

Integration Ontology for Distributed
Database

Ana Muñoz1, Jose Aguilar2, and Rodrigo Martinez3
1 Instituto Universitario Tecnológico de Ejido. Mérida Venezuela

anamunoz@ula.ve,
2 Uiversidad de Los Andes. CEMISID. Mérida Venezeula.

aguilar@ula.ve
3 Uiversidad de Murcia. Murcia España.

rodrigo@um.es

Abstract. In this work we will study the problem of the design of the
"Integration Model for Distributed Database System". We particularly design
the canonical model through the ontological handling of the information. The
ontology is designed in a way that allows the description of a database like a
set of representative terms of its different components. In this ontology, the
definitions use classes, relations, functions, among other things, of databases,
to describe their components, operations and restrictions, as well as, the
process of integration. These databases can be Relational, Fuzzy, Intelligent
and Multimedia.

1 Introduction

The interoperability between different systems information is one of the most critical aspects
in the daily operation of many organizations. In the last decade this preoccupation was
increased with the proliferation of different databases, with different data models, that run in
different platforms. The systems of distributed databases, also known as federated databases,
allow to have available the information from different sources of intelligence that can be
heterogeneous, distributed and independent. A federated database acts like a front-end
application of manifold component. The federated database provides operations for the access
to each component, maintaining the consistency of information between the diverse sources
and providing a uniform access method to the services that each component offers.
The diversity of programming languages, data models and methods of integration, determine
different styles in the architecture for a federated database, that varies from a loosely coupled
to tightly coupled approach. In general, the tightly coupled systems integrate the diverse
sources of intelligence through a global conceptual scheme, normally denominated canonical
model, providing a uniform vision of the diverse components at a high level. The use of a
canonical model hides the structural differences between the different components and gives
to the user the illusion to be accessing a simple centralized database. On the other hand, on the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ana Muñoz, Jose Aguilar, Rodrigo Martinez

systems tightly coupled the integration of the components is based on a language of common
access that all the components must decide, in a way that all the functions are standardized.
In this work we will deal with the design of the "Canonical Model for Integration of
Distributed Databases". Particularly, we set out to design the canonical model through the
ontological handling of the information. This ontology allows describing a database like a set
of terms that represent its different components. In this ontology, the definitions use classes,
relations, functions, among other things, of the databases, to describe its components,
restrictions, operations, etc. The reason of using ontologies is that they define concepts and
relations within a taxonomic frame, whose conceptualization is represented, of a formal way,
legible and usable. Of this form, ontology is a common and shared understanding of a domain
that can be used to communicate heterogeneous systems [7].
The integration of tightly coupled federated database has been treated in previous works for
relational and objects databases. Alvarez in its work presents a proposal of binary integration
for the generation of a federation of component databases [1]. In addition, it presents a scheme
to use the local components through a query language. In the work of Abello et al., they
present an integration model in real time to databases using the canonical model BLOOM [2].
These works use the architecture for federated databases of Shet&Larson [10]. In previous
works [8] we have represented an architecture for the integration of database where it is
necessary a canonical model.
Like continuation of that work, in this article the ontological taxonomies that compose the
databases integration architecture are described, and the Canonical Model is designed using
this ontological notion. This way, the processes of integration of the different types of
databases and of resolution of conflicts are defined through the ontology. In addition, the
integration ontology is translated to first-order logic predicate, so that from it we design the
mechanisms of consultation, update and data mining for Intelligent Distributed Database. This
article shows in one first part, the theoretical aspect on which the same one is based, which
includes to the distributed databases, as well as the ontology concepts. In the second part the
integration process is described through ontological schemes, as well as its axioms that defines
the logic expressions of the integration process. The ontological schemes of the component
databases are described in other work [11]. Thus, the fundamental aspect of this work is to
propose a ontological frame based on sentences of First-Order Logical Predicate (LPO) for the
integration of a federation of databases.

