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Abstract. The Self Distributing Virtual Machine (SDVM) is a middle-
ware concept to form a parallel computing machine consisting of a any
set of processing units, such as functional units in a processor or FPGA,
processing units in a multiprocessor chip, or computers in a computer
cluster. Its structure and functionality is biologically inspired aiming
towards forming a combined workforce of independent units (”sites”),
each acting on the same set of simple rules.
The SDVM supports growing and shrinking the cluster at runtime as
well as heterogeneous clusters. It uses the work-stealing principle to
dynamically distribute the workload among all sites. The SDVM’s en-
ergy management targets the health of all sites by adjusting their power
states according to workload and temperature. Dynamic reassignment
of the current workload facilitates a new energy policy which focuses on
increasing the reliability of each site.
This paper presents the structure and the functionality of the SDVM.

1 Introduction

In the past, the user’s increasing demand for capacity and speed was usually
satisfied by faster single processors. Nowadays the increase in clock rates seems
to have slowed down. The exploitation of parallelism is one way to enhance
performance in spite of stagnating clock speeds. Its use isn’t limited to the
field of supercomputers; nowadays even Systems-on-Chip(SoC) with a lot of
processors, so called MPSoCs, are in production.

Task scheduling and data migration for parallel computers, especially if
embodied as a cluster of processing units, are complex problems if solved cen-
tralized. The use of biologically-inspired mechanisms can reduce complexity
without sacrificing performance. The properties of biological systems like self-
organization, self-optimization and self-configuration can be used to ease pro-
gramming and administration of parallel computing clusters. These properties
can be implemented efficiently using a paradigm common in complex biological
systems: the collaboration of autonomous agents.

⋆⋆ Parts of this work have been supported by the Deutsche Forschungsgemeinschaft
(DFG).
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Using biologically inspired techniques to implement a parallel computing
system is only the means to the end in meeting user requirements. With the in-
troduction of parallel computing, speed is not the only property which users are
interested in; others too have come to the fore. In the following, several of those
properties are presented. These properties focus on MIMD computer clusters.
Such a cluster consists of an arbitrary number of independent processing units
called sites which are connected using any kind of network.

Despite the performance of parallel computers the computations may take
serveral days to finish. For large scale machines like the ASCI-Q machine, the
mean time between failures (MTBF) for the whole system is estimated to be
mere hours [1]. Thus system stability even in the face of failure of single compo-
nents is an important goal. Parallel systems must therefore detect failures and
intercept them transparently and unnoticed by the user. Presently, a system
won’t be able to repair itself physically, but the other sites should adapt to the
changed environment and take over the work from the faulty site. This could
be termed ”self healing” of a system.

A main cause for the limited use of parallel computers lies in the challeng-
ing programmability: For single processors, scheduling in time is sufficient, but
for multiprocessor systems, the spatial dimension has to be considered, too.
Spatially and timely scheduling of the chunks of a program is a non-trivial
optimization problem for the programmer, especially as the parallelism of an
application can vary greatly over execution time and depends on the input data.
Therefore a possible solution would be to relieve the programmer of the spa-
tial scheduling at all, and let the system decide it at runtime using convenient
heuristics automatically. The resulting transparent parallelization is similar to
the goal of self-optimization, known from the subject of organic computing [2].

Experience shows that the performance demands increase over time. To
be cost-effective, it suggests itself to prolong the life-span of a system instead
of replacing it with a new system every few years. In the case of a parallel
system this can be done by adding new processors or computers to increase its
processing power. A parallel computing middleware should therefore support
scalability . The benefit even increases if the growing and shrinking of the system
is possible at runtime to cope with short-time processing power demand peeks.

