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Avenida España 1680, Valparáıso, Chile
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Abstract. Most component-based approaches to elaborate software re-
quire complete and consistent descriptions of components, but in practi-
cal settings components information is incomplete, imprecise and chang-
ing, and requirements may be likewise. More realistically deployable are
approaches that combine exploration of candidate architectures with
their evaluation vis-a-vis requirements, and deal with the fuzzyness of
available component information. This article presents an approach to
systematic generation, evaluation and re-generation of component as-
semblies, using potentially incomplete, imprecise, unreliable and chang-
ing descriptions of requirements and components. The key ideas are
representation of NFRs using architectural policies, systematic reifica-
tion of policies into mechanisms and components that implement them,
multi-dimensional characterizations of these three levels, and catalogs of
them. The Azimut framework embodies these ideas and enables trace-
ability of architecture by supporting architecture-level reasoning, and
allows architects to engage into systematic exploration of design spaces.
A detailed illustrative example illustrates the approach.

1 Introduction

Component-based software development proposes building systems by using
pre-existing components, to reduce development time, costs and risks and to
improve product quality; achieving these goals requires an adequate selection
of components to reuse. Current methods of component evaluation and selec-
tion are not geared to support human specialists in the systematic exploration
of design spaces because they require complete and consistent descriptions of
components behavior, connections and prerequisites. In the real-world software
architects have at hand incomplete, imprecise and changing component infor-
mation, and requirements may be likewise.

This article presents a process and tool to support software architects in the
exploration of design spaces by enabling generation, evaluation and regeneration
of component assemblies. The Azimut framework deals with the fuzzyness of
component information using incomplete “characterizations” of available com-
ponents and allowing the regeneration of assemblies when better information
about components is obtained.
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The reminder of this article is structured as follows: Section 2 provides a
brief overview of related work; Section 3 introduces the process of generation,
evaluation and regeneration of component assemblies, and the concepts of ar-
chitectural policies and mechanisms; Section 4 describes the structure of the
multi-dimensional catalogs, and illustrates the approach with an example; Sec-
tion 5 describes the automation of derivation process and its implementation
in a prototype; Sections 6 and 7 discuss ongoing work and conclusions.

2 Systematic Processes for Selecting Components

Component-Based Software Development (CBD) [19] suggests reusing existing
components to build new systems, attending to benefits like shorter develop-
ment times, lower costs and higher product quality. Thus, a key ingredient of
CBD is component selection.

Some proposed techniques for component evaluation and selection [2–9] iden-
tify reuse candidates using criteria such as functionality, non-functional require-
ments (NFRs) or architectural restrictions that each component and/or the
whole system must satisfy. Some of these proposals [5–8] give semi-automated
support to the selection process using multi-criteria decision support techniques,
such as AHP (Analytic Hierarchy Process) [12] or WSM(Weighted Scoring
Method).

Most approaches [2–9] require complete and consistent descriptions of com-
ponent behavior, connections and prerequisites, but in practice architects have
at hand incomplete, imprecise and changing component information. Accepting
this fuzzyness and dealing with it is a key step to supporting the actual COTS
selection process.

Also, several proposals [2–7] only explore the space of available compo-
nents without recourse to alternative designs at intermediate abstraction levels.
These approaches force architects to deal with a big gap between the com-
ponent and requirement spaces, and to describe exhaustively the relationships
between them. Working with intermediate abstraction levels enables dealing
with smaller gaps and searching smaller spaces. CRE [8] and CARE/SA [9]
use the NFR Framework [10] to derive more specific requirements or design
solutions when considering quality attributes or NFRs; unfortunately, the NFR
Framework does not explicitly distinguish requirements more detailed than the
design solutions that satisfy them, and the derivation process among them de-
pends on the architect’s knowledge of possible refinements, without recourse to
a systematic and possible automated derivation support.

3 Exploration, Generation and Evaluation of Component
Assemblies

Our larger research goal is supporting iterative exploration of design spaces by
human architects, and keeping traceability of the resulting architectural deci-
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sions. The Azimut project focuses on enabling architects to generate component
assemblies [15] for some given requirements; evaluate and compare these assem-
blies regarding their requirements satisfaction and some higher-order criteria
(e.g. economic, risk); and regenerate assemblies when new or better informa-
tion is available.

The conceptual vocabulary underlying our approach is description of se-
lection decisions using the concepts of architectural policies and architectural
mechanisms.

