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Abstract. This paper presents a basic and an extended heuristic to
distribute operating system (OS) services over mobile ad hoc networks.
The heuristics are inspired by the foraging behavior of ants and are used
within our NanoOS, an OS for distributed applications. The NanoOS
offers an uniform environment of execution and the code of the OS is
distributed among nodes.
We propose a basic and an extended swarm optimization based heuristic
to control the service migration in order to reduce the communication
overhead. In the basic one, each service request leaves pheromone in
the nodes on its path to the service provider (like ants leave pheromone
when foraging). An optimization step occurs when the service provider
migrates to the neighbor node with the higher pheromone concentration.
The proposed extension takes into account the position of the node in
the network and its energy.
Realized simulations have shown that the basic heuristic performs well.
The total communication cost in average is just 40% higher than the
global optimum. In addition, both heuristics have a low computational
requirement.

1 Introduction

Distributed systems running on MANETs (mobile ad hoc networks) open a
new spectrum of applications but also bring new challenges. Many interesting
applications in this domain consist of collaborative distributed tasks among
geographically dispersed nodes. However, for a good resource utilization and for
an adequate development of such distributed applications, the support offered
by an operating system (OS) is important. The OS manages the hardware
resources and offers a common system call interface in each node simplifying
the application development.

The objective of this paper is to introduce a basic and extended heuristic
for service distribution used in our OS. NanoOS is a complex, innovative OS
for resource constrained embedded devices able to establish an ad hoc network.
The code of the OS is distributed among the wireless nodes in order to fit into
the small nodes.
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As the OS components (services) are distributed, adapting automatically to
dynamically changing conditions by changing the distribution of functionality
across the ad hoc network is an important issue in our system. This adaptation
should also help to reduce the overhead and the energy consumption. For this
propose, we develop an distribution and migration algorithm based on swarm
intelligence which tries to reduce the communication among different nodes of
the system. As processing speed usually is orders of magnitude higher than
communication speed, this also affect positively the global performance of the
system.

2 Related Work

The academic system called MagnetOS [1] offers a distributed Java virtual ma-
chine that provides an automatic migration of elements of the system trying
to maximize total application lifetime by utilizing power more efficiently. The
migration mechanisms have some similarities with our ant-based migration al-
gorithm but different from our approach, it neither considers the resource avail-
ability in the nodes nor the link quality.

Our problem of placement and migration of the OS services to different
nodes is very similar to a global scheduler that decides where the processes will
be executed in a distributed system.

The static scheduler makes the decisions just with information available at
compilation time. There are several theoretical analysis of the task assignment
problem. Some approaches consider a graph formed by system nodes together
with tasks as vertices and communication costs together with execution costs
as edges without considering a multi-hop network topology ([2, 3, 4]). Other
research deals with multi-hop networks with a complex topology ([5, 6, 7, 8]).

In our approach, we are using a dynamic distributed non-cooperative
scheduling strategy, i.e., the current state of the system is used in order to
drive the migration. Moreover, each service is an autonomous agent that de-
cides itself when to migrate and to which node.

In the area of dynamic distributed scheduling algorithms, there are a lot of
approaches that try to share the load of networked nodes among them ([9, 10]).

Although the algorithms are distributed, they do not take in account the
topology of the network. Moreover, movement of nodes is not considered.

3 Overview of the NanoOS

Our system is composed of three main components: the hardware, the OS and
the application running on top of it (see Fig. 1). The hardware platform consists
of a set of distributed mobile nodes, each one with small processing unit, limited
memory and wireless adapter. Our NanoOS runs on top of such an architecture
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and provides the adequate set of services to the application. Besides the tradi-
tional OS services , the NanoOS provides a set of special services to support
the distributed processing, like migration and distributed synchronization.

In our OS, each application is composed by a set of tasks. The OS provides
a uniform and remotely available system call environment even with movement
of nodes (and connections being broken).

For the purpose of reducing the per node OS footprint and to enable the
execution of a rather complex OS in very hardware constrained nodes, the
NanoOS distributes the services among the nodes. Each node of the system has
just a small part of the services of the complete OS; a group of nodes together
form an instance of the OS. At any instant of time one node may connect and
use a service residing in another node using a remote method invocation (RMI).