2 Theoretical Aspects

2.1 Distributed Databases
The distributed databases talk about the integration of necessities of no local storage and
processing where is necessary to interchange originating information of different sites [1, 2].
The systems of distributed databases integrate systems of diverse databases, to give to the
users a global vision of the information available. The decentralization of the information
promotes the heterogeneity in its handling. This can occurs in many levels, from the form and
meaning of each data to the format and the storage media that are chosen to keep it. From the
functional organization, the systems of distributed database are divided in two classes: A
homogenous distributed database that is a collection of multiple data. The homogenous
systems are looked like a centralized system, but instead of storing to all the data in a single
place the data are distributed in several sites communicated by the network. The
heterogeneous systems are characterized to handle different database in each node. An
important subclass is the Federated Databases, which integrate information from
heterogeneous databases, and present a global access to the users, with transparent methods to
use the total information in the system. The main characteristic is the autonomy that the local

Integration Ontology for Distributed Database 3

databases, also called Component Databases, conserve. In order to build the federation of
Component Databases, it is necessary to provide a mechanism that is able to obtain a global
scheme of databases, which allows a transparent access to the different databases existing
[10]. The heterogeneity in the component databases can be presented in several aspects:
hardware, software, data modeling, and semantic aspect, among others. A System of Federated
Database (SFDB) is classified like weakly connected or strongly connected, based on the idea
of whom handles the federation and how their components are integrated. A SFDB is weakly
connected if the responsibility to create and to maintain the federation falls to the user, and
there is not control on the part of the federated system and its administrations. A federation is
strongly connected when the federation and its administrators are responsible for the creation
and the maintenance of the same one, and participate actively in the control of the Component
Database. A strongly federated system connection can be of two types: With unique
federation, if it allows the creation and management of an only federated scheme. With
multiple federations, if it allows the creation and management of multiple federated schemes.
Each SFDB has an architecture of schemes to surpass the syntactic and semantic
heterogeneities. Shet&Larson [10] proposes an architecture of schemes for a SFDB composed
by: i) Local Scheme. It is the conceptual scheme of the Systems of Component Database that
integrates the Federation; ii) Component Scheme. The conceptual schemes of the component
databases are translate to a canonical model, that is a common data modeling for all the
databases that are going to compose the federation; iii) Scheme of Export. In this scheme is
described the part of the component schemes that are going to be shared as well as their
location and access control; iv) Federated Scheme, in this scheme is made the integration of
the multiple schemes of exportation; v) External Scheme. This is the scheme for each user
and/or application of the SFDB.

2.2 Canonical Model
The ability of representation of the database comes given by its data modeling. A data
modeling is made up of structures, operations and the restrictions in the use of them. The
ability of representation of a data modeling is made up of two factors[9]: i) Expressivity. The
expressivity of a data modeling is the degrees in which a model can directly represent the
concepts that it conform. ii) Semantic Relativism. The semantic relativism of data modeling is
the power of its operations to derive external schemes.
When different databases form a federation, they require a integration data modeling, called
Canonical Data Model (CDM). The CDM is the element that processes the query and updates
that are made to the federation. Thus, following the architecture of five levels of Shet&Larson
[10], we can develop a common CDM to all the federation. The use of a CDM solves the
problem of syntactic heterogeneity, consequence of the use of different native data models.
The heterogeneity semantic, resulting of different conceptualizations from Component
databases, is solved in the process of integration of schemes. The CDM has the following
characteristics: i) Generalization: it is the process by means of which, from two or more
entities is constructed a new entity; ii) Association: it defines a new entity from the relations
between two or more entities; iii) Classification: allows to group entities in classes, that is
constructs a new entity from the common characteristics of other entities. The CDM must
support the definition of new operations and restrictions, must allow the implementation of
integration operators, among other things [9]. We will use ontologies to represent our CDM,
since they allow integrating databases using intelligence during the process of conformation of
the federation, as well as the semantic enrichment through the integration of the databases
with its concepts, operations and restrictions.

