).	Predictions	are	averaged	over	five	372	
simulations	in	each	scenario.	Panel	d)	shows	the	mean	proportion	of	the	population	in	division	4a	in	373	
each	month	of	the	year,	averaged	over	15	simulations,	with	error	bars	showing	standard	deviations.	374	
Panel	e)	shows	the	location	of	division	4a.	375	
4	Discussion	376	
We	have	developed,	calibrated	and	evaluated	a	generic	IBM	which	relates	fish	population	dynamics	377	
and	structure	to	spatial	and	temporal	variation	in	food	availability,	temperature	and	exploitation.	378	
Key	features	of	the	model	are	that	it	(1)	includes	a	realistic	energy	budget;	(2)	includes	the	full	life	379	
cycle;	(3)	is	spatially-explicit	and	(4)	incorporates	satellite	remote-sensing	(RS)	data	to	represent	the	380	
environmental	drivers.	To	demonstrate	the	use	of	the	model	we	calibrated	it	for	mackerel	in	the	381	
North	East	Atlantic	and	showed	it	successfully	matches	the	available	data	on	population	dynamics	382	
(Fig.	3)	and	population	structure	(Fig.	4).	We	then	showed	the	model’s	ability	to	test	the	population	383	
consequences	of	simple	hypothetical	management	scenarios	(Fig.	5).	384	

Model	fits	to	the	data	on	mackerel	population	structure	(Fig.	4)	give	insight	into	how	well	different	385	
aspects	of	the	energy	budget	are	represented.	For	example,	we	consider	growth	in	length	to	be	386	
reasonable	because	individuals	reach	sexual	maturity	at	about	the	right	age	(Fig.	4a),	which	is	387	
determined	by	length,	and	because	the	modes	of	the	length	distribution	of	different	cohorts	match	388	
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well	at	two	different	times	of	year	(Figs.	4e	and	f).	However,	there	is	less	variability	in	the	predicted	389	
length	of	individuals	in	a	cohort	than	in	the	data.	One	reason	could	be	that	each	cohort	in	the	model	390	
is	represented	by	a	small	number	(ten)	of	super-individuals,	chosen	for	computational	reasons.	We	391	
consider	growth	in	mass	to	be	reasonable	because	predicted	weight-at-age	in	summer	matches	the	392	
data	well	(Fig.	4c).	Storage	of	lipid	when	feeding	in	summer	is	reflected	in	increased	weight-at-length	393	
and	is	supported	by	the	good	model	fit	to	data	on	the	monthly	variation	in	the	weight	of	36cm	394	
individuals	(Fig.	4d).	Lastly,	total	mortality	is	reasonable	because	the	adult	age	distribution	in	395	
summer	is	matched	well	(Fig.	4b).	The	model	also	fits	data	on	the	mackerel	population	dynamics	that	396	
were	used	for	calibration	well	(Fig.	3).	However,	it	is	because	they	were	not	used	for	calibration	that	397	
we	consider	the	data	on	population	structure	to	support	our	energy	budget	structure.			398	

The	main	advantage	of	the	IBM	approach	is	that	it	provides	a	single	framework	that	can	explicitly	399	
incorporate	food	web	interactions,	environmental	drivers,	density	dependence	and	spatial	400	
structuring.	This	allows	the	model	to	capture	two	key	processes	that	affect	recruitment	in	many	401	
species.	Firstly,	the	model	captures	the	generally-accepted	“growth-mortality	hypothesis”	402	
(Anderson,	1988;	McGurk,	1986;	Ware,	1975).	Larval	and	juvenile	background	mortality	decreases	403	
with	body	size.	As	a	result,	cumulative	survival	in	a	cohort	depends	on	its	growth	rate,	and	hence	404	
food	availability,	temperature	and	the	density	of	competitors.	The	predator-prey	size	ratio	also	405	
dictates	that	individuals	become	less	vulnerable	to	explicit	predation	with	increasing	size.	Secondly,	406	
the	model	captures	the	effects	of	parental	condition	on	spawning	success,	which	has	been	shown	for	407	
many	taxa	(Mcbride	et	al.,	2015).	The	initial	abundance	of	a	cohort	(i.e.	the	number	of	eggs	initially)	408	
depends	on	the	amount	of	energy	the	spawning	stock	is	able	to	accumulate	before	spawning.	This	409	
depends	on	the	history	of	food	availability,	temperature	and	density	of	competitors	when	adults	410	
were	last	feeding	(see	TRACE	section	8	for	more	details).	In	sum,	recruitment	in	the	model	emerges	411	
from	parental	condition	and	early	survival.	Predictions	are	process-based	and	should	be	less	412	
vulnerable	to	the	problems	of	extrapolation	than	those	obtained	from	standard	stock-recruitment	413	
curves.	414	

We	hope	the	model	will	be	used	to	explore	the	effects	of	multiple	ecosystem	drivers	in	future.	We	415	
have	demonstrated	its	ability	to	test	the	population	consequences	of	management	scenarios	by	416	
simulating	hypothetical	fishery	closures	in	one	sector	of	the	North	Sea.	These	simple	scenarios	417	
produced	expected	population	responses	(Fig.	5),	but	highlight	how	it	may	be	applied	going	forward.	418	
This	feature	is	in	demand	because	spatial	management	in	fisheries	is	increasingly	prevalent	(Halpern	419	
et	al.,	2012),	whether	as	no-take	zones	like	marine	protected	areas,	or	more	nuanced	measures	such	420	
as	spatially-explicit	quotas	(Rassweiler	et	al.,	2012).	Alongside	the	effects	of	fishing,	the	model	could	421	
also	be	used	to	explore	the	effects	of	climate	change.	This	may	involve	coupling	the	model	to	lower	422	
trophic	level	biogeochemical	and	hydrodynamics	models,	which	can	provide	various	forcing	variables	423	
under	climate	change	scenarios.	One	particular	application	could	be	to	investigate	change	in	fish	424	
distribution	in	response	to	increasing	in	SST,	and	its	implications	to	management.	425	