The Figure 1 presents an overview of the system. The tasks from applications
use services of the OS. In order to reduce the resource requirement in each
node, the services are shared among different application tasks executed in
other nodes.

The services and tasks can migrate in order to optimize communications.
Moreover, the same migration mechanisms used by the OS services are also of-
fered for application level tasks. Applications’ tasks can offer services to others
and may also automatically migrate. For sake of simplicity, we will speak from
here on simply about migration of services. The main contribution of this paper
is the algorithm presented that is responsible to assign dynamically the OS ser-
vices (or tasks offering services) to nodes trying to minimize the communication
overhead.

4 Service Distribution Using Swarm Optimization

After a service discovery phase (not described here), a communication between
the node of the application task and the node hosting the service is set up.
We now assume a situation where tasks distributed in the system are commu-
nicating with services which are distributed as well. A single path routing is
responsible for finding a good route between the nodes.

Assigment
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Fig. 1. System overview
Fig. 2. Pheromone based service distribution
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The objective of the service distribution is to change the location where
the services (and mobile tasks) are executed (migrating them) during runtime
trying to minimize the communication overhead.

There are possible constraints to the movement of the objects: only to a
direct neighbor (1 hop); within a neighborhood (k hops); or unbounded (infinity
hops). In this paper we are just considering 1 hop movements.

4.1 Load and Communication Models

To support the migration/reconfiguration process, the load of the hardware and
the communication pattern are important information and have to be exposed
to the OS. For this paper, a simplified load model, just considering the amount
of local free memory is used.

In order to model the communication, we create a link metric called virtual

distance and is represented by D(u, v) (d and v are nodes). It ranges from Γ to
Γ + A:

D(u, v) = Γ + A · (1 − (sα
(u,v) · l

β

(u,v) · d
γ

(u,v) · e
ζ

(u,v))
1

α+β+γ+ζ ) (1)

The used metrics are the error rate: e(u,v) ∈ [0, 1] (0 means 100% of error
rate), the live time: l(u,v) ∈ [0, 1] (this metric varies according the relapsed time
of the link, 0 means new link), the delay (correlated with queue): d(u,v) ∈ [0, 1]
(0 means maximum delay, 1 means minimum delay) and the RSSI (received
power): su,v) ∈ [0, 1] (0 means no reception signal).

α, β, γ and ζ define the weight of each metric in the geometrical mean.

4.2 Basic Heuristic for Service Distribution

In our approach we are optimizing the position of the services of the system
through migration, i.e., we try to find the optimal configuration where the
communication overhead caused by the remote requests is minimized. In order
to solve this online discrete optimization problem, we decide to use an ant
inspired algorithm that is described in this section. It is relatively simple and
has shown good performance.

The system is represented by the graph G = (V,E) with nodes V and
bidirectional links E. The nodes correspond to the physical devices and the
links to the wireless connections. The links are weighted with the virtual distance

metric. Additionally, each service instance i ∈ I is of a type p ∈ P . A task a ∈ A

has no type. We will use the word service and task to denote a service instance
and task instance. Each requester r ∈ {I ∪ A} (requester can be services or
tasks) of a service i ∈ I has a service state Si

r. A node v ∈ V has a pheromone
table Pv = [pv

Si
r
]r∈{I∪A},i∈I . This pheromone level represents the request rate

(and traffic) made by the requester r to the service i that are crossing the node
v. In our approach, all nodes are responsible for service distribution, since each
node’s evaluation is based on its local view. Moreover, the needed information
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is constantly changing, due to frequent pheromone updates so that transferring
the decision to just certain nodes would incur an high additional communication
overhead without efficiency gains.

Using an analogy with the ant foraging behavior [11], the services in our
approach are the equivalent of the food source. The calls made by the requesters
are the agents (or ants) and the requesters are the nests. The wireless links form
the paths which the ants can use for movement. While the requests are being
routed to the destination service, they leave pheromone on the nodes.