2.3 Ontology
A definition of Ontology in terms of database is the following [4, 7]: "Ontology is a database
that describes the concepts of the world of some domain, some of its properties and how
these concepts are related between them ". The knowledge represented within ontology is

4 Ana Muñoz, Jose Aguilar, Rodrigo Martinez

formalized through five components: i) Concepts or classes: They are the ideas to be
formalized. They belong to a certain domain of application, and can be organized in
taxonomies; ii) Relations: They represent the interactions between the classes and are defined
as a subgroup of a Cartesian product; iii) Functions: They are a special case of relations,
where elements are generated by means of the calculation of a function; iv) Instance: they are
used to represent elements or individuals in an ontology; v) Axioms: They serve to model
sentences that always are going to be certain. They are used to represent knowledge and are
used to represent the properties that concepts and instances must satisfy. For example: If
animal class animal is mammalian; the instance dog is mammalian.
Classifications of ontologies have been done in agreement with the type of concept to describe
and its use [4, 5]: i) Terminological: they specify the terms that are used to represent
knowledge. Usually they are used to unify vocabulary in a certain domain; ii) Knowledge
Modeling: they specify concepts related to the knowledge. They contain a rich internal
structure and usually are fixed to the particular use of the knowledge that they describe; iii)
Ontologies of domain: These ontologies are specific for a domain in concrete; iv) Ontologies
of tasks: These ontologies represent the tasks that are susceptible to make in a domain in
concrete; v) General Ontologies: They represent general information and nonspecific of a
domain.

3 Design of an Intelligent Model of Integration for Federated
Databases

The design of our CDM will be based an Ontologies. These ontologies describe to each one of
the databases to integrate, as well as the integration process. In the following figure is shown
our Intelligent Canonical Model (modeled in a Knowledge and Facts Database), and that has
learning and reasoning mechanisms to carry out the integration process.

Figure 2. Intelligent Model for Federated Databases
The Federated Databases integrate information from local heterogeneous databases and allow
the global access to the users. The main characteristic is the autonomy that the local databases
or Component Databases conserve. In order to allow on a federation of Component Database,
we need to provide an integration mechanism for obtaining a global approach of the resources
of information of an organization. This is obtained through the canonical model.

3.1 Concepts of Federated Databases
A Federated Database is a component database that has operations and restrictions of
integration. The Component Databases are the databases that conform the federation. In our
case, these component databases can be: Object-oriented Databases, Relational Databases,
Multimedia Databases, Fuzzy Databases, or Intelligent Databases; also a component database
can be another federated Database. Each one of these component databases has their concepts,
operations and restrictions. In figure 3 is shown the ontological scheme that describes the
concepts of the federated databases.

