
A Meshing Tool Product Line Architecture

Maŕıa Cecilia Bastarrica1, Nancy Hitschfeld-Kahler1, Pedro O. Rossel1,2

1 Computer Science Department, FCFM, Universidad de Chile
Blanco Encalada 2120, Santiago, Chile

2 Departamento de Computación e Informática, Universidad Católica del Maule
Avenida San Miguel 3605, Talca, Chile

{cecilia|nancy|prossel}@dcc.uchile.cl

Abstract. Meshing tools are extremely complex pieces of software.
Traditionally, they have been built in a one by one basis, without sys-
tematically reusing already developed parts. The area has matured so
that we can currently think of building meshing tools in a more in-
dustrial manner. Software product lines is a trend in software devel-
opment that promotes systematic reuse. We propose a layered product
line architecture for meshing tools that can be instantiated with differ-
ent algorithms, ways of implementing basic concepts, and even for two
or three dimensional meshing tools. We specify it formally using xADL
and we show that the architecture is compatible with a series of already
built tools. This work is the beginning of a domain analysis that has
the potential to go beyond the sometimes rigid descriptions provided
by architectural description languages.

1 Introduction

Meshes are used for numerical modeling, visualizing and/or simulating objects
or phenomena. A mesh is a discretization of a certain domain geometry. This
discretization can be either composed by a unique type of element, such as tri-
angles, tetrahedra or hexahedra, or a combination of different types of elements.
Meshing tools generate and manage these discretizations.

Meshing tools are inherently sophisticated software due to the complexity
of the concepts involved, the large number of interacting elements they man-
age, and the application domains where they are used. Meshing tools need to
accomplish specific functionality while still having an acceptable performance.
Managing thousands and even millions of elements with a reasonable use of
computational resources –mainly processor time and storage– becomes a must
if the tool is to be usable at all. Lately, however, other qualities related to
modifiability have become relevant in meshing tool development.

There are many application domains where meshing tools are used, ranging
from mechanics design to medicine [12]. Each domain requires slightly different
functionality. For this reason, a variety of meshing tools have been built differing
on the functionality included, the algorithms used for implementing their func-
tionality, the way data is represented, or the format of the data used as input or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Bastarrica et al.

output. Also depending on the application domain, it may be required to have
one, two or three dimensional meshes, each one maybe using different types
of basic modeling elements. For example, analyzing the tree rings requires 2D
meshes generated from an image, simulating tree growth uses surface meshes,
and modeling brain shift during surgery requires 3D meshes.

Developing any complex software from scratch in a one by one basis is expen-
sive, slow and error prone, but this is the way meshing tools have traditionally
been built. If this development task is not performed in a systematic way using
good software engineering practices, it may easily get out of control making it
almost impossible to debug and even more difficult to modify. There have been
some efforts lately applying software engineering concepts in meshing tool de-
velopment, mainly building general purpose libraries that facilitate reuse. Also
object-orientation and design patterns have the potential of enhancing software
reuse at the code and design levels, and there is some experience in using these
techniques for developing meshing tools.

The software architecture is one of the main artifacts developed during the
software life cycle [15] because it determines most of the non-functional charac-
teristics the resulting software will have, and it is also one of the most difficult
documents to change once the software is deployed [2]. Architectural patterns [7]
are used as guidelines for architectural design by reusing design knowledge at
a high level of abstraction. Different architectural patterns promote different
non-functional characteristics. In this way, for example, by using component
and connector patterns such as client-server or repository, runtime properties
can be modeled. Or using module patterns such as decomposition or layers,
properties related to maintainability can be modeled [8].

Software product lines is a trend for planned massive reuse of software as-
sets [9]. The most typical reusable assets are software components, but we can
also reuse the product line architecture (PLA), software requirement documen-
tation, and test cases, among others. The PLA is an important reusable asset
because all software products in the family share the same design [6]. There-
fore, the PLA design should be carefully approached making sure it will produce
software that complies with the desired requirements.