The pheromone tables in each node are updated according to the equation

pSi
r
(t+1) =

p
Si

r
(t)+δp(h)

1+δp(h) , where the δp(h) is the variation of the pheromone and

it is a function of the size of the packet.
In defined time intervals, each service evaluates whether it should migrate

to another node in order to improve the communication (reduce the overhead).
This neighbor is selected using the following method.

Let v ∈ V be the local node of the service i ∈ I, d ∈ V is the destination
node of the service and Nv, v ∈ V is the set of neighbors of v.

bi
v→d =

∑
x∈{I∪A} pd

Si
x∑

y∈Nv

∑
x∈{I∪A} p

y

Si
x

(2) ei = max(bi
v→d), d ∈ Nv (3)

bi
v→d (eq. 2) represents a force between [0, 1] that the service i migrates

form node v to node d. The selection of the final destination node ei ∈ V of the
service i is made simply using the expression 3.

The migration process is initialized when the sum of pheromones of some
neighbor exceeds a threshold value Θ.

In Fig. 2, a scenario with six nodes is shown. In this scenario, node 1 has
the task α that accesses the service A in node 3. At the same time, tasks β and
γ, located in the nodes 5 and 6 respectively, are also using the service A. Let’s
assume that the pheromone related to the connection α → A in the node 2 is
p2

SA
α

= 0.3, the pheromone of the connection β → A in the node 4 is p4
SA

β

= 0.2

and the pheromone of the connection γ → A is p4
SA

γ
= 0.2. According to equation

2, the force attracting this service to the node 2 is bA
3→2 = 0.3

0.3+0.2+0.2 = 0.428

whereas the force attracting to node 4 is bA
3→4 = 0.2+0.2

0.3+0.2+0.2 = 0.571. This
means that the service A will migrate to the node with higher total pheromone
level, i.e., node 4.

Direction Extension In this section, an identified problem caused by the
greedy nature of the presented algorithm is described and a solution is proposed.
The problem occurs when more than one nearly located tasks request the same
service, but due to the routing algorithm, the requests use different paths. An
example of such situation is depicted in Fig. 3. This situation can only occur if
there are more than two requesters using the same service. It is more likely to
occur when the service is located in a node-dense area of the network.

In Fig. 3, the tasks α, β and γ are accessing the service A in node 3. The
total communication cost C can be calculated using the eq. 4, where A is the
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Fig. 3. Instance that results in wrong
migration

C =

#I∑

k=1

#A∑

l=1

B(ak, il) · D(Q(ak), Q(il))

(4)

set of application tasks: A = {a1, a2, ..., am} and I the set of service (instances)
of the system I = {i1, i2, ..., in}.

The function B(am, in) ≥ 0 gives the average bandwidth utilization by the
requests made by the task am to the service in. The function Q : A ∪ I → V

maps the tasks and services to the hosting node. The objective function of the
service distribution heuristic is to find the assignment function Q that minimizes
the communication cost C (and therefore minimizes the energy consumption,
assuming that communication is a major energy consuming operation). Our
problem is a special instance of the QAP (Quadratic Assignment Problem),
where instead of Euclidean distance between points, the sum of the virtual
distances of the routed path is used (D(v, w), where v, w ∈ V ) and the cost is
given by the bandwidth utilization (B(a, i), where a ∈ A and i ∈ I). It is known
that the QAP is an NP-hard problem [12].

Returning to our example (Fig. 3), as the average bandwidth utilization
is proportional to the pheromone deposited in a node inside the used path,
the total communication cost in this case is 16.2 (calculated using eq. 4). As
the pheromone in the node 2 is higher than in the nodes 4 and 5, the next
step of the basic algorithm would be to migrate the service A to node 2. Here,
the communication cost is 17.4. This result shows that the heuristic selects
the wrong node to migrate to, increasing the total communication cost. This
happens because of the lack of information over not directly connected parts
of the network. The main idea of the improvement is to migrate the service
not to the neighbor with the biggest amount of requests (requests we call also
flow) but to the neighbor whose flow (request traffic) is crossing near to nodes
that are in flows from other requests to the same service. If the defined metric
(virtual distance) has (geographical) norm properties, this will be equivalent to
migrating the service to the geographical direction where the highest amount
of requests is coming from. Two requests coming from task α and β (see Fig.
3) are transversing neighboring nodes in order to reach A, thus, they should
attract the service instead of γ.