In the beginning parallel systems were implemented as dedicated clusters.
These days they more and more consist of clusters of workstations, multi-
processor embedded systems, or even multicore FPGA-based devices. Thus en-
vironmental parameters change frequently and sometimes fast. Configuration
by hand of such a dynamically changing system is hard or even impossible.
Thus it should configure itself autonomously . Concerning parallel systems, for
well-founded configuration decisions the sites must be informed about the other
sites’ load, speed, etc., automatically. This can be denominated as the goal of
self-configuration.

In section 2, the concept of the SDVM and its underlying mechanisms are
described. After a list of some speedup results in section 3, this paper closes
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with a conclusion in section 4. The SDVM prototype is implemented in C++
and its complete source code is freely downloadable [3].

2 The SDVM

The Self Distributing Virtual Machine (SDVM) is a middleware to form an
adaptive parallel system which is applicable to different granularities like func-
tional units on an FPGA, processors in a multiprocessor SoC, or a cluster of
customary computers(see Figure 1). The SDVM is currently implemented as a
prototype in software running as Linux daemons on a workstation cluster.

site 1

site 2

site n...
network

Fig. 1. The SDVM connects processing units (sites) to form a cluster, regardless of
the topology of the connection network.

The SDVM actually implements several of the concepts inspired by biolog-
ical systems, namely the cooperation of somewhat autonomous systems, self-
controlled adaptivity to changing environments (as the size of the cluster or its
heterogeneity) and decentralization of task scheduling. The sites that build the
cluster are basically equal with no master or fixed division of functions. Fur-
thermore, the SDVM supports self-healing by the use of checkpoints, to ensure
proper program execution irrespective of failing cluster members.

2.1 The concept

The SDVM can be seen as a dataflow machine augmented with a distributed
shared memory: An application to be executed by the SDVM is cut into several
chunks of code, the microthreads. Each microthread needs certain parameters
when run, therefore these parameters have to be collected prior to execution
of the microthread. The data container collecting the parameters is called the
microframe (see Figure 2).

IDMF IDMT

input parameters [...]

double romberg(double a, double b,
int N){

  double sum;

  int i, j;

  double res;

  double T[25][25];

  T[0][0] = (b-a) * (f1(a) + f1(b))

  if (N > 25)return 0;
  for(i=1;i<=N;i++){

    sum=0;

[...]target addresses

microframe microthread

...

...

Fig. 2. Microframe and Microthread

A microframe is filled over time with the parameters it awaits. When all pa-
rameters have been received, the corresponding microthread is executed using
these parameters and in the process calculates results needed by other mi-
croframes as parameters. Microframes can travel throughout the cluster while
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being filled. As the corresponding microthread is only needed when they are
actually executed, the microthread is not included in the microframe to lessen
bandwidth consumption when moving from one site to another.

While a microframe is being filled, the SDVM has not yet decided which
site will execute this microframe with its corresponding microthread. When
a site autonomously decides to execute a microframe locally, it finally needs
the corresponding microthread which is then read from the local code cache
or copied over the network. In this way the application itself (in terms of its
microthreads) spreads automatically throughout the cluster over time—the sites
will request just what they need and when they need it.

Microframes are not the only way to exchange data between parts of a
program. The entirety of the SDVM provides a distributed shared memory
(DSM) like SCI [4] and FLASH [5]. SDVM-programs can allocate and use this
memory just like heap memory is used in C/C++. The memory addresses
pointing to allocated memory regions can be passed as microframe parameters
between microthreads. This global memory consists of the sum of all sites’
memories. If a site is shut down (shrinking the cluster) the data stored in its
local part of the global memory is pushed out to other sites before.

Any site which has nothing to do will ask other sites for work and will in
return get a microframe which is ready for execution, if available. Any new site
joining the cluster will just notice that its work queue is empty and act like
any site which is out of work. In this way a site autonomously provides itself
with work. This is called the work stealing principle (also referred as ”receiver-
initiated load balancing”), as opposed to the work sharing principle (”sender-
initiated load balancing”) where overloaded sites try to push away work to less
loaded sites. Nearly all load balancing mechanisms base on work sharing, work
stealing, or a combination of both [6]. On heavy loaded clusters work sharing
leads to an even higher burden due to unsuccessful load balancing attempts.