Mechanism
of Inference

A
P
L
I
C
A
T
I
O
N

Local
AplicatiónDBDB

DBDBMechanism
of Learning

Knowing Database
Fact DAtabase
ONTOLOGY

isis

RESTRICTIONS INTEGRATION

It has

It hasIt has
CONCEPTS

INTELLIGENTDB

CONCEPTS
FUZZYDB It has

It has

It has

It has

CONCEPTS
OODB

It has

It has
It has

It hasIt has

It has

It has
It has

is
is

is

COMPONENTS DATABASE

RELATIONAL DB ORIENTED OBJECT DB MULTIMEDIA DB FUZZYDB
INTELLIGENT DB

OPERATIONS
RELATIONALDB

RESTRICTIONS
RELATIONALDB

OPERATIONS
OODB

RESTRICTIONS
OODB

CONCEPTS
MULTIMEDIADB

OPERATIONS
MULTIMEDIADB

RESTRICTIONS
MULTIMEDIADB

OPERATIONS
FUZZYDB

RESTRICTIONS
FUZZYDB

OPERATIONS
INTELLIGENTDB

RESTRICTIONS
INTELLIGENTDB

OPERATIONS INTEGRATIONS

It has

It has

FEDERATED DATABASE

It has

FEDRATED DB

is
isis

RESTRICTIONS INTEGRATION

It has

It hasIt has
CONCEPTS

INTELLIGENTDB

CONCEPTS
FUZZYDB It has

It has

It has

It has

CONCEPTS
OODB

It has

It has
It has

It hasIt has

It has

It has
It has

is
is

is

COMPONENTS DATABASE

RELATIONAL DB ORIENTED OBJECT DB MULTIMEDIA DB FUZZYDB
INTELLIGENT DB

OPERATIONS
RELATIONALDB

RESTRICTIONS
RELATIONALDB

OPERATIONS
OODB

RESTRICTIONS
OODB

CONCEPTS
MULTIMEDIADB

OPERATIONS
MULTIMEDIADB

RESTRICTIONS
MULTIMEDIADB

OPERATIONS
FUZZYDB

RESTRICTIONS
FUZZYDB

OPERATIONS
INTELLIGENTDB

RESTRICTIONS
INTELLIGENTDB

OPERATIONS INTEGRATIONS

It has

It has

FEDERATED DATABASE

It has

FEDRATED DB

is

Integration Ontology for Distributed Database 5

Figure 3. Ontological scheme of the components that integrate an Intelligent Distributed
Database

In table 1 is described the ontological scheme of the figure 3 through axioms. These are used
to define the ontology like logic expressions. Each axiom includes its description in natural
language, and its logical expression.
Table 1. Axioms for the concepts of the Federated Databases
Sentence LPO
A Federated database has component
databases, and operations and restrictions of
integration

V x FederatedDB(x) => Has (x,ComponentDB)
Λ Has (x,IntegrationOperation) Λ Has
(x,IntegrationRestriction)

The component databases can be relational
databases, object-oriented databases,
multimedia databases, fuzzy databases,
intelligent databases and federated data bases

V x ComponentDB(x) => Is(x,RelationalDB) V
Is (x, OODB) V Is (x, MultimediaDB) V Is (x,
FuzzyDB) V Is (x, IntelligentDB) V Is (x,
FedratedDB)

The Relational database has Concepts,
Operations, and Restrictions

V x RelationalDB(x) => Has(x,ConceptsR) Λ
Has(x, OperationsR) Λ Has(x, RestrictionsR)

The OODB has Concepts, Operations, and
Restrictions

V x OODB(x) => Has(x,ConceptsOO) Λ
Has(x, OperationsOO) Λ Has(x,
RestrictionsOO)

The Multimedia Database has Concepts,
Operations, and Restrictions

V x MultimediaDB(x) => Has(x,ConceptsMM)
Λ Has(x, OperatinsMM) Λ Has(x,
RestrictionsMM)

The fuzzy database has Concepts,
Operations, and Restrictions

V x FuzzyDB(x) => Has(x,ConceptsFuzzy) Λ
Has(x, OperationsFuzzy) Λ Has(x,
RestrictionsFuzzy)

The Intelligent Database Concepts,
Operations, and Restrictions

V x IntelligentsDB(x) => Has(x,ConceptsInt) Λ
Has(x, OperationsInt) Λ Has(x, RestrictionsInt)

3.2 Operations of Integration in a Database Federation
We will use the operations of integration according to Batini and Lenzerini [3, 6], which is
made in phases. Next the characteristics of these phases are described.
Preintegration. In this phase is defined the order of integration of the databases and the parts
of the databases to integrate. The integration order can be binary when two schemes are
integrated simultaneously, and n-Aryan when they integrate n schemes simultaneously. Also,
the policies of integration as far as the access restrictions and priority in the access to
Component databases are defined. This procedure is the same when we form a new federation
or when we can incorporate a component database to an existing Database Federation.
Comparison of the schemes. The databases are compared and analyzed to determine the
correspondence between concepts and to detect the possible conflicts. Once the conflicts are

6 Ana Muñoz, Jose Aguilar, Rodrigo Martinez

detected, they are sent to the Conflicts Management System to solve them through a system of
rules.
Union and Reconstruction. Once solved the conflicts, the union of the different schemes from
the component databases is made. The goal of this activity is to conform or to align schemes
to make them compatible for its integration. It has operations like: transform an atomic
concept into another one, eliminate redundant relations, create hierarchy of generalization.
In figure 4 is shown the ontological scheme that describes the operations of integration of a
Database Federation.