In addition, the new migration heuristic is based not just on the pheromone
level to drive the migration of the services, but also on a “potential goodness” of
each node to receive highly loaded services and the energy level of the nodes. The
“potential goodness” ηvi measures how appropriate it is for node v to receive
service i, i.e., whether the node is central in the network and the service i is
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a highly required one. If the complete network would be known by each node,
the centrality could be measured by the sum of the distances to every other
node. The idea of the potential goodness is that services with high flow are
coupled with high probability to locations with good connections to others.
Just using this rule, it is possible to obtain good (but not optimal) placement
of the services in the network [11].

Definitions and heuristic description:

Like in basic heuristic, each node has just local information, we define ηvi

where v ∈ V , i ∈ I and 0 ≤ ηvi ≤ 1 in eq. 5.

ηvi = [1−
∑

g∈Nv

D(v, g)

(#Nv)δ · Dmax

]·h(i) (5) b
i
v→d =

[τ i
v→d]α · [ηdi]

β · [Ed]γ∑

x∈Nv

[τ i
v→x]α · [ηxi]

β · [Ex]γ
(6)

where Nv, v ∈ V the set of neighbors of v and δ ≥ 1 gives the importance of
the number of neighbors, and Dmax gives the maximum allowed virtual distance.
h(i) : I → [0, 1] returns the current request load (how much traffic) that service
i is currently serving (where 0 means the service is idle and 1 means full load).
The energy of the node is given by Ev and 0 ≤ Ev ≤ 1, where 1 means full and
0 empty.

In addition to the already presented pheromone table Pv that stores the
rate of requests that are crossing the node v, there is a second table Fv that
stores the information about the flows that are occurring in the neighbor nodes.
Fv(Si

r) : {I ∪ A} × I → {0, 1} return 1, iff some direct neighbor of the node v

is routing a request from the requester r to the service i.
The idea is that neighboring communications (like the SA

β and SA
γ in the

figure) can be recognized as coming from the same network “direction” by the
service A.

The table Nv is filled without the necessity of any direct exchange of mes-
sages between the node v and the neighbors. Each node just hears the commu-
nication originating from neighboring nodes to fill the table. If the node v has
a directed connection to the node u where the service i is located, it ignores all
the neighboring communication going to to the service i (i.e., for ∀r ∈ {I ∪A},
Fv(Si

r) = 0). This avoids the problem that near the sink (service i) all nodes can
hear each other, resulting on a false interpretation that all requests are coming
from a similar direction.

Each request r to the service i now carries the information collected in the
nodes about which requests to the service i are occurring in neighbor nodes
(i.e., it collects the Nv information of the nodes when traveling to service i).
F (Si

r1
, Si

r2
) : {I∪A}×{I∪A}×I → {0, 1} return 1 iff r1 and r2 are neighboring

requests (flows).
In the original heuristic, the “force” attracting the service i from node v

to node d (bi
v→d, see eq. 2) does not take into account the requests coming
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from near areas of the network. The new bi
v→d is calculated now in two steps.

In the first, the τ i
v→d take in account the pheromone (and neighboring flow

information) and rate the attractiveness of node d (eq. 7).

τ
i
v→d =

∑

x∈{I∪A}

p
d

Si
x

+
∑

x∈{I∪A}

∑

z∈{I∪A}

∑

g∈Nv−{d}

p
g

Si
z
· ⌈pd

Si
x
⌉ · F (Si

z, S
i
x)

∑

y∈Nv

[
∑

x∈{I∪A}

p
y

Si
x

+
∑

x∈{I∪A}

∑

z∈{I∪A}

∑

g∈Nv−{d}

p
g

Si
z
· ⌈py

Si
x
⌉ · F (Si

z, S
i
x)]

(7)

The first term is the same of the eq. 7, that means, the sum of all requests
coming to service i through node d. The second term of the numerator is the sum
of the pheromone from flows that are neighbors of the ones traveling through
d. As already explained, the F function tests whether Si

z and Si
x are neighbor

flows, and the ceiling ⌈pd
Si

x
⌉ checks whether the connection Si

x exists in the node

d (i.e. pd
Si

x
> 0). The denominator normalizes τ (0 ≤ τ i

v→d ≤ 1).