As the SDVM provides a way of virtualization, it can connect heterogeneous
machines to form a cluster: Several underlying architectures, platform types and
operating systems are supported. If a site wants to execute a microthread which
doesn’t exist in its needed binary format yet, it must be generated somehow.
If the SDVM is used as a middleware for computer clusters, it will request
the source code and compile it on-the-fly and at runtime using the locally
installed compiler (like gcc). The results show that the compilation time is fast
enough, because the microthreads are small chunks of code and don’t have to be
linked (this is done automatically by the SDVM when receiving a microthread
anyway). When the SDVM is used as a firmware for MPSoCs, techniques like
code morphing can be used to translate the binary of the microthreads.

As a middleware the SDVM connects several machines. In contrast to
client/server concepts like CORBA [7], the machines are treated equally,
though. The SDVM cluster consists of the entirety of all sites, which are SDVM
daemons running on participating machines. The number of sites, their comput-
ing power, and the network topology between them is irrelevant, as the SDVM
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automatically adapts to any cluster it is run on, even when the cluster grows
or shrinks at runtime by adding or removing sites [8].

The SDVM daemon consists of several managers with different fields of re-
sponsibility. Some deal with the execution of code fragments, some attend to
communications with other sites, some are concerned with the actual decision-
making (see Figure 3). The latter implement the self-x features of the SDVM.
They are described in the next sections.

Processing
Manager
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Memory

I/O
Manager

Code
Manager

Scheduling
Manager

Site
Manager

Cluster
Manager

Message
Manager

Security
Manager

Network
Manager

execution layer

decision layer

communication layer

Energy
Manager

SDVM
daemon

Fig. 3. An SDVM daemon consists of several managers.

2.2 The execution layer

The execution layer is responsible for the handling and execution of the code
and data. Furthermore it provides I/O virtualization.

Microframes waiting for more parameters as well as global memory objects
are kept in the attraction memory. If a data object is requested, it is first sought
locally. In case of a miss the site it actually resides on is determined and then
the data object is moved or copied to the local site.

The microthreads are only requested when they are to be executed lo-
cally. The local caching of microthreads and the compilation of microthreads,
if needed, is done by the code manager.

The processing manager executes the microthread/microframe pair. To ac-
complish this, it provides an interface for the microthread to read the parame-
ters of its microframe. When the execution has finished the processing manager
deletes the no longer needed microframe. To hide network latencies when e.g.
an access to a remote part of the global memory is needed, the processing man-
ager may execute several microthread/microframe pairs concurrently. Test runs
suggest that a number of 5 parallel processing manager threads are a good value
for applications having much communication between the microframes.

The input/output manager manages user interaction and accesses local re-
sources like hard disks or printers.

2.3 The communication layer

The communication layer manages sending and receiving of messages between
sites. The message manager is the central communication hub for all other
managers. It generates serialized data packets to be sent to other sites, adds
information about the local site and determines its address before optionally
passing them to the security manager. This manager may then encrypt and sign
the data packets to avoid e.g. eavesdropping and spoofing. On the receiving
site it will validate the signature and decrypt the message, if necessary, before
passing it to the message manager.
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The network manager is the part of the SDVM which is responsible for
the actual transportation of the data packets. For the currently existing cluster
realization it uses TCP/IP to send data to other sites. For an implementation
of the SDVM on SoCs or multiprocessor chips it would have to use the on-chip
network to pass data to the receiving site.

2.4 The decision layer

While the responsibilities of the managers in the execution and communication
layers are more or less usual in computer systems, the decision layer implements
the more sophisticated parts and the self-x-properties of the SDVM.

