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Abstract. The rising complexity of distributed computer systems give
reason to investigate self-organization mechanism to build systems that
are self-managing in the sense of Autonomic and Organic Computing.
In this paper we propose the Artificial Hormone System (AHS) as a
general approach to build self-organizing systems based on networked
nodes. The Artificial Hormone System implements a similar information
exchange between networked nodes like the human hormone system
does between cells. The artificial hormone values are piggy-backed on
messages to minimize communication overhead.
To show the efficiency of the mechanism even for large scale systems
we implemented a simulation environment in Java to evaluate different
optimization strategies. The evaluations show that local information is
enough to meet global optimization criterion.

1 Introduction

State of the art computer and software systems raise the level of complexity to
unexpected heights. Upcoming ubiquitous environments with their huge amount
of different devices and sensors aggravate the situation even more. The need for
self-managing systems, as proposed by IBM’s Autonomic Computing [1] and
the German Organic Computing [2] initiative, has never been more important
than today. Future systems are expected to comprise attributes motivated by
self-organizing natural systems as e.g. organisms or societies.

Self-organization seems to be embedded in biological systems in many ways.
In the human body it arises at lower levels (e.g. the growth of an organism
controlled by hormones) as well as at higher levels (the regulation of the ho-
moeostasis by the autonomic nervous system).

We developed the AMUN middleware [3] to foster the development of ubiq-
uitous computing environments such as Smart Office environments [4]. The aim
of the middleware is to build service-oriented applications that can be distrib-
uted on networked nodes. The services which can be distributed and relocated
between the nodes are monitored to collect information about their runtime
behavior and resource consumption.
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To implement the autonomic/organic goals within the AMUN middleware
we propose a self-organization mechanism based on the human hormone sys-
tem. The basic idea is to use the messages from services as containers for the
information of our Artificial Hormone System like the hormones use the blood
circuit in the human body. Each node locally collects information and packs
its information onto outgoing messages. The important point is that no extra
communication mechanism is used and no explicit messages are generated to
exchange the information for the self-organization.

The remainder of the paper is structured as follows: In section 2 the human
hormone system is described from an abstract point of view with focus on the
mechanisms that were transferred to the Artificial Hormone System. Related
work is presented in section 3. The model of the Artificial Hormone System
is described in section 4 and evaluated in section 5. The paper closes with a
conclusion and future work.

2 Human Hormone System

The human body contains different systems for information transport, depend-
ing on the speed of the stimulus transportation and the size of the affected area.
The central nervous system is used for fast information transport of consciously
given commands whereas the autonomic nervous system and the hormone sys-
tem are mostly detracted from human’s will. Together they regulate the human
body to keep the inner environment as constant as possible, called homoeostasis.

The human hormone system differs from the autonomic nervous system in
the way information is transported. The autonomic nervous system uses elec-
trical impulses, whereas the hormone system uses chemical messengers (hor-
mones). Beside the mostly known way to spread hormones through the blood
circuit to trigger reactions in other parts of the body, a number of other kinds
of messengers are known, which do not influence our Artificial Hormone System
and therefore are not described here (see [5], [6], and [7] for further details).

The hormones spread to the blood circuit can theoretically reach every cell,
but only act on those cells which possess the corresponding receptors. The
hormones bind to the receptors and send their information to the inside of the
cell on a chemical basis. The usage of receptors has two advantages. First the
binding of a hormone can be shortened to designated cells, and second the same
hormone can lead to different effects within different cells.

The reaction of the cells is controlled by the distribution of the activator and
inhibitor hormones. In many cases the production of activator hormones lead
to the production of inhibitor hormones to neutralize the reaction of the cells.
This mechanism is called a negative feed-back loop because of the repressive
effect of the inhibitors.
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3 Related Work

In 1952 Alan Turing published “The Chemical Basis of Morphogenesis” [8].
Inspired by an invertebrate freshwater animal called hydra, he investigated the
mathematical foundations for the explanation of the chemical processes during
a morphogenesis. The hydra has the remarkable feature, that if it is cut in half,
the head end reconstitutes a new foot, while the basal portion regenerates a
new hydranth with a mouth and tentacles. During this process the available
cells are reformed, moved, and redifferentiated to build new tissue without cell
proliferation. One of the application areas of Turing’s reaction-diffusion model
is the generation of textures as described in [9].