Although	we	parameterised	the	model	for	mackerel	in	the	North	East	Atlantic,	it	should	be	426	
applicable	to	other	species	and	locations.	This	is	because:	(1)	the	energy	budget	is	based	on	427	
fundamental	principles	of	behavioural	and	physiological	ecology	and	incorporates	generic	laws	for	428	
the	scaling	of	energy	uptake	and	expenditure	with	body	mass	and	temperature	(Sibly	et	al.,	2013);	429	
(2)	it	captures	key	processes	that	relate	the	environmental	drivers	to	the	population	structure	and	430	
dynamics	of	many	species,	such	as	the	effects	of	parental	condition	and	early	survival	on	431	
recruitment;	and	(3)	the	RS	data	is	freely-available	and	has	global	coverage.	Although	RS-based	432	
estimates	of	SST	and	chlorophyll	come	with	a	certain	level	of	uncertainty	associated	with	the	433	
satellite	retrievals,	the	level	of	these	random	errors	are	generally	bounded	(often	<30%,GCOS	434	
2011)).	Moreover,	with	the	continuous	improvement	of	the	quality	of	satellite	data,	the	error	435	
propagation	through	the	model	arising	from	the	model	inputs	will	be	greatly	reduced.	As	such	we	436	
hope	that	the	model	location	and	extent	can	be	changed	to	utilize	the	satellite	data	matching	the	437	
distribution	of	the	chosen	species,	and	that	it	will	be	mainly	the	values	of	the	parameters	that	will	438	
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need	to	be	changed	for	different	species,	many	of	which	can	be	found	at	FishBase.	The	model	should	439	
also	be	able	to	accommodate	multiple	species,	because	interactions	can	occur	via	density	dependent	440	
effects	on	ingestion,	or	by	explicit	size-based	predation.	Unlike	previous	generic	marine	fish	IBMs,	441	
e.g.,	OSMOSE	(Shin	and	Cury,	2004,	2001),	our	model	includes	bioenergetics,	and	we	hope	it	will	442	
provide	a	step	towards	broadly	applicable	bioenergetics	IBMs.			443	

The	main	caveat	of	our	generic	approach	is	that	fish	populations	exhibit	a	wide	range	of	spatial	444	
patterns	that	vary	over	their	ontogeny	and	thus	it	is	not	possible	to	provide	a	generic	movement	445	
sub-model.	Users	will	need	to	devise	algorithms	appropriate	to	the	species	being	modelled.	In	this	446	
study	we	approximated	spawning,	feeding,	overwintering	and	nursery	areas	geographically	from	447	
various	sources.	We	were	able	to	further	delineate	these	areas	by	environmental	features,	such	as	448	
SST	and	depth,	using	information	on	S.	scombrus	from	the	literature.	However,	in	the	current	model	449	
formulation,	movement	within	each	habitat	type	follows	a	random	walk,	and	migration	triggers	are	450	
hard-wired.	One	goal	of	future	work	should	be	to	develop	a	more	realistic	movement	model.	For	451	
example,	the	approach	of	Politikos	et	al.	(2015)	could	be	followed,	using	survey	data	on	the	spatial	452	
distribution	of	a	species	to	construct	environmentally-driven	movement	algorithms.	Moreover,	the	453	
delineation	of	different	habitat	types	could	be	informed	by	habitat	suitability	modelling	(e.g.	Brunel	454	
et	al.,	2017;	Morris	and	Ball,	2006).	In	this	way	a	population’s	spatial	distribution	can	become	an	455	
emergent	feature	of	the	model	just	as	its	population	dynamics	are	now.		456	

IBMs	can	play	an	important	role	in	conservation	planning	and	wildlife	management	(McLane	et	al.,	457	
2011),	and	we	hope	that	this	work	will	benefit	the	fisheries	management	community.	IBMs	458	
represent	a	single	framework	in	which	food-web	interactions,	density	dependence,	spatial	459	
structuring	and	the	wider	environment	can	be	incorporated,	thus	being	consistent	with	the	460	
ecosystems	approach	to	fisheries	management.	The	effects	of	these	drivers	on	fish	populations	461	
typically	arise	from	their	effects	on	the	constituent	individuals	(Ward	et	al.,	2016).	Explicit	462	
incorporation	of	these	drivers	makes	IBMs	an	improvement	on	age/size	structured	models.	The	basis	463	
for	our	model	is	a	realistic	energy	budget,	which	represents	a	mechanistic	framework	by	which	the	464	
ecosystem	drivers	affect	the	characteristics	of	the	individuals.	Population	measures	are	then	465	
calculated	as	the	sum	of	these	characteristics.	This	means	that	predictions	of	population-level	466	
processes	such	as	recruitment	emerge	rather	than	being	parameterised.	Going	forward	our	model	467	
can	be	used	to	address	several	strategic	management	questions,	including	the	population	468	
consequences	of	different	management	and	environmental	scenarios.		469	
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