The SDVM features distributed scheduling which is done by the scheduling
manager. Most scheduling methods assume a central calculation of the exe-
cution order, combined with a centrally managed load balancing. They take
advantage of the accord that all information is collected on one site and thus
good scheduling decisions can be made. However, in big clusters this central
machine may become a bottleneck or even a single point of failure.

The SDVM works without client-server concepts as far as possible. Therefore
the scheduling is done autonomously by each site. The sites therefore don’t have
knowledge about the current global execution status of the application, but only
about the locally available executable microframes. Some information can be
extracted in advance, though: The dataflow graph of the application contains
all microthreads and therefore the critical path of an application and regions
of high data dependencies can be detected. These parts will then be executed
with higher priority resp. executed preferably on the same site.

The site manager collects data about the local site, e.g. processing speed,
current load, number of applications the site works on, etc. This information
is then passed (piggyback on other messages) to other sites’ cluster managers,
measuring the current network latency between these sites on the way. The
cluster manager then possesses performance data about any site it directly
works together with. Thus it can provide hints on which microframes to pass
to which site. For example, a slow site with long network latencies will not be
given a microframe which lies in the critical path of the application—another
microframe which will be needed a bit later and therefore can afford to be
calculated slower would be a better choice.

Another job of the cluster manager is the crash management. If a site does
not respond to messages anymore, it is (after a while) regarded as crashed. The
cluster is informed about the crash, then the applications which were executed
on this site are determined by the other sites, as these applications have to
be restarted. To avoid a whole restart of an application the SDVM features a
checkpointing mechanism: Any microthread may not only apply its calculation
results to the microframe awaiting them but also to a special microframe, the
checkpoint frame (see Figure 4(a)). When a crash occurs, the site holding the
youngest complete checkpoint frame is determined. This site then creates a
recovery frame which recreates the not-yet executed microframes and reapplies
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Fig. 4. The checkpointing mechanism works on the CDAG (controlflow dataflow
allocationflow graph) [9] of an application

the parameters to them (see Figure 4(b)). The application then runs on from
that point undisturbed.

2.5 Freedom of adaptivity

The optimization success of an application’s execution depends on how the
current environment properties can be dealt with. Therefore an application
which doesn’t make too many restricting assumptions before runtime is more
easily optimized at runtime. Typical assumptions are e.g. the platform type the
application will be run on, the performance needed, the size of the cluster, the
degree of parallelism, etc. The later those degrees of freedom are exploited and
actual information taken into consideration, the more this information will be
accurate with regard to the execution environment—and thus the system be
made adaptive and the optimization improved.

In order to cope with the mentioned degrees of freedom, the SDVM acts
as a virtualization layer which hides most properties of the underlying hard-
ware from the applications. Therefore the SDVM may decide single-handedly
where and when to execute specific microframes. In the area of reconfigurable
hardware, the SDVM may even decide to resize the cluster by configuring ad-
ditional processors and thus react to performance demand peeks. Based on
available space and application requirements microthreads themselves can be
configured as hardware at runtime and thus executed much faster.

The support for heterogeneous hardware architectures and varying cluster
sizes makes it possible to upgrade hardware while the software runs on: Add
new hardware and shut down the old.

2.6 Reliability and dynamic power management

The SDVM features another interesting concept which can be useful to enhance
the reliability of a cluster or better yet of a multiprocessor chip it runs on.
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The energy manager monitors the current load of the whole cluster and decides
whether more processing power than needed is available. In this case it will send
some sites a signal to work in a slower mode or even shut down completely. This
reduces energy consumption and avoids overheating of processors. In case the
load increases sites will get a signal to recur from sleep or shutdown mode.

Since energy management has an impact on the reliability of a system [10],
the reliability can be further enhanced by introducing a new energy manage-
ment policy. Unlike usual strategies which try to minimize energy consumption
or reduce it without sacrificing performance, the new policy aims towards a
minimal number of temperature changes. Thermal cycles induce mechanical
stress which is a major contributor to chip failure [11]. Thus reducing thermal
cycles reduces mechanical stress and therefore prolongs lifetime.