In this paper we present the product line architecture for a family of mesh-
ing tools. Its design is based on the general architecture of published meshing
products, as well as our own experience in building this type of tools. We in-
tended to provide a PLA that would promote flexibility and extensibility, so
that existing algorithms, data structures, data formats and visualizers could be
combined in different ways to produce a variety of meshing tools appropriate
for diverse application domains, sharing the software structure. The PLA is
modeled following the layered architectural pattern [7]. This module view type
is used for promoting modifiability, reusability and portability. Sometimes it is
argued that layered architectures may penalize performance, but we have found
that performance does not necessarily degrade significantly using the proposed
PLA [19]. In [17] it is reported that a tool implementing this layered architec-

A Meshing Tool PLA 3

ture performs almost as fast as TetGen [26], a widely used open source meshing
tool.

We formally define the PLA using xADL 2.0, an XML-based ADL specially
designed to support the description of architectures as explicit collections of
components and connectors [18]. There are graphical tools that make it eas-
ier to specify software architectures using xADL. xADL has also shown to be
appropriate to specify product lines architectures [10].

We show how the proposed PLA can be instantiated for generating different
meshing tools. In particular we show how already implemented tools can be seen
as instantiations of our product family, independently of the methods followed
for generating the meshes and the dimensions of the managed mesh.

The paper is structured as follows. In Section 2 we present and discuss
concepts such as software architecture and software product lines and how they
have been used in the development of meshing tools. We also present some
efforts in developing meshing tools. Section 3 presents the proposed layered
architecture for our product family of meshing tools, and Section 4 shows a
series of different instantiations of this PLA to produce different meshing tools.
Finally, in Section 5 we present some conclusions and describe our work in
progress.

2 Related Work

There is a variety of meshing tools developed for different purposes [25]. How-
ever, the use of software engineering principles in meshing tool design has spread
only in the last five years. Some examples include the design of generic extensible
geometry interfaces between CAD modelers and mesh generators [21,23,27,30],
the design of object-oriented data structures and procedural classes for mesh
generation [22], and the computational geometry algorithm library CGAL [14].
Also recently it was publish a discussion on the usage of formal methods for im-
proving reliability of meshing software [13]. There have also been some attempts
in using software product family concepts for building meshing tools [3, 28].

Software product lines (SPL) is a modern approach towards software de-
velopment based on planned massive reuse. The idea is to provide a reuse in-
frastructure that supports a family of products, and to spend the resources in
such a way that a high return of investment and reduce time-to-market can be
achieved [29]. All elements subject to reuse are called core assets of the SPL. So,
an SPL is a set of products that are built using core assets in a planned manner
and that satisfy the needs of a market segment [9]. One of the most important
assets in a SPL is the product line architecture (PLA). Opportunistic reuse does
not usually work [6]; thus, assets in a SPL should be developed in such a way
that reuse is promoted. This development process is longer and more expensive
than developing one product at a time, but if assets are reused enough times, it
is still cost-effective. Experience has shown that the costs of developing reusable
assets is paid off after the second or third product is built [33]. The strategy for

4 Bastarrica et al.

building software product lines is to identify commonalities, variabilities and
optional modules.

To our knowledge, SPL has neither been widely used as an approach for
developing meshing tools, nor have architectural patterns been considered as
a basis for designing any particular meshing tool architecture. Product line
architectures must, by definition, be flexible to foster all products in the SPL,
and promote modifiability so that variabilities could be incorporated. Therefore,
it results natural to use module view type patterns [8], and more particularly
a layered architectural pattern [7] as a guideline for designing the PLA.

There are several different architecture description languages (ADLs) [20],
but not all of them are good for specifying PLAs.

In [5], an integrated notation for specifying software architectures in three
levels of abstraction is proposed: structure, behavior and domain specific ab-
stract data types. In [4] it is shown how to use this notation for defining a PLA.
The notation helps in the process of identifying and localizing variations, but
this it is not only non-standard for architecture specification, but also it has
little tool support.

Koala is a software component model designed for creating software product
lines for a large variety of products [31,32]. Koala handles variation using com-
position, where selection of reusable components is bound in different ways to
obtain different products. Koala was specifically created for modeling embed-
ded systems. Mae is a technique, along with a supporting toolset, to formally
specify, analyze, and evolve software architectures. It uses xADL 2.0 as an ex-
tensible notation to model the PLA as we do. We may use Mae in the future
to face other development stages.

UML has become a standard notation for documenting software design.
With the new UML 2.0 standard, some modeling elements specifically for soft-
ware architectures were incorporated, but there are still no primitives for doc-
umenting connectors or architectural styles. However, there have been some
efforts to extend UML in order to be able to use it as an ADL [24]. To our
knowledge, UML has not been widely used for defining PLA. xADL improves
on the UML approach in two significant ways: features and extensibility. With
respect to features, xADL 2.0’s type system and product-line support are abil-
ities not present in UML 2.0 [10].