Finally, the eq. 6 returns the new bi
v→d that is the force between [0, 1] that

the service i migrates from node v to node d. This combines the pheromone
value (with direction concept, eq. 7) with the potential goodness of a location
to some service and the available energy. The selection of the destination node
of the migration is made, like the basic heuristic, using eq. 3.

Returning to the example shown in Fig. 3, and assuming that all the nodes
have the same potential goodness and energy (= 1), for sake of simplicity
and that α, β, γ = 1, τA

3→2 = bA
3→2 = 0.3

0.3+0.4+0.4 = 0.27, τA
3→4 = bA

3→4 =
0.2+0.2

0.3+0.4+0.4 = 0.36 and τA
3→5 = bA

3→5 = 0.2+0.2
0.3+0.4+0.4 = 0.36. This result shows

that the service A will migrate correctly to the node 4 or 5 instead of 2 when
the basic version of the heuristic is used.

5 Results

A simulation environment to evaluate our basic ant-based service distribution
heuristic was implemented in C++ using the Boost library for graph algorithms
support. The routing of network traffic was idealized by using Dijkstra shortest
path algorithm.

Instances of the ad hoc network were generated by random selection of
nodes’ position. Moreover, the task force and the services of the OS including
also the usage (dependency) graph were also randomly generated.

The received signal strength (RSSI) was calculated using the free space
model for an isotropic point source in an ideal propagation medium (free-space

path loss with rx,tx unitary gain: Lf = 4πd2

λ
). The limits of the RSSI were

determined using two thresholds that have the meaning of maximum signal
strength and no signal (unit disk graph). The RSSI was the only metric used
to produce the virtual distance (see Equation 1).
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As already said, the objective of the heuristic is to find the assignment
function Q that minimizes the communication cost C (and therefore minimizes
the energy consumption, assuming that the communication is the main energy
consuming operation). We restrict the maximum number of services and tasks
to one per node. This simulates a simplistic resource constraint per node.

We run 10.000 different problem instances and the presented basic heuristic
is applied in the first assignment (randomly generated). Fig. 4 shows the results.
The x-axis shows the number of optimization steps of the algorithm, where the
y-axis shows the average communication cost among all the realized simulations.
The two straight lines depict the average communication cost of the first random
solution to the assignment and the optimal solution (calculated using Branch
and Bound over the QAP). Figure 5 shows the cumulative distribution of the
testing cases.

Fig. 4. Results of the simulations Fig. 5. Cumulative distribution of the
cases

6 Conclusions

In this paper we present the concept of the NanoOS for highly distributed ap-
plications running on ad hoc wireless networks. This OS allows the migration of
application/OS services among nodes. The investigated objective was the mini-
mization of the communication overhead between application tasks and services
in an ad hoc network. We proposed ant-based heuristics. The problem was mod-
eled in detail and the quality of our ant-based method was compared with the
global optimum using simulations of a large number of problem instances.

The realized simulations of the basic heuristic have shown that it performs
well in average (71.97 of cost compared with 50.16 that was the cost of the
optimal distribution), i.e., the total communication cost is in average only about
40% higher than the global optimum obtained using Branch and Bound. The
initial random distribution of services has an average cost of 176.6. Looking at
the cumulative distribution of cases (Fig. 5), we see that for the majority of
test cases (70%), the heuristic could find solutions that cost at most 2 times
the optimal value. In 40% of the cases, the heuristic could find the optimum.
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Moreover, our heuristics have an extremely low computational cost and a
small information dependency, where just local communication is necessary for
the migration decision. They are also adaptive to changes in the network and
can be executed in a distributed manner where each entity tries itself to find a
good assignment.

We are planning to simulate the extended version of the heuristic in order to
compare it with the actual results. We also want to include movement into the
simulation in our future work. Concluding, the results give yet another piece of
evidence that principles encountered in the nature (like agents doing just local
interactions helping to achieve global results) can be transferred to computers
with satisfactory results.
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