3.1 Architectural Policies and Mechanisms

Architects may reason about the overall solution properties using architectural
policies, and later refine them (perhaps from existing policy catalogs) into ar-
tifacts and concepts that serve as inputs to software designers and developers,
such as component models, detailed code design, standards, protocols, or even
code itself. Thus, architects define policies for specific architectural concerns
and identify alternative mechanisms to implement such policies. For example,
an availability concern may be addressed by fault-tolerance policies (such as
master-slave replication or active replication) and a security concern may be
addressed by access control policies (such as identification-, authorization- or
authentication-based) [16].

Each reification yields ever more concrete artifacts; thus, architectural de-
cisions drive a process of successive reifications of NFRs that end with imple-
mentations of mechanisms that do satisfy these NFRs.

To characterize such reifications, we use a vocabulary taken from the dis-
tributed systems community [14], duly adapted to the software architecture
context:

Architectural Policies: The first reification from NFRs to architectural con-
cepts. Architectural policies can be characterized through specific concern
dimensions that allow describing NFRs with more details.

Architectural Mechanisms: The constructs that satisfy architectural policies.
Different mechanisms can satisfy the same architectural policy, and the
differences between mechanisms is the way in which they provide certain
dimensions.

As a brief example (taken from [24]), consider inter-communication among
applications. One architectural concern is the communication type, which might
have the dimensions of sessions, topology, sender, and integrity v/s timeli-
ness [18]; to this we add synchrony. Then, the requirement send a private
report to subscribers by Internet might be mapped in some project (in archi-
tectural terms) as requiring communication ‘asynchronous, with sessions, with
1:M topology, with a push initiator mechanism, and priorizing integrity over
timeliness’. Based on these architectural requirements, an architect (or auto-
mated tool!) can search a catalog for any existing mechanisms or combination
thereof that provides this specified policy; lacking additional restrictions and



Systematic Exploration of COTS Design Spaces 35

using well-known software, a good first fit as mechanism is SMTP (the standard
e-mail protocol), and thus any available component that provides it.

3.2 Systematic Generation of Component Assemblies

To illustrate how these concepts relate and are used in practice consider the
following example (see Figure 1. The derivation process starts from qual-
ity attribute that may be associated to specific architectural concerns (e.g.
access control for security requirements, replication for availability).
Architectural concerns can be characterized through dimensions, which are
discriminating factors among policies (e.g. authentication type [16] in ac-
cess control, update pro pagation type [17] for replication). Each dimen-
sion can be satisfied by some architectural policies (e.g. authentication
based-on-something-that-the-user-knows, operations-based update pro-
pagation). Each policy may be satisfied by several architectural mechanisms
(e.g. SMTP-AUTH for authentication based-on-something-that-the-user-knows,
active replication for replication with state-based update propagation). Fi-
nally, mechanisms may be provided by one or more available components, which
in turn may implement several mechanisms (e.g.SendMail v8.1 and later for
SMTP-AUTH; LifeKeeper for active SMTP server replication en Linux).

Fig. 1. Example of Systematic Generation of Component Assemblies

The selected components are organized in alternative assemblies that aim
to satisfy all the systemic properties at once. Assemblies are later subject to
evaluation choose among them using some system-wide criteria (e.g. cost, or
smallest number of suppliers). This process is described in Figure 2.
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Fig. 2. Generation and Evaluation of Component Assemblies

3.3 Systematic Exploration of Design Spaces

Architects repeatedly perform derivations from systemic properties to possible
solutions, identifying and evaluating those that each architectural mechanisms
provides, as well as each selected component. These alternative solutions and
reifications are the design space that the architect must explore, and which is
currently done in an intuitive manner. As shown in Figure ??, after identifying
potential architectural mechanisms (‘Match Mechanisms’) comes an exploration
of the components space to determine which ones implement them. The result
is a set of alternative components (‘Match COTS’) from which the alternate
component assemblies are generated to be evaluated. Notice that the solution
space is generally quite large, highly changing and in constant growth, mainly
due to the dynamic components market. In an open market of independent com-
ponent developers, the set of possible combinations is not known to any of the
involved parties [19]. The architect’s knowledge of architectural mechanisms
and available components (held a priori or acquired in the ongoing selection
process) is the basis for reasoning that justifies selection decisions. Thus, keep-
ing in catalogs information about which mechanisms satisfy which policies and
which components implement which mechanisms allows sharing this valuable
knowledge; and identifying derivation rules allows supporting, and perhaps even
semi-automating, the exploration process performed by architects.

Alternative assemblies can be evaluated to select the one that best fits the
specified requirements, matches the platform restrictions, and meets the non-
technical selection criteria, such as minimal cost, minimal number of suppliers,
and maximal suppliers’ reliability.