A Meshing Tool PLA 5

3 Product Line Architecture

Independently of the application domain, any meshing tool may provide certain
general functionality:

– read the domain geometry and physical values
– generate an initial mesh
– refine, derefine, improve or smooth a mesh according to a quality criterion

within a specified region
– evaluate the quality of a resulting mesh
– store the mesh into a file possible with different formats
– visualize the mesh

The specification of the input geometry and the physical values can be
generated by different CAD programs or by other mesh generation tools. That is
why there should be a component in charge of managing input/output formats.

It may be required to follow different algorithms for generating an initial
mesh. These algorithms receive the domain geometry, and generate a mesh that
represents an initial discretization of the domain.

Modeling different problems may require different point distributions in the
mesh, thus a variety of refinement strategies have been proposed. A refinement
strategy consists of dividing coarse elements into smaller ones until a set of
refinement criteria within a specified region is fulfilled. Improvement is a special
kind of refinement where the quality of the mesh elements is improved, not
necessarily dividing existing elements.

Smoothing and derefinement processes are also applied according to some
criteria and over different domain regions. Smoothing moves point locations in
order to improve the local quality of the mesh elements. And refinement is the
inverse process of refinement, making the mesh coarser again.

The evaluation process lets the user know the real quality of the mesh, in
terms of percentage of good and bad elements.

The tools that form part of the family may include some or all of these
processes. The PLA determines the product line scope limiting what products
can be built, but at the same time it should be flexible enough to allow designers
to build all desired tools. Flexibility and interchangeability are two of the non-
functional requirements that guide our PLA design; this is why we chose a
module view type architecture, and more precisely a layered architecture.

Figure 1 shows the structure of the meshing tool PLA. This architecture
is specified using ArchStudio [1]. For simplicity we only include the connectors
between layers and not those among modules within a layer even though they
exist and they may be quite complex. Table 1 includes a general description of
each type of component included in the PLA shown in Fig. 1.

The architecture is composed by four layers: User Interface, Algorithms,
Model and Input Output. In the User Interface layer there is only one mod-
ule: Selector. The Algorithms contains the modules corresponding to all typical
mesh processes. The Model layer includes the representation of all entities used

6 Bastarrica et al.

Fig. 1. Meshing Tool PLA

for modeling the mesh as well as the processes for input and output the corre-
sponding data. Finally, in the Input Output layer there are modules for reading
mesh data and/or visualizing it. In xADL, each layer is defined as a structure.
Figure 2 shows the xADL specification of the complete Meshing Tool PLA.
Figure 3 shows the xADL specification of the Refine module. This module is
included in the Algorithms structure.

Refine and/or improve represent the core functionality of a meshing tool.
In our PLA, both are presented as optional even though it may seem counter

A Meshing Tool PLA 7

Layer Component Description
Type

User
Interface

Selector
Menu for choosing the process to execute in the fol-
lowing step

Algorithms Format
Translates the input geometry (domain) specified in
any of the accepted formats in a normalized format

Initial Generates an initial mesh of the domain

Refine
Divides the mesh elements that do not satisfy the
refinement criterion in the specified region

Improve
Improves the mesh quality by dividing or reorganizing
its elements according to the criterion in the specified
region

Derefine
Eliminates mesh elements according to a criterion in
the specified region

Smooth
Improves the quality of the elements by moving mesh
points according to some criterion in the specified re-
gion

Final Applies a post-process to the complete mesh

Evaluate
Generates statistics of the current mesh according to
a quality criterion

Criterion

Represents a geometric or physical quality that an
element must fulfill. For example, the minimum angle
of each element must be greater than 25◦ and/or the
maximum edge length must be less than 2

Region
Represents the part of the domain where the selected
algorithm is applied to any element that does not
fulfill the specified criterion

Model Output
Gets the domain discretization and physical at-
tributes and stores it in the required format

Mesh
Contains the discretization of the domain. It is com-
posed of elements, faces (only in 3D), edges and ver-
tices

Vertex Represents a point of the discretization
Edge Represents a connection between two vertices

Face

Represents the connections on an element surface. A
triangular face is the one defined by three vertices
or edges, and a rectangular face is defined by four
vertices or edges