Figure 4. Ontological Scheme to Operations of Integration for a Database Federation

The Axioms for the operations of integration of a Database Federation are in the table 2:
Table 2. Axioms for the operations of a Database Federation
Sentence LPO
The operation of integration has the phase of
preintegration, comparison of schemes and
conformation of the canonical model

V x OperatiónIntegration(x) => Has
(x,Preintegration) Λ
Has(x,ComparisonSchemes) Λ Has
(x,ConformationCM)

The Preintegration defines the integration
order, the negotiation process, the schemes to
integrate, the restrictions and the priority of
access

V Preintegration(x) =>Has(x,
OrderIntegration) Λ
Has(x,ProcessNegotiation) Λ
Has(x,SchemestoIntegrate) Λ Has(x,
RestrictionsofAccess) Λ Has(x,
PriorityofAccess)

The Order of integration of the databases can
be binary or n-Aryan

V x OrderIntegration(x) =>
Is(x,BinaryIntegration) V Is(x, n-
aryanIntegartion)

In the Process of negotiation a new federation
is formed or a component database is added to
an existing Database Federation

V x ProcessNegotiation(x) =>
Formed(x,NewFederatedDB) V Added(x,
ComponentDB)

In the comparison of schemes must be
reviewed the correspondence between
concepts to determine the conflicts

V x SchemesComparison(x) => Has
(x,ReviewCorrespondencebetweenConcepts)
Λ Has(x,IdentificationofConflictsIntegartions)

A binary order of integration integrates two
schemes simultaneously

V x BinaryIntegration(x) =>
Integrate(x,TwoSchemes)

The integration order n-Aryan is the one that
Integrate n schemes simultaneously

V x N-AryanIntegration(x) =>
Integrate(x,NSchemes)

The access restrictions are the authorizations to
accede to the component databases that
conformed the federation

V x RestrictionsAccess(x) => ItAuthorizes
(x,AccessComponentDB)

The access priority establishes the order of
access to the component databases

V x AccessPriority(x) =>
Establishes(x,OrderofAccesstoComponentDB)

UPDATE
INFORMATION

It hasIt has

It has

It has

It has

PREINTEGRATION

INTEGRATION OPERATIONS

RESTRICTIONS
AND PRIORITY OF

ACCESS

COMPARISON OF
SCHEMES

UNION AND
RECONSTRUCTION

OF SCHEMES

IDENTIFICATION OF
CONFLICTS

It has
It has

It has
It has

UNION OF
SHEMES

SCHEMES TO
INTEGRATE

REVISION OF
CORRESPONDENCE

BETWEEN CONCEPTS

It has

It can be

n-ARY
BINARY

ORDER OF
INTEGRATION

It can be

PROCESS OF
NEGOTIATIÓN

It has

NEW FEDERATED
DATABASE

COMPONENT
DATABASE

To form To incorporate

UPDATE
INFORMATION

UPDATE
INFORMATION

It hasIt hasIt hasIt has

It hasIt has

It hasIt has

It hasIt has

PREINTEGRATIONPREINTEGRATION

INTEGRATION OPERATIONSINTEGRATION OPERATIONS

RESTRICTIONS
AND PRIORITY OF

ACCESS

COMPARISON OF
SCHEMES

COMPARISON OF
SCHEMES

UNION AND
RECONSTRUCTION

OF SCHEMES

UNION AND
RECONSTRUCTION

OF SCHEMES

IDENTIFICATION OF
CONFLICTS

IDENTIFICATION OF
CONFLICTS

It hasIt has
It hasIt has

It hasIt has
It has

UNION OF
SHEMES

UNION OF
SHEMES

SCHEMES TO
INTEGRATE

REVISION OF
CORRESPONDENCE

BETWEEN CONCEPTS

It has

It can beIt can be

n-ARYn-ARY
BINARYBINARY

ORDER OF
INTEGRATION

It can beIt can be

PROCESS OF
NEGOTIATIÓN

It has

NEW FEDERATED
DATABASE

COMPONENT
DATABASE

To form To incorporate

Integration Ontology for Distributed Database 7

The union and reconstruction of schemes
define the union of schemes and the update of
the information in the model

V x UnionandReconstructionSchemes(x) =>
Have(x,UnionSchemes) Λ
Have(x,UpdateofInformation)

3.3 Restrictions of Integration in a Database Federation
In the integration of the databases, the following types of conflicts can appear:
– Conflicts in Tables: Conflicts in the Name of tables, Conflicts in the Structure of the

tables, objects and multimedia elements, Conflicts in the Restrictions of Integrity.
– Conflicts of Attributes: Conflicts in name of Attributes, Conflicts in Values by Default,

Conflicts by Restrictions of the Attributes Values, Conflicts by the Cardinality and
degree of Atomicity, Conflicts in the Representation of the Information.