The SDVM is well suited for this kind of energy management policy, because
the workload distribution adapts automatically to the changing performance of
each site. Sites which fail to request work are not slowed down immediately in
order to reduce thermal cycling. Similarly, sites having high load levels are not
put to a higher performance level immediately if there are still underworked
sites present in the cluster.

A method where any site may freely decide for itself its energy status may
result in a situation where all sites simultaneously decide to shut down; there-
fore, as a mitigation of the distributed paradigm, the energy managers use an
election algorithm to define a master which then is the only one to decide. The
master may even decide to shut down its own site or to quit being the master;
then the election is simply started again among the remaining sites.

3 Results

In this section some results are shown for a simple application, namely the
Romberg numerical integration algorithm [12]. This algorithm partitions the
area to be measured into several portions of constant width. Those can be
measured independently and the results added eventually. The first microthread
will generate a target microframe where the results are finally added and then, in
our example, 100 or 150 other microframes containing the Romberg algorithm,
which can be run in parallel.

The SDVM needs a lot of calculations and communication to distribute
code and data. Therefore a question is whether the additional overhead is small
enough to maintain the concept.

First, it shall be demonstrated how much overhead is generated by using
the SDVM. To show this, run times on a stand-alone SDVM site are compared
with the run times of a corresponding sequential program (see Figure 5). This
overhead appears to be about 2%, even if the microthreads have to be compiled
before execution.

In the next step, it has to be shown that the speedup is in expected regions.
On a cluster of identical machines (Pentium IV, 1.7 GHz), a value for the
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Fig. 5. Romberg algorithm: Comparison
of the run times (in seconds) of a sequen-
tial program and the SDVM with one
site. Values are given with and without
compilation time, respectively, for width
100 and 150.

Fig. 6. Romberg algorithm: Run times
and speedup depending on the number
of sites

1 site 2 sites 4 sites

width 100 128 65 34
width 150 193 97 51

speedup width 100 1 1.97 3.76
speedup width 150 1 1.99 3.78

speedup is shown in Figure 6. It reaches roughly the number of participating
sites, which is a good result.

4 Conclusion

The Self Distributing Virtual Machine is a middleware which connects any func-
tional units to form an adaptive parallel computing system. Both structure and
functionality are biologically inspired as it is built from autonomous interact-
ing units, features decentralized decision making and supports self-healing from
cluster member faults. The SDVM detects failed members, removes them from
the cluster and enables applications to efficiently recover from failure by the
use of checkpointing.

The SDVM is self-organizing as a new SDVM-enabled unit which wants to
join only needs a communication channel to a site which is already part of the
cluster. As sites may join or leave at runtime without disturbing the execu-
tion of running applications, the cluster may grow or shrink to any convenient
size, moreover regardless of the sites’ operating systems, hardware or even the
network topology between them. The cluster scales automatically.

It is self-optimizing as it automatically distributes data and program code
to sites where it is needed, thereby dynamically balancing the workload of the
whole system. Furthermore, this vastly facilitates a hardware upgrade while
the system is running by shutting down old hardware and signing on new
hardware—the applications will be relocated automatically and continue to run
nonetheless. Similarly, resources can be added temporarily to cope with short
term peeks in computing power demand.

The distributed scheduling of the SDVM provides the foundation for a new
energy management policy which can improve the reliability of the participat-
ing systems. It differs from usually applied policies in its focus to reduce the
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number of thermal cycles of the system while minimizing the negative impact
on performance. The tradeoffs between performance and reliability, and number
of thermal cycles and mean temperature levels are currently investigated.

A prototypical implementation of the SDVM has been created and evaluated
for the area of cluster computing. The prototype and its full source code is freely
downloadable [3]. The SDVM is currently being adapted to multi-core processor
systems.
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