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Abstract. We present a learning-based method for model completion
and adaptation, which is based on the combination of two approaches:
1) R2D2C, a technique for mechanically transforming system require-
ments via provably equivalent models to running code, and 2) automata
learning-based model extrapolation. The intended impact of this new
combination is to make model completion and adaptation accessible to
experts of the field, like biologists or engineers. The principle is briefly il-
lustrated by generating models of biological procedures concerning gene
activities in the production of proteins, although the main application
is going to concern autonomic systems for space exploration.

1 Motivation

A formal approach to Requirements-Based Programming, provisionally named
R2D2C (“Requirements to Design to Code”), was developed at NASA [1] as
a general-purpose method to mechanically transform system requirements into
a provably equivalent model. This is a central need for ultra-high dependabil-
ity systems like those developed at NASA for space exploration. The R2D2C
approach provides mathematically tractable round-trip engineering for system
development, rigorously based on formal modelling and formal reasoning tech-
niques. In this paper we complement this method with a learning-based method
for model completion and adaptation in order to make model completion and
adaptation accessible to experts of the field, like biologists or engineers.

Before discussing the technical background and the biological application,
we briefly sketch the standard areas of application.

Application Areas The work described below is motivated by the need for
requirements-based programming for ultra-high dependability systems which are
remote, embedded, and increasingly autonomic.
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Sensor Networks An example of a sensor network for solar system exploration
is the Autonomous Nano Technology Swarm mission (ANTS) [2], which is at
the concept development phase. This mission will send 1,000 pico-class (approx-
imately 1 kg) spacecraft to explore the asteroid belt. The ANTS spacecraft will
act as a sensor network making observations of asteroids and analyzing their
composition. Embedded sensors in space applications are a challenge along sev-
eral research dimensions: large signal propagation delays in communications
with Earth; unavailable or blocked communications paths between the space-
craft and mission control on Earth for variable (perhaps long) intervals of time;
and operations under extremes of dynamic environmental conditions.

Due to the complexity of these systems as well as their distributed and paral-
lel nature, they will have an extremely large state space and will be impossible to
test completely using traditional testing techniques. R2D2C helps by converting
the scenarios into a formal model that can be analyzed for concurrency-related
errors, consistency and completeness, as well as domain-specific errors.

Robotic Operations We have been experimenting with generating code to control
robots, but more interesting is the use of this approach to investigate the validity
and correctness of procedures for complex robotic assembly or repair tasks in
space, which rely heavily on the support of embedded controllers. Exploratory
work here concerns providing an additional means to validate procedures from
the Hubble Robotic Servicing Mission (HRSM) – for example, the procedures
for replacement of cameras on the Hubble Space Telescope (HST).

Communication Systems The learning based approaches have fared quite
promisingly for the test-based discovery of models of legacy communication
systems, thus outperforming prior approaches based on trace combination [3].
As shown in [4, 5], the test-based model generation by classical automata learn-
ing is very expensive. It requires an impractically large number of queries to the
system, each of which must be implemented as a system-level test case. Key
towards the tractability of observation based model generation are powerful
optimizations exploiting different kinds of expert knowledge in order to drasti-
cally reduce the number of required queries, and thus the testing effort. Recent
studies have brought to a thorough experimental analysis of the second-order
effects between such optimizations in order to maximize their combined impact
[5], and to the development of a mature toolset for experimentation [6], which
is used here. As shown in [7], our learning method is coherent with the usual
notions of conformance testing.

In the specific R2D2C context, we investigate the possible application of the
combined approach to the specification of communication mechanisms described
in the previous application domains. This can be completed by a test-based or
monitoring-based validation once those systems are operational.

In the following, we sketch the principles on which the R2D2C approach
works and the effects of the learning-enhanced method.
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Fig. 1. The enhanced R2D2C Approach with Requirement Completion

2 How R2D2C Works

The R2D2C approach involves a number of phases, which are reflected in the
system architecture described in Figure 1 and described below.

D1 Scenarios Capture: Engineers, end users, and others write scenarios de-
scribing intended system operation. The input scenarios may be represented
in a constrained natural language using a syntax-directed editor, or may be
represented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic events are derived from
the scenarios defined in D1.

D3 Model Inference: A formal model, or formal specification, expressed in CSP
is inferred by an automatic theorem prover – in this case, ACL2 [8] – using
the traces derived in phase 2. A deep1 embedding of the laws of concur-
rency [9] in the theorem prover gives it sufficient knowledge of concurrency
and of CSP to perform the inference. The embedding will be the topic of a
future paper.

D4 Analysis: Based on the formal model, various analyses can be performed,
using currently available commercial or public domain tools, and specialized
tools that are planned for development. Because of the nature of CSP, the
model may be analyzed at different levels of abstraction using a variety of
possible implementation environments. This will be the subject of a future
paper.

1 “Deep” in the sense that the embedding is semantic rather than merely syntactic.