– Conflicts of Data: Conflicts between the values, when equivalent instances have different
values because the collected data are incorrect or are obsolete. Differences in the
representation.

– Conflicts in Rules: Simultaneous firing of Rules, Contradiction between rules.
In figure 5 is shown the ontological scheme that describes the conflicts.

Figure 5. Ontological scheme of the Integration Restrictions for a Database Federation.
The Axioms of the restrictions of integration for a Database Federation are in table 3:
Table 3. Axioms for the restrictions in a Database Federation
Sentence LPO
The integration restrictions can be conflicts
in schemes or conflicts in rules

V x Integrationrestrictions (x) =>
Is(x,ConflictsSchemes) V Is(x,ConflictsRules)

The conflicts in scheme can be conflicts in
tables or conflicts in attributes or conflicts
in data

V x ConflictsSchemes(x) =>
Is(x,ConflictsTable) V Is(x,ConflictsAttributes)
V Is (x,ConflictsData)

The conflicts in tables can be in name of
tables, structure of table, of object or of
multimedia element or in integrity
restrictions

V x ConflictsTable(x) => Is
(x,ConflictsNamedTable) V Is (x,
ConflictsStructureTable) V Is
(x,ConflictsStructureObject) V Is(x,
ConflictStructureMM) V Is
(x,ConflictRestrictionIntegrity)

The tables name conflicts arises when
different names for equal tables or equal
names for different tables exist

V x ConflictsNamedTable (x) =>
DifferentNamedTables(x,EqualTables) V
EqualNamedTables(x,DiferentsTables)

The conflict in table structure happens
when there are attributes that are omitted or
when there are attributes that are deduced

V x ConflictsStructureTable (x) => Is(x,
AttributesOmitted) V Is(x,AttributesDeduced)