Element
Represents a discretization cell. It can be a triangle or
rectangle in 2D, or a tetrahedron or an hexahedron,
among others, in 3D

Input
Reads the domain description in a specific format and
stores it as part of the mesh

Input
Output

Visualizer
Tool that allows the visualization of the domain dis-
cretization and physical attributes

InputFile
Contains the domain description in a format gener-
ated by a CAD tool

Table 1. Component types

intuitive. Actually, at least one of them must be included in any tool instan-

8 Bastarrica et al.

tiation. Though they represent different concepts, there are certain algorithms
that perform both, so there are meshing tools that provide both functionalities
only including one of them. There are other tools that prefer to use different al-
gorithms for each one. This is why we give the opportunity of choosing different
configurations. The Face module in the Model layer is also defined as optional.
For all 3D tools there must exist a Face module, but it is meaningless for 2D
tools.

+ <types:archStructure types:id=“Meshing Tool”
xsi:type=“types:ArchStructure”>

+ <types:archStructure types:id=“User Interface”
xsi:type=“types:ArchStructure”>

+ <types:archStructure types:id=“Algorithms”
xsi:type=“types:ArchStructure”>

+ <types:archStructure types:id=“Model”
xsi:type=“types:ArchStructure”>

+ <types:archStructure types:id=“Input Output”
xsi:type=“types:ArchStructure”>

Fig. 2. Structures used in Meshing Tool Architecture

As we can see in Figs. 1 and 3, Refine exposes two interfaces, called Re-
fine.Top and Refine.Bottom, respectively. The former has the direction in, and
the latter has the direction out ; this means that this component can be used by
any component in the upper layer, and Refine may use other modules contained
in the lower layer, following the rules of the layered architectural pattern [7].

According to the graphical specification in Fig. 1 where Refine is defined as
optional, the xADL includes the options:optional tag indicating optionality.

4 Product Instantiation

In order to show the consistency of the proposed PLA, we present some products
that may be part of the SPL.

The process of designing meshing products using the proposed PLA has
two stages: component type selection and implementation selection. First, the
component types that are to be included must be chosen; here some of the op-
tional component types may not be included. In the second stage, a particular
implementation needs to be chosen for every selected component type. In this
way, different meshing tools may differ in their functionality (component types
included) or in their implementation (concrete component implementation as-
signed to each component type).

A Meshing Tool PLA 9

- <types:component types:id=“Refine” xsi:type=“types:Component”>
<types:description xsi:type=“instance:Description”>

Refine module</types:description>
- <types:interface types:id=“Refine.Top” xsi:type=“types:Interface”>

<types:description xsi:type=“instance:Description”>
Top interface</types:description>

<types:direction xsi:type=“instance:Direction”> in</types:direction>
</types:interface>
- <types:interface types:id=“Refine.Bottom” xsi:type=“types:Interface”>

<types:description xsi:type=“instance:Description”>
Bottom interface< /types:description>

<types:direction xsi:type=“instance:Direction”> out</types:direction>
</types:interface>
+ <options:optional xsi:type=”options:Optional”>

</types:component>

Fig. 3. Refine Module Specification

Our SPL is oriented towards building tools for the generation of meshes
required for numerically solving partial differential equations. The most widely
used numerical methods for solving these equations are: finite differences, con-
trol volumes, and finite elements. Typically mesh generators have been imple-
mented using Delaunay algorithms, octree or advancing front. Meshes satisfying
the Delaunay condition are those that provide the most equilateral partition of
a set of 2D points. Octrees and advancing front are specific techniques for mesh
generation. In Section 4.1 we present tools for generating finite element meshes
and in Section 4.2 we present control volume meshes; in each case we present
one example for 2D meshes and another one for 3D meshes.

4.1 Finite Element Meshes

For a large range of problems using the finite element method, isotropic meshes
are required. The isotropy is measured based on the geometrical properties of
each mesh element, e.g. more equilateral elements are considered better than
elements with too small or too large angles.

Simple 2D Triangulation Tool 2D triangulations require some of the com-
ponent types identified as part of the Algorithms layer of the PLA in Fig. 3.
In particular, a tool that generates Delaunay triangulations where all triangles
have the minimum angle greater than a threshold value specified by the user,
requires the component types described as part of Table 2. 2D triangulations
do not require the Face component type, but all other component types in the
Model layer must be included.