Systematic Exploration of COTS Design Spaces 37

When new information becomes available, or when requirements change,
regeneration of component assemblies is called for. New assemblies may include
other mechanisms and/or new components, or in fact drop some and consolidate
others. To support these generation, evaluation and regeneration processes, and
the consequent design space exploration, we deploy multi-dimensional catalogs
to characterize policies, mechanisms and components, and systematic derivation
rules among these levels, as shown in Figure 3 and explained in Section 4.

4 Multi-dimensional Catalogs

Fig. 3. Multidimensional Catalogs for Exploration, Generation and Evaluation of
Component Assemblies

Catalogs store architects’ knowledge about architectural policies, mecha-
nisms and components, as well as the derivation rules among them. Thus, they
are the key to reusing information about previous selection processes; improv-
ing knowledge quality about design spaces and components insofar as better
descriptions are stored; and supporting architects in the exploration of these
design spaces.

Figure 3 describes the two roles that catalogs fulfill: as repositories of infor-
mation necessary to generate, evaluate and regenerate component assemblies;
and as actively maintained descriptions of the components available in a given
milieu. The parallelism and mutual feedback of these two processes allow to use
catalog information and derivation rules for selection decisions, and to add in-
formation to the catalog when some ongoing selection process gathers additional
data.
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This section will illustrate the deployment and use of catalogs with a running
example. Consider propagation of stock prices information, and the requirement
‘the system shall send a report to each customer according to his stocks portfolio;
this service must have 99.9% availability and provide access security.’

4.1 Policy Catalogs

The policy catalogs gathers platform-independent architectural policies and
stores dimensions for each concern and policies that have different values for
each dimension. The catalog incorporates knowledge for each architectural con-
cern, and the dimensions themselves are collected from authoritative sources
of the relevant discipline (e.g. Tanenbaum [17] for replication, Britton [18] for
middleware communication, and Firesmith [16] for security). Figure 4 shows a
partial content of the policies catalog.

Choosing among the policies shown in Figure 4, we notice that the system
requires Asynchronous Communication Type, with 1:M topology, with Push

initiator, and communication must privilege Integrity over Timeliness.

Security is focused on Access Control, and the usual policies are Individual

Authorization and Authentication based on something the user knows

[20]. Availability is represented by several architectural concerns, such as Repli
cation, Recovery and Failure Monitoring; here, we’ll use only Replica-
tion. To meet the availability requirement, we define replication policies with
Persistent State and Replicated Write Consistency.

Independently of the suggested use of catalogs as stepping stones in larger
derivation chains, it should be noticed that even a stand-alone catalog of archi-
tectural policies (however incomplete) would be useful to help in representing
(and thus negotiating and validating) quality attributes, as long as the relevant
concerns, dimensions and policies are present.

4.2 Mechanism Catalogs

The mechanism catalog records known architectural mechanisms, which are
implementation-independent design-level constructs that satisfy architectural
policies. This catalog indicates which mechanisms satisfy which policies, and
characterizes each mechanism with the values of each concern dimension that
it can satisfy. A given mechanism may implement several policies for a same
concern, or policies across several concerns; similarly, a given policy may be im-
plemented by several mechanisms. Figure 5 shows partial content of the mech-
anisms catalog.

In real-world deployment situations, the catalog preparators might not
know or not be certain whether a given mechanism supports a certain pol-
icy. To account for this uncertainty, the mechanisms catalog allows five de-
grees of certainty regarding support for a given policy: ‘supports’(1), ‘proba-
bly supports’(0,6),‘probably does not support’(0,3), ‘does not support’(0), and
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Fig. 4. Partial Content of Policies Catalog

‘unknown’(empty) (since absence of knowledge differs from knowledge of ab-
sence). Incidentally, current work is using fuzzy optimization techniques on
these uncertainty-rich descriptions to evaluate and regenerate component as-
semblies.

Fig. 5. Partial Content of Mechanisms Catalog
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The catalog shown in Figure 5 sugggests that the architect has several op-
tions to satisfy the specified policies: Communication Type may me reified with
the NNTP protocol (used to post subscription-based ”news”) or SMTP (used
to send e-mail). The Access Control policies might be satisfied with a personal

password mechanism. The protocols SMTP-Auth, POP-Auth, IMAP-Auth and
Personal Password do satisfy the requirements of Access Control. The replica-
tion policies can be satisfied with active replication.