is

CONTRADICTIONS
BETWEEN RULES

NAMES EQUAL
FOR TABLES
DIFFERENT

DATA
CONFLICTS

is

is

is

is

is

is

is

is
is

isis

is

is

CONFLICTS IN
STRUCTURES

OF TABLES

INTEGRATIONS
RESTRICTIONS

TABLE CONFLICTS

CONFLICTS IN
NAMED OF

TABLES

CONFLICTS IN
INTEGRITY

RESTRICTIONS
CONFLICTOS

EN ATRIBUTOS

SCHEMES CONFLICTS
RULES CONFLICTS

NAMED OF
ATTRIBUTES

VALUES BY
DEFECT

RESTRICTIONS
ALLOCATION OF VALUES

IN THE ATTRIBUTES

CARDINALITY AND
DEGREE OF ATOMICITY

REPRESENTATION OF
INFORMATION

BETWEEN
VALUES

EN REPRESENTACION

FIRING SIMULTANEOUSLY OF
RULES

CONNECTION
WAY

END OF PROCESSING
ACTIVITY

is

is

is

DIFFERENT NAMES
FOR EQUAL

TABLES

is is
OMISSION OF
ATTRIBUTES

DEDUCTIONS
OF ATTRIBUTES

is is

is

is

ATTRIBUTES
CONFLICTS

REPRESENTATION

isis

CONTRADICTIONS
BETWEEN RULES

CONTRADICTIONS
BETWEEN RULES

NAMES EQUAL
FOR TABLES
DIFFERENT

DATA
CONFLICTS

DATA
CONFLICTS

isis

isis

isis

isis

isis

isis

is

isis
isis

isisisis

isis

isis

CONFLICTS IN
STRUCTURES

OF TABLES

CONFLICTS IN
STRUCTURES

OF TABLES

INTEGRATIONS
RESTRICTIONS
INTEGRATIONS
RESTRICTIONS

TABLE CONFLICTSTABLE CONFLICTS

CONFLICTS IN
NAMED OF

TABLES

CONFLICTS IN
INTEGRITY

RESTRICTIONS

CONFLICTS IN
INTEGRITY

RESTRICTIONS
CONFLICTOS

EN ATRIBUTOS
CONFLICTOS

EN ATRIBUTOS

SCHEMES CONFLICTSSCHEMES CONFLICTS
RULES CONFLICTSRULES CONFLICTS

NAMED OF
ATTRIBUTES
NAMED OF

ATTRIBUTES
VALUES BY

DEFECT
VALUES BY

DEFECT

RESTRICTIONS
ALLOCATION OF VALUES

IN THE ATTRIBUTES

RESTRICTIONS
ALLOCATION OF VALUES

IN THE ATTRIBUTES

CARDINALITY AND
DEGREE OF ATOMICITY

CARDINALITY AND
DEGREE OF ATOMICITY

REPRESENTATION OF
INFORMATION

REPRESENTATION OF
INFORMATION

BETWEEN
VALUES

BETWEEN
VALUES

EN REPRESENTACIONEN REPRESENTACION

FIRING SIMULTANEOUSLY OF
RULES

FIRING SIMULTANEOUSLY OF
RULES

CONNECTION
WAY

CONNECTION
WAY

END OF PROCESSING
ACTIVITY

END OF PROCESSING
ACTIVITY

is

isis

isis

DIFFERENT NAMES
FOR EQUAL

TABLES

isis isis
OMISSION OF
ATTRIBUTES
OMISSION OF
ATTRIBUTES

DEDUCTIONS
OF ATTRIBUTES
DEDUCTIONS

OF ATTRIBUTES

is is

isis

isis

ATTRIBUTES
CONFLICTS
ATTRIBUTES
CONFLICTS

REPRESENTATIONREPRESENTATION

8 Ana Muñoz, Jose Aguilar, Rodrigo Martinez

The conflict in structure of Object happens
when there are attributes of the object that
are omitted or when there are attributes of
the object that are deduced

V x ConflictsStructureObject(x) =>
Is(x,AttributesObOmitted) V
Is(x,AtributtesObDeduced)

The conflict in multimedia structure
happens when there are attributes MM
omitted or when there are attributes MM
that are deduced

V x ConflictStructureMM =>
Is(x,AttributesMMOmited) V
Is(x,AttributesMMDeduced)

The conflicts in attributes can be conflicts
in name attribute or conflicts in values by
default or conflicts of restrictions of values
of the attributes or conflicts of cardinality
or conflicts in the representation of the
information

V x ConflictsAttributes(x) =>
Is(x,ConflictoNombreAtributo) V Is
(x,ConflictsValuesByDefault) V Is
(x,ConflictsRestrictionofAlocationsofValues) V
Is (x,ConflictsCardinality) V Is
(x,ConflictosRepresentactóonInformation)

The conflicts in name of Attributes has
different names for equivalent attributes or
equal names for different attributes exist

V x ConflictsNomedAttributes(x) =>
HasDifferentNames(x,EquivalentAttributes) V
HsEqualNames(x,DiferentAttributes)

The conflicts in values by default occur by
definition of the values deduced by default

V x ConflictsValueByDefault(x) =>
Has(x,DefinitionOfValuesDeduced)

The conflicts by Restrictions of Values to
the Attributes can be conflicts in the data
types and conflicts in the domain of
restrictions.

V x ConflictsRestrictionofAllocationofValues(x)
=> Is(x,ConflictsinDataType) V
Is(x,ConflictsinRestrictionsofDomain)

A cardinality conflict is the difference of
details of the attributes

V xCardinalityConflict(x) => Has(x,
DifferentLevel fromRepresentationofAttributes)

The Conflicts in the representation of
information are the different domain that an
attribute represents

V x RepresentationofInformacionConflict(x) =>
Has(x,DifferentDomain)

The conflicts in data can be conflicts
between values or conflicts of differences in
the representation

V x ConflictsData(x) => Is (x,
ConflictsbetweenValues) V Is (x,
ConflictsofDifferencesintheRepresentation)

A conflict between values arises when
equal instances have different values

V x ConflictsbetweenValues(x) =>
Has(x,EqualInstancesofData) Λ Has(x,
DifferentValuesofData)