The Digital Hormone Model [10] adopts the idea of hormone diffusion to
the distributed control of robot swarms. The equations investigated by Turing
combined with the limited wireless communication capabilities of robots can be
mapped to the reaction-diffusion model known from tissues. The information
of a robot can diffuse to the neighboring robots in vicinity. Simulations showed
that such a distributed control algorithm can be used to control a robot swarm
to fulfill different tasks. The challenges were to find and size targets, to spread
and monitor a region, and to detour obstacles during mission execution.

For peer-to-peer and sensor networks so called Bio-Inspired approaches are
currently investigated. In [11] an approach for a self-organizing peer-to-peer
system in terms of load balancing is described. The authors show by simulation,
that only local knowledge and the distribution of local information to randomly
chosen nodes are sufficient to balance the load of the nodes nearly optimal. For
sensor networks an approach exists that mimics the control loop for the blood
pressure of the human body [12]. Information is disseminated in the network
like hormones in the human body and a feedback loop is used to decide whether
the requested task is already accomplished.

4 Model of the Artificial Hormone System

The AHS consists of four parts that can be directly mapped to their human
counterparts. First we have metrics to calculate a reaction (transfer of a service
in our case), which can be compared to the functions of the cells. Second, the
hormone producing tissues of the human body are influenced by receptors which
observe the environment to trigger hormone production. This behavior is mod-
eled by monitors which collect information locally about the running services
and piggy-back this information onto outgoing messages. Third, monitors for
incoming messages collect the piggy-backed information and hand them over to
the metrics, which is the same as the receptors of the cells does. And fourth,
the digital hormone values carrying the information.

To further reduce the amount of information needed to exchange, we assume
that the digital hormone value enfolds both, the activator as well as the inhibitor
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hormone. If the value of the digital hormone is above a given level, it activates
while a lower value inhibits the reaction.

The AHS will be included into the AMUN middleware to implement the
self-optimization. The services can be relocated during runtime to meet the
optimization criterion of the self-optimization as good as possible. Thus the
model of the AHS must take some requirements into account given by AMUN.
In AMUN services run on the nodes and can be transferred to other nodes. The
services consume resources and the optimization should distribute the services
such that the resource consumption on all nodes is nearly equal. Resources can
be CPU, memory, communication bandwidth, battery status, radio range or
any other resource suitable for the optimization of an application.

The idea of the AHS is to define the resources used for the optimization
process and a corresponding digital hormone value. The model assumes that
the values of the hormone values are normalized to fit into an interval from 0 to
100. The hormone value describes the consumption of a resource. In combina-
tion this can be interpreted that the hormone value represents the percentage
consumption of a resource. As mentioned above these values are calculated by
the monitors which observe the services in the middleware. In the model we
have to define these values initially for the simulation process.

4.1 Mathematical Model

Given k resources, the consumption of resource i for service s is characterized
by ri(s), 1 ≤ i ≤ k, which is normalized such that all resources i satisfy the
condition 0 ≤ ri(s) ≤ 100. The allocated amount of a resource i for all services
s ∈ S(n) (the set of running services on node n) is computed as follows:

Ri(n) =
∑

s∈S(n)

ri(s) (1)

Ri(n) is the total consumption of resource i of all services on node n. In our
model the maximum capacity for each resource i on every node n is always 100.
So any time the inequation 0 ≤ Ri(n) ≤ 100 holds for all resources i and all
nodes n. The number of services assigned to one node is limited by the nodes
capacity and must not be violated by a service transfer.

To balance the load within the network it is assumed that services can be
transferred from one node to another. The cost for the transfer to another node
is modeled as the service transfer cost tc(s), 0 ≤ tc(s) ≤ 100 which can be
different for every service.

Simulation initialization The initial state of our simulation model is chosen
randomly to ensures that our optimization strategies are evaluated under a
great variety of start conditions.

To initialize a node, a random maximum capacity value between 0 and cmax

is chosen for every resource of the node. Then services are created with random



An Artificial Hormone System for Self-organization of Networked Nodes 89

values for each resource. The maximum value for cmax of a node and the re-
sources rimax

of a service are defined prior to the initialization of the simulation.
Services are generated as long as the maximum capacity of the node’s resources
are not exhausted as defined by equation 1. If a node is filled with services the
procedure is repeated for the next node until all nodes are initialized. Regarding
the mean value of the nodes resource consumption, this guarantees that for l

nodes we generate a total load of ≈ l
cmax

2 randomly distributed on all nodes.
On the other hand this assures that the number of generated services differ

from every initialization depending on the number of nodes, the maximum
initial capacity of the nodes cmax, and the maximum values given for the service
resource parameters rimax

.