4.3 Components Catalog

The component catalog describes the space of components. A software compo-
nent [19] is multiple-use, non-context-specific, composable with other compo-
nents, encapsulated (i.e., non-investigable through its interfaces) and a unit of
independent deployment and versioning. In Azimut, components are charac-
terized according to the architectural mechanism(s) that implement. A given
component may implement several mechanisms; similarly, a given mechanism
may be implemented by several components. Besides mechanism support, the
components catalog has four dimensions:

– Uncertainty Just Similarly to the mechanisms catalogs, the components
catalog allows five degrees of certainty regarding support for a given mecha-
nism: ‘supports’, ‘probably supports’, ‘probably does not support’, ‘does not
support’, and ‘unknown’.

– Available platforms Platform(s) under which the component can be de-
ployed (e.g. Windows, Linux, Solaris).

– Market issues Component selection requires using non-technical criteria to
distinguish among otherwise equivalent alternate components and assemblies.
The catalog includes some key characteristics: Supplier; Market Share [11];
Supplied Reliability [6] (valued from 1 to 5, with higher values for higher
reliability); Initial Cost [11]; Integration Cost [11]; and Support Cost.

– Description credibility An important criterion is the credibility degree [5]
of the component description, which quantifies confidence regarding descrip-
tions. We follow Philips and Polen [5] in assigning credibility values for de-
scriptions: (1) user- or supplier-provided, or seen in third-party literature; (2)
seen but not studied; (3) witnessed in personalized demos; and (4) verified
hands-on ”in-house”.

Figure 6 shows partial content of a components catalog relevant to the run-
ning example.

Several mechanism configurations are possible, and in fact some components
do implement each desired mechanism. Components that implement mecha-
nisms that satisfy all required quality attributes are LifeKeeper and SendMail

(v8.1 and later; notice that earlier versions might also be recorded in the catalog);
or SurgeMail (Cluster). Choosing among them means having an additional
goal function: if it is minimizing number of components (to reduce complexity),
the optimal solution is SurgeMail (Cluster), but if it is minimizing costs,
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Fig. 6. Partial Contents of Components Catalog

the other option is better. Other alternatives are looking for additional infor-
mation (and enrich the catalogs); considering ad-hoc implementation of passive
replication; or outsourcing the replication service and defining in the SLA an
availability target of 99.9%. At this point, active exploration of design spaces by
the architect should ensue.

Another difference between catalogs is the global and authoritative nature
of the policies and mechanisms catalog versus the local nature of the component
catalog in each organization. In fact, there might be sub-catalogue suppliers for
a global component information repository.

4.4 Recording Feedback into Catalogs

A better evaluation could inject some new information to the selection process
as well: new descriptions (characterizations) of components and mechanisms to
increase the knowledge of solutions spaces, or new policies to better describe
some requirements; or it might suggest renegotiation of requirements if impos-
sible to find any assemblies that satisfy all given requirements (see Figure 3).

Thus, an additional advantage of these catalog-based process is that explo-
ration of mechanisms and components feeds back into the catalog construction
process (see Figure 3).

5 Automation of Derivation Process

Based on the several platform abstraction levels, we can identify derivation
rules among them (the relationships ‘provides’ among mechanisms and policies,
and ‘implements’ among components and mechanisms), as well as combination
restrictions. Automating these derivation rules allows proposing components
and assemblies dynamically to the architect. Currently, we are at work in two
alternative approaches to achieving automation: one rule-based (herein shown),
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and one based on combinatorial optimization algorithms [?]. Both approaches
try to avoid the complexity of assigning weights to the influence of each solution
element (mechanism, component) on each goal, unlike AHP (the multi-criteria
decision technique used by several CBD methods [5–8]).

Combinatorial optimization techniques have allowed us to explore some very
interesting problems, like treatment of fuzzy data (such as ‘probably supports’),
information variability at the level of both requirements and components, treat-
ment of conflict among mechanisms or components as restrictions, and incom-
patible combinations.

Azimuy possibly uses incomplete, imprecise, unreliable and changing de-
scriptions of architectural policies, mechanisms and components. As mentioned
above, these characteristics allow using the catalogs even during early definition
stages, to help with requirements definition and validation.

Later on, assemblies that are proposed in the absence of full knowledge
(i.e. catalogs with several ’unknown’ entries) may turn out to be sub-optimal
regarding number of components or some other criterion, but new information
will not necessarily invalidate it (unless it generates a conflict).

Fuzzy information is a normal situation in architecture development, since
incomplete and imprecise information is what most architects actually have at
hand. Accepting this fuzzyness and dealing with it is a key step to supporting
actual architects elaborating actual software systems.