10 Bastarrica et al.

Component Description
Type

Selector
After generating the initial mesh, only the improvement algorithm
can be selected letting the user to provide the minimum angle for
the criterion to be applied

Initial Delaunay algorithm is used for generating the initial mesh

Improve Delaunay improvement algorithm is used for improving

Criterion Minimum angle is used as a general criterion

Region
Whole geometry is used as the region where the improvement algo-
rithm is applied

Table 2. 2D triangulation meshing tool (taken from [3])

Even though the Format component type is not optional, in this case it has
a dummy functionality since the mesh is already read in its required format.

3D Tetrahedral Meshes In Table 3 the algorithms included in a particular
3D finite element mesh generator taken from [19] are described. This meshing
tool allows the generation of 3D Delaunay and non-Delaunay meshes with a
user specified point density and element quality. It also understands different
input and output data formats. All component types included in the Model
layer must also be realized as part of the tool, including Face since it is a 3D
tool.

Component Description
Type

Selector
After generating the initial mesh, the Refine and Improve compo-
nents can be chosen several times

Initial GMVDelaunay generates a Delaunay mesh

Format
Translates the Off and Mesh formats into the appropriate format un-
derstandable by the meshing tool using OffFormat and MeshFormat,
respectively

Refine
LeppBisection refines generally according to the longest edge cri-
terion, or any other refinement criterion

Improve
LeppDelaunay improves the mesh with the CircumRadiusEdgeRatio
criterion, or any other improvement criterion

Criterion
A set of different eligible criteria for refinement and improvement;
e.g. LongestEdge, CircumRadiusEdgeRatio, VolumeEdgeRatio

Region
Region where the algorithm is applied; e.g. WholeGeometry, Cube,
Sphere

Table 3. 3D finite element mesh generator (taken from [19])

A Meshing Tool PLA 11

4.2 Control Volume Meshes

For the simulation of semiconductor devices using the control volume method,
it is required to have anisotropic Delaunay conforming meshes where no part
of a Voronoi region of an internal point is outside the domain [11]. In 2D, this
requirement is fulfilled if there is no obtuse angle opposite to boundary/interface
edges. In 3D, for each boundary face the center of the smallest circumsphere
must be inside the domain. In addition, too large angles in the interior of the
domain and too high vertex edge connectivity must be avoided.

2D Triangulations In [3], a tool for the simulation of semiconductor devices
is described. Here the mesh is read already in the format the tool is able to
understand, so the Format component is assumed to have a dummy function-
ality. This tool is essentially used for improving and post-processing a mesh
already generated and refined by another meshing generator. The specific com-
ponent types chosen and their particular implementations are those described
in Table 4.

Component Description
Type

Selector

Allows to enter a specific improvement region and criterion, and also
to choose the following algorithm to be applied (either Improve or
Final)

Initial Reads the already generated Delaunay mesh

Improve
Applies the Delaunay improvement algorithm to the specified re-
gion with a particular criterion

Final
Post-processes the mesh eliminating obtuse angles opposite to the
boundary (Non obtuse boundary algorithm)

Criterion
Improvement criteria such as Maximum edge vertex connectivity

and Maximum angle

Region
Region where the improvement is applied; in the example only
Whole geometry is used, but it may also be Circle or Rectangle

Table 4. 2D control volume mesh (taken from [3])

3D Mixed Element Meshes A tool for 3D semiconductor simulation is de-
scribed in [16]. In this case, the mesh is composed of different types of elements,
i.e. cuboides, prisms, pyramids and tetrahedra. The implementation is based on
a modified octree approach. Even though this application was not developed
with the product line concepts in mind, it fits within the PLA structure with
little effort. The components included as part of the tool are described in Ta-
ble 5.

12 Bastarrica et al.

Component Description
Type

Selector
Allows to enter a list of criteria and their associated regions, and
then the whole process is invoked

Initial
Reads the device geometry and generates a first coarse mixed ele-
ment mesh (Fit Device Geometry)

Refine
Divides element in order to fit physical and geometric parameter
values (Refine Grid)

Final

Improves elements in order to fulfill the Voronoi region
requirement and generates the final mixed element mesh
(Make Irregular Leaves Splittable)

Region
Regions where the refinement is applied, e.g. cuboid or rectangle,
among others

Criterion
Doping Difference and Longest Edge as the main refinement cri-
teria

Format

Outputs the mesh in a format understandable by
the visualizer (Write Geometrical Information and
Write Doping Information)

Table 5. 3D control volume mesh (taken from [16])

5 Conclusion

Meshing tool construction has not generally been approached using modern
software engineering techniques, even though being sophisticated pieces of soft-
ware makes them an appropriate application area.