Service communication model As the digital hormone values are piggy-
backed on the outgoing communication, it is important to model the commu-
nication paths between the services. The communication model relies on the
assumption that certain services prefer to communicate with each other while
others don’t. This behavior can be observed by many systems where the usage
dependencies between different modules or classes are given due to the structure
of the application and the resulting method calls.

Hence each service is assigned a constant set of other services acting as its
communication partners. In each step of the simulation a given number of ser-
vices are chosen to be senders and for each of these services ssend a receiving
service srec is randomly picked out of their communication partners. Assum-
ing that service ssend is running on node nsend and service srec is running on
node nrec the information necessary for the optimization is piggy-backed on the
message sent from nsend to nrec.

If there is a node which had no services assigned during the initialization, it
could not participate in the optimization process thus loosing the free capacity
of this node. In a networked system this situation might occur if a node was
not present during the initial resource allocation phase. Such nodes will con-
nect other nodes of the network sooner or later which is modeled by a certain
probability to choose empty nodes as sender nodes nsend. As these nodes do not
have a predetermined set of receivers a receiver node nrec is randomly chosen
out of all other nodes.

4.2 Transfer Strategies

In the optimization process node nsend adds information about its resource
consumption to a message sent by one of its services to node nrec. Based on
this information node nrec uses a Transfer Strategie (TS) to decide whether
to transfer one of its services to nsend or not. To avoid confusion it should
be mentioned that the terms nsend and nrec refer to the direction of message
passing. However, a service is transferred in the opposite direction from nrec to
nsend. In the following we present different Transfer Strategies from very simple
to more sophisticated ones. All TS have in common that they only have local
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knowledge and those information received from its communication partners.
Furthermore there is no central instance to control the optimization process.
Only the simulation environment has the possibility to check the state of the
nodes after every simulation step to produce evaluation output.

Weighted Transfer Strategy The first TS is called Weighted Transfer Strat-

egy because it uses weights for every resource to weight them in the decision
process. The load of all resources multiplied by the corresponding weights are
added and divided by the total amount of the weights. This value is the load
value of a node. If all weights are one, all resources are treated equally, if one
resource is weighted higher than the others evaluations show that the higher
weighted resource is optimized better at the expense of the others.

If the node nrec got a message from node nsend it subtracts the load value
of nsend from its own. If the result is positive this means that the sender has a
lower load than this node and that a service might be transferred to the sender.
If the result is equal or less than zero, nothing will be done, as the sender’s load
is already equal or higher than the local load. To find a service for the transfer
the loads of all services are compared to the half of the load difference and the
service with the minimal distance to that value will be chosen for the transfer,
as it best adjusts the load values of both nodes.

Transfer Strategy with Dynamic Barrier This TS uses a barrier to sup-
press the transfer of services. Evaluations showed, that the Weighted Trans-
fer Strategy produces a high amount of service transfers beyond the estimated
value. The TS with Dynamic Barrier continuously calculates the gain that could
be obtained if a service would have been transferred. The dynamic barrier rises
if the gain falls and vice versa.

The barrier can be calculated with a linear, an exponential, and a logarith-
mic function, while the latter produces the best results in terms of responsive-
ness due to load changes and attenuation behavior.

Transfer Strategy with Load-Estimator The problem of the Weighted TS
is the missing knowledge about the total system load. If every node would know
the load of all other nodes the mean load could be calculated and every node
could trigger or prevent transfers depending on the load of the receiver and the
sender node. With this TS a node keeps the last n load values of its sender
nodes and calculates a mean load value. A service will only be transferred, if
the senders’ load is below and the local load above this value. A transferred
service would not only optimize the load between the two nodes but also the
overall load of the system, which is not always the case with the Weighted TS.

The TS with Load-Estimator is the best TS in terms of required service re-
locations. It nearly reaches the calculated theoretical optimal value. The draw-
back of this Strategy is the missing tolerance to dynamic service behavior. If
the services change their load dynamically the strategy tries to further optimize
the system and thus produces unwanted service relocations. The same applies
for the Weighted TS.
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Hybrid Transfer Strategy The fourth TS combines the advantages of the
TS with Load-Estimator and the TS with Dynamic Barrier. At the beginning
of the optimization process only the TS with Load-Estimator is used. If the
change of the calculated estimated load is less than 10% within two consecutive
steps, the TS with Dynamic Barrier is used additionally which results in an
attenuated transfer behavior especially in case of dynamically changing service
loads.