5.1 Rule-based Prototype

We have developed a prototype to validate the feasibility of this approach. Rules
[27] describe the “characterizations” of policies, mechanisms, and components,
and relationships among them and the other attributes. Using these rules, the
system generates component assemblies that satisfy the required policies. The
prototype deals with fuzzyness by showing first solutions based on ‘supports’
and ‘implements’, and later the fuzzy attributes, but currently it optimizes for
simples non-technical attributes (e.g. minimum number of components, or total
cost). Examples of these rules are shown in Table 1.

Figure 7 shows the output given by the prototype when you search assem-
blies satisfying the policies of our example.

6 Ongoing and Future Work

Work in progress includes expanding the kinds of recorded information in cata-
logs; identifying further derivation rules; implementing algorithms to treat fuzzy
information [25]; and managing conflicts among mechanisms or components.

Also, some computationally hard problems are being studied jointly with
combinatorial optimization researchers to analyze trade-offs among several se-
lection criteria; what-if analysis to quantify the impact of requirements changes;
and reverse questioning, i.e. determining satisfiable requirements given a set of
components.
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Table 1. Rules

satisfies(smtp,[asynchronous,synchrony,communication type]).
satisfies(smtp,[1:m,topology,communication type]).
satisfies(smtp,[push,receiver,communication type]).
satisfies(smtp,[integrity over timeliness,integrity/timeliness,communication type]).
satisfies(active replication,[persistent state,state,node replication]).
satisfies(active replication,[replicatedwrite,consistency,node replication]).
satisfies(smtp auth,[individuals,authorization,access control]).
satisfies(smtp auth,[something the user knows,authentication,access control]).
satisfies(rss,[asynchronous,synchrony,communication type]).
satisfies(rss,[1:m,topology,communicatin type]).
satisfies(rss,[pull,receiver,communication type]).
probablySatisfies(nntp,[push,receiver,communication type]).
satisfies(nntp,[integrity over timeliness,integrity/timeliness,communication type]).
....
implements(sendMail,smtp). implements(sendMail v8 1,smtp).
implements(sendMail v8 1,smtp auth). implements(surgeMailCluster,smtp).
implements(dNews,nntp). implements(leafNoad,nntp).
probablyImplements(lifeKeeper,active replication).
probablyImplements(lifekeeper,passive replication).
probablyImplements(surgeMailCluster,smtp auth).
probablyImplements(surgeMailCluster,active replication).
....
notRelatedCots(lifeKeeper,dNews). notRelatedCots(lifeKeeper,leafNoad).
notRelatedCots(lifeKeeper,surgeMailCluster).

Fig. 7. Prototype: Output for the example

6.1 Application: MDA

Model-Driven Architecture (MDA) [21] aims to derive/generate software sys-
tems through systematic transformations from high-level models. Some projects,
such as CoSMIC [22] and UniFrame [23], implement MDA to generate component-
based systems, but use formal component specification languages to describe
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the available components, and from these descriptions (consistent and precise)
they automate the component selection and integration process.

However, in most systems without strong constraints like hard real-time,
the cost of using formal specifications is difficult to justify; thus, we aim to
integrate incomplete, imprecise, unreliable and changing descriptions into MDA
techniques. Current systematic techniques to select components are hard to
integrate with MDA due to the lack of explicit mappings among PIM-level
concepts of analysis and design, and PSM-level constructs such as components.

We have deployed the described approach and techniques in the Azimut
framework [24], which extends MDA to automate architectural decisions from
NFRs through components. The prototype is described in [26].

7 Conclusions

The described process to generate, evaluate and regenerate component assem-
blies, combined with the multi-dimensional catalogs that support it, allows ar-
chitects to engage in iterative exploration of design spaces. A key goal of this
exploration is finding the “best” combination of components that not only sat-
isfy the given requirements, but also fit some non-technical second-order criteria
(such as minimal cost or maximal supplier reliability), but accepting the fuzzy
nature of available component information.

The underlying concepts are representation of quality attributes using archi-
tectural policies, their systematic reification into architectural mechanisms, and
reification of mechanisms into components that implement them. The main op-
erational feature of the approach are catalogs for three abstraction levels (poli-
cies, mechanisms and components); these abstractions are “characterize” with
possibly incomplete, imprecise, unreliable and changing data, and are multi-
dimensional in including technical data but also higher-order information (e.g.
cost, supplier). Thus, keeping in catalogs information about which mechanisms
satisfy which policies and which components implement which mechanisms al-
lows sharing this valuable knowledge; and identifying derivation rules allows
supporting, and perhaps even semi-automating, the exploration process of de-
sign spaces performed by architects.
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