The representation differences has different
representations for a same data

V x ConflictofDiferencesofRepresentation(x) =>
Has(x,DifferentRepresentationOfDifferentData)

A conflict in rule can be a firing
simultaneously of rules, or can be a conflict
in the connection way or can be conflict in
the aim of the processing of rules, or can be
a contradiction between rules

V x ConflictinRule(x) => Is (x,
FiringSimultaneouslyofRules) V Is (x,
ConflictintheConnectionWay) V Is
(x,EndOfProcessing) V Is
(x,ContradictionBetweenRules)

A simultaneous firing of rules is when an
event activates more than one rule

V x SimultaneousFiringofRules (x) => Isa(x,
ShootsmorethanoneRule)

4 Conclusions

In this work the ontological schemes that represent the process of integration of databases are
presented, based on the architecture of Shet&Larson [10] for federated databases. The
development of the ontologies is used like scheme that allows making the intelligent

Integration Ontology for Distributed Database 9

integration of a federation of databases. Particularly, the canonical model must have the ability
of representation of the different data models from level of its structures, operations and
restrictions of the databases which conform the federation, solving the heterogeneity problems
that can be presented. We use ontology like representation of the canonical model, since it
allows taxonomically to describe the concepts in the domain of the databases and its
properties. In addition, with the ontology we will be able to design management systems based
on mechanisms of reasoning and learning. Thus, our Model of Intelligent Integration of
Federated databases is intelligent and extensibility. In our representation of the Model of
Intelligent Integration of Federated Databases we found the taxonomies that describe the
concepts, operations and restrictions of the process of integration of the databases. The axioms
interpret the taxonomy and will allow translating the ontologies to a language of knowledge.
With them, new knowledge could be obtained and extracted.
In the future, a language of manipulation of the Intelligent Distributed Database will be
designed using our ontology. For this, an inference mechanism must be designed that allow to
reason during the processes of query and update over the Distributed Database. In addition, a
mechanism of manipulation of the Canonical Model must be designed (learning) to update the
knowledge. Also, from the inference mechanism tasks of data mining will be able to be done,
such as generate patterns of access of users of the system to create virtual communities, extract
new knowledge derived from the integration of the databases, etc.

References

1. Alvarez Carrión, G.; “Integración de esquemas en bases de datos heterogéneas fuertemente
acopladas”. Master thesis, Universidad de las Américas, Puebla. México 1999

2. Abello A., M. Oliva, J. Samos, and F. Saltor; “Information System Architecture for secure
Data Warehousing”. In Proc. of the 3rd Int. Workshop on Engineering Federated
Information Systems (EFIS), pag. 33-40. 2000

3. Batini C., Lenzerini M.; “A comparative analysis of methodologies for database schema
integration”, ACM Computing Surveys 17, 4, December 1976.

4. Bertino E., Catania B., Zarri Gian P.; “Intelligent Database System”, Addison-Wesley.
2001. http://ksi.cpsc.ucalgary.ca/KAW/KAW97/blazquez/

5. Corcho O., Fernandez-López M., Gomez-Perez A., “Methodologies, tools and languages for
building ontologies. Where is their meeting point? Data & Knowledge Engineering 46
(2003) 41-64. Elsevier.

6. Fernandez-Breis J., Martinez-Béjar R.; “A cooperative framework for integrating
ontologies”; Elsiever Science Human Computer Studies 2002.

7. Gruber, T. R. “A Translation Approach to Portable Ontology Specifications. KSL Report”,
1993, http://ksl-web.stanford.edu/abstracts_by_author/Gruber,T..papers.html

8. Muñoz A., Aguilar J.; “Architecture for Distributed Intelligent Databases”. IEEE, 13th
Euromicro Conference on Parallel, Distributed and Network-based Processing, Euromicro-
PDP 2005, pp 322-327

9. Saltor F., Castellanos M, García-Solaco M; “Suitability of data models as canonical models
for federated databases”; Universitat Politècnica de Catalunya.

10. Shet P, Larson J., “Federated Database System for managing distributed, heterogeneous
and autonomous databases”. ACM Computing Surveys 22, 1990 pp 173, 236