5 Evaluation

To evaluate the self-organization of the AHS we developed a simulation envi-
ronment in Java. For the simulations we chose three resource parameters for
the optimization. The different TS were simulated and the service transfers and
the mean error of the average resource consumption have been measured. The
simulator uses steps to perform the calculation and produces output after every
step. We ran every simulation with 1000 nodes and 2000 steps a 100 times to
take into account different starting conditions due to the random initialization
process of the simulator. Thus we can show that the TS are independent of the
initialization and produce good and stable results.

5.1 Service Transfers

Figure 1 shows the amount of service transfers of the different Transfer Strate-
gies and the mean error of the average resource consumption. The mean error
is the mean difference of a node’s resource consumption from the expectation
of the resource consumption. This value shows how good the algorithm reaches
the theoretical optimum. The charts show that all four TS achieve good op-
timization results with a mean error ranging from 0.62 to 1.47 with varying
amounts of service transfers. The Weighted TS needs about 5300 transfers, the
Dynamic Barrier 3000, the Load-Estimator needs about 2300, and the Hybrid
TS uses about 1750 transfers after 2000 simulations steps.

The mean resource consumption of a node for the simulations was 41,25.
The lowest mean error reached with the TS with Load-Estimator is 0,62. This
means that the optimization achieves 98,5% of the theoretical optimum. The
least service transfers are generated by the Hybrid TS which achieves a mean
error of 1,47 resulting in an optimization quality of 96,5% of the theoretical
optimum. The Hybrid TS offers the best trade-off between service transfers
and optimization quality.

With the amount of produced services during the initialization phase and
the mean error at the beginning of the simulation the theoretical amount of ser-
vice transfers needed to optimize the network can be calculated. For the above
simulations this value is about 2300 service transfers. This implies that the TS
with Load-Estimator produces the best result with the least error and that the
Hybrid TS does not utilize all transfers as the dynamic barrier suppresses those
transfers with a low gain.
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Fig. 1. Service transfers and the corresponding mean errors for the different TS.

Variation of Node Number To test the scalability of the systems we sim-
ulated networks with 100 to 5000 nodes. The number of services created is
directly proportional to the number of nodes as expected from the initialization
as described in section 4.1. Figure 2 shows that the service transfers increase
only linear with the amount of nodes and services. The mean error remains
nearly constant for all TS.
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Fig. 2. Service transfers and mean error of the TS at varying node numbers.

Dynamic Services To evaluate the TS in a dynamic environment, we sim-
ulated a dynamic behavior of the services. Therefore a predefined amount of
services change their resource consumption such that they raise or lower their
resource consumption, hold that new value for a while and return to the initial
value.

As expected the TS with Dynamic Barrier and the Hybrid TS tolerate the
changes of the services’ resource consumption while the other TS begin to os-
cillate resulting in a dramatic increase in service transfers. For both evaluations
we defined 10% of the services to change their resource consumption up to 50%
of the current value. The left chart of figure 3 shows the results if the change
takes 10 simulation steps and 100 steps for the service to rest at its normal
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Fig. 3. Service transfers of the different TS with dynamic services.

level before the next change. The left chart shows the results for a 50 steps long
change while the idle time is 100 steps which.

6 Conclusion and Future Work

In this paper we proposed the Artificial Hormone System for self-organization
in networked systems. Derived from the human hormone system we developed
a distributed algorithm that has neither a central control nor complete knowl-
edge about the system. The organizational information is piggy-backed on top
of the messages exchanged between the nodes of the networked system. The
general approach of the AHS is described and implemented in a Java simulaton
environment.

Evaluations showed that the AHS distributes services of networked nodes
nearly optimal in terms of resource consumption and that the effort needed for
larger networks increases only linear with the amount of nodes. Further eval-
uations regarding dynamic process behavior showed that the Hybrid Transfer
Strategy tolerates load changes. The Hybrid Transfer Strategy is able to adapt
the barrier to the mean load change, thus only few additional service transfers
are produced due to dynamic process behavior.

Future work will be to implement and evaluate the AHS in AMUN and to
further investigate the latencies produced by a service transfer and the corre-
sponding costs for the optimization algorithm.
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