The software product line approach intends to reuse all the artifacts that
are built during software development in new products that fall within the
SPL scope. The PLA is one of the most important assets in a SPL because
it determines the non functional properties the resulting software will have.
Having a well defined architecture allows us to integrate components, either in
house developed, commercial or open source, such as the visualizer in our SPL
case.

We proposed a layered PLA for a meshing tool SPL and we showed that a
variety of diverse meshing tools are consistent with the proposed structure. By
formally specifying the PLA using xADL, we were also able to iterate until we
designed an architecture that was simple enough to be easily understood, while
general enough to be able to capture the abstractions behind a wide variety of
meshing tools. Having an integrated graphical and textual modeling tool such
ArchStudio, greatly helped in this process.

The proposed PLA can be used as a road map to build almost any meshing
tool. Different dimensions, algorithms, strategies and criteria will determine the
concrete implementation of the component types identified as part of the PLA
that will be part of each different meshing tool. We plan to build a more com-
plete set of different implementations of the component types in the PLA and
a software framework based on the PLA structure as a “meshing tool factory”

A Meshing Tool PLA 13

for designing different tools that may be automatically built by combining the
chosen implementation for each component type.

There are currently some astronomical applications being developed based
on the proposed PLA, mainly using the proposed layered structure as a guide-
line.

Acknowledgments

The work of Nancy Hitschfeld-Kahler was partially supported by Fondecyt Proj-
ect N◦1061227. The work of Pedro O. Rossel was partially supported by grant
No. UCH 0109 from MECESUP, Chile.

References

1. ArchStudio 3. Architecture-Based Development Environment. Insti-
tute for Software Research, University of California, Irvine, 2005.
http://www.isr.uci.edu/projects/archstudio/.

2. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
SEI Series in Software Engineering. Addison-Wesley, 2nd edition, 2003.

3. Maŕıa Cecilia Bastarrica and Nancy Hitschfeld-Kahler. Designing a product family
of meshing tools. Advances in Engineering Software, 37(1):1–10, January 2006.

4. Maŕıa Cecilia Bastarrica, Marcelo López, Sergio F. Ochoa, and Pedro O. Rossel.
Using the Integrated Notation for Defining a Product Line Architecture. In
Proceedings of the First Conference on the PRInciples of Software Engineering,
PRISE’04, Buenos Aires, Argentina, November 2004.

5. Maŕıa Cecilia Bastarrica, Sergio F. Ochoa, and Pedro O. Rossel. Integrated No-
tation for Software Architecture Specifications. In Proceedings of the XXIV In-
ternational Conference of the Chilean Computer Science Society, SCCC’04, pages
26–35, Arica, Chile, November 2004. IEEE Computer Society.

6. Jan Bosch. Design and Use of Software Architectures. Adopting and Evolving a
Product Line Approach. Addison Wesley, first edition, May 2000.

7. Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad. Pattern
Oriented Software Architecture: A System of Patterns. John Wiley & Son Ltd.,
August 1996.

8. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures.
Views and Beyond. SEI Series in Software Engineering. Addison Wesley, 2002.

9. Paul Clements and Linda M. Northrop. Software Product Lines: Practices and
Patterns. Addison Wesley, first edition, August 2001.

10. Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A Comprehen-
sive Approach for the Development of Modular Software Architecture Descrip-
tion Languages. ACM Transactions on Software Engineering and Methodology,
14(2):199–245, 2005.

11. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry. Algorithms and Applications. Springer, second edition, 1998.

14 Bastarrica et al.

12. Rod W. Douglass, Graham F. Carey, David R. White, Glen A. Hansen, Yannis
Kallinderis, and Nigel P. Weatherill. Current views on grid generation: summaries
of a panel discussion. Numerical Heat Transfer, Part B: Fundamentals, 41:211–
237, March 2002.

13. Ahmed H. ElSheikh, W. Spencer Smith, and Samir E. Chidiac. Semi-formal
design of reliable mesh generation systems. Advances in Engineering Software,
35(12):827–841, 2004.

14. Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven
Schönherr. On the design of CGAL a computational geometry algorithms library.
Software - Practice and Experience, 30(11):1167–1202, 2000.

15. Martin Fowler. Who Needs an Architect? IEEE Software, 20(5):11–13, 2003.
16. Nancy Hitschfeld, Paolo Conti, and Wolfgang Fichtner. Mixed Element Trees:

A Generalization of Modified Octrees for the Generation of Meshes for the Sim-
ulation of Complex 3D Semiconductor Device Structures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 12(11):1714–1725,
November 1993.

17. Nancy Hitschfeld-Kalher, Carlos Lillo, Ana Cáceres, Maŕıa Cecilia Bastarrica,
and Maŕıa Cecilia Rivara. Building a 3D Meshing Framework Using Good Soft-
ware Engineering Practices. In Proceedings of the 1st International Workshop on
Advanced Software Engineering, Santiago, Chile, August 2006.

18. Rohit Khare, Michael Guntersdorfer, Peyman Oreizy, Nenad Medvidovic, and
Richard N. Taylor. xADL: Enabling Architecture-Centric Tool Integration with
XML. In 34th Annual Hawaii International Conference on System Sciences
(HICSS-34), Maui, Hawaii, January 2001. IEEE Computer Society.

19. Carlos Lillo. Analysis, Design and Implementation of an Object-Oriented System
that allows to Build, Improve, Refine and Visualize 3D Objects. Master’s thesis,
Departamento de Ciencias de la Computación, Universidad de Chile, 2006. (in
Spanish).

20. Nenad Medvidovic and Richard Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Transactions on
Software Engineering, 26(1), January 2000.

21. Silvio Merazzi, Edgar Gerteisen, and Andrey Mezentsev. A generic CAD-mesh
interface. In Proceedings of the 9th Annual International Meshing Roundtable,
pages 361–370, October 2000.

22. Anton V. Mobley, Joseph R. Tristano, and Christopher M. Hawkings. An Object-
Oriented Design for Mesh Generation and Operation Algorithms. In Proceedings
of the 10th Annual International Meshing Roundtable, Newport Beach, California,
U.S.A., October 2001.

23. Malcolm Panthaki, Raikanta Sahu, and Walter Gerstle. An Object-Oriented Vir-
tual Geometry Interface. In Proceedings of the 6th Annual International Meshing
Roundtable, pages 67–81, Park City, Utah, U.S.A., 1997.

24. Sunghwan Roh, Kyungrae Kim, and Taewoong Jeon. Architecture Modeling Lan-
guage based on UML 2.0. In Proceedings of the 11th Asia-Pacific Software En-
gineering Conference (APSEC 2004), pages 663–669, Busan, Korea, November
2004. IEEE Computer Society.

25. Robert Schneiders. Meshing software, 2006. http://www-users.informatik.-

rwth-aachen.de/ roberts/software.html.
26. H. Si and Klaus Gärtner. Meshing Piecewise Linear Complexes by Constrained

Delaunay Tetrahedralizations. In Proceedings of the 14th International Meshing
Roundtable, September 2005.

A Meshing Tool PLA 15

27. R. Bruce Simpson. Isolating Geometry in Mesh Programming. In Proceedings
of the 8th International Meshing Roundtable, pages 45–54, South Lake Tahoe,
California, U.S.A., October 1999.

28. Spencer Smith and Chien-Hsien Chen. Commonality Analysis for Mesh Gener-
ating Systems. Technical Report CAS-04-10-SS, Department of Computing and
Software, McMaster University, October 2004.

29. Anne Taulavuori, Eila Niemelä, and Päivi Kallio. Component documentation—
a key issue in software product lines. Information and Software Technology,
46(8):535–546, 2004.

30. Timothy J. Tautges. The common geometry module (CGM): A generic, extensi-
ble, geometry interface. In Proceedings of the 9th Annual International Meshing
Roundtable, pages 337–347, New Orleans, U.S.A., October 2000.

31. Rob C. van Ommering. Building product populations with sofware components. In
Proceedings of the 22rd International Conference on Software Engineering, ICSE
2002, pages 255–265, Orlando, Florida, USA, May 2002. ACM.

32. Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The
Koala Component Model for Consumer Electronics Software. IEEE Computer,
33(3):78–85, 2000.

33. David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering: A
Family Based Software Development Process. Addison-Wesley, 1999.