46 Tiziana Margaria et al.

D5 Code Generation: The techniques of automatic code generation from a
suitable model are reasonably well understood. The present modeling ap-
proach is suitable for the application of existing code generation techniques,
whether using a tool specifically developed for the purpose, or existing tools
such as FDR [10], or converting to other notations suitable for code gen-
eration (e.g., converting CSP to B [11] and then using the code generating
capabilities of the B Toolkit).

According to this full cycle, developing a system that will have a high level
of reliability requires the developer to represent the system as a formal model
that can be proven to be correct. Through the use of currently available tools,
the model can then be automatically transformed into code with minimal or no
human intervention to reduce the chance of inadvertent insertion of errors by
developers. Automatically producing the formal model from customer require-
ments would further reduce the chance of human error insertion.

In this paper we focus on a specific, new aspect of the R2D2C approach,
the completion of the requirements given as a set of traces as generated by D2.
This needs a short introduction into automata learning.

3 Automata Learning

Machine learning deals in general with the problem how to automatically gen-
erate a system’s description. Besides the synthesis of static soft- and hardware
properties, in particular invariants [12], [13], [14], the field of automata learning

is of particular interest for soft- and hardware engineering [15], [16], [17], [18],
[19].

Automata learning tries to construct a deterministic finite automaton (see
below) that matches the behavior of a given target automaton on the basis of
observations of the target automaton and perhaps some further information on
its internal structure. [3, 20, 21] explain our view on the use of learning. Here we
only summarize the basic aspects of our realization, which is based on Angluin’s
learning algorithm L

∗ from [22].
L
∗, also referred to as an active learning algorithm, learns a finite automaton

by actively posing membership queries and equivalence queries to that automa-
ton in order to extract behavioral information, and refining successively an own
hypothesis automaton based on the answers. A membership query tests whether
a string (a potential run) is contained in the target automaton’s language (its
set of runs), and an equivalence query compares the hypothesis automaton with
the target automaton for language equivalence, in order to determine whether
the learning procedure was (already) successfully completed and the experi-
mentation can be terminated.
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3.1 Learning-Based Model Completion and Adaptation

Specifications in terms of individual traces are by their nature very partial
and represent only the most prominent situations. This partiality is one of the
major problems in requirement engineering. It often causes errors in the system
design that are difficult to fix. Thus techniques for systematically completing
and later on adapting such partial requirement specifications in cooperation
with the application expert are of major practical importance.

We therefore propose a method for requirements completion and adaptation,
based on automatic (active) automata learning. In essence, the method

– initializes the learning algorithm with the set of traces constituting the re-
quirement specification and with the model needing adaptation (this model
may well be empty), and

– constructs a consistent behavioral model by establishing predefined consis-
tency and well-foundedness conditions. The details of how to do this have
been explained in [20] its practical handling in [4, 5], and a library-based
toolset for experimentation in [6].

In this fashion, we arrive at a finite state behavioral model, which is an extrapo-

lation of the given requirement specification: it comprises all ’positive’ traces of
the specification, and rejects all forbidden traces. All the other potential traces
are consider as ’don’t cares’, in order to construct a corresponding state min-
imal hypothesis automaton. In particular, although the learning procedure by
its nature will only investigate finitely many traces, the constructed hypothe-
sis automaton will typically accept infinitely many traces, as the extrapolation
process introduces loops.

For this method to work, a number of membership queries need to be an-
swered. Both, establishing closure of the model, as well as establishing the
consistency of the abstraction of reaching words into states (i.e., of the charac-
terization from above introduced in the previous section) can only be effected
on the basis of additional information about the intended/unknown system.

3.2 Requirement Completion in R2D2C

Fig. 1 shows the R2D2C scenario including the new requirement completion
components. As indicated by the arrows representing the potential flow of
R2D2C processes, our new components introduce the following new options,
which complement the original R2D2C process here indicated by the arrow
bypassing the requirements completion module L2:

– Most powerful is the integrated mode of use, where the requirement comple-
tion component L2 is added to the original process. Its role is here simply
to support the evaluation of the given set of requirement traces, and to hint
at underspecified portions which may be successively completed. This option
strengthens the original R2D2C process.
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– Alternatively, one may replace the model inference component D3 by our
requirements completion component L2, meaning that the subsequent com-
ponent D4 and D5 directly work on the model produced by L2. Currently,
this means that we restrict ourselves to sequential models. However, we are
investigating how to overcome this restriction in the future.

The next section presents a non-standard application of our technology to the
description of biological processes.

4 Application: Generating and Verifying Complex

Biological Scripts and Procedures

Finding patterns in biological sequences has the goal of identifying parts that
have a biological meaning [23, 24, 25]. There are several approaches to this prob-
lem. Bioperl [26] provides a collection of perl modules used for the development
of perl scripts for use in Bioinformatics applications.

The Bioperl [27, 28] Project is an international association of developers of
open source Perl tools for bioinformatics, genomics and life science research,
with strongly increasing relevance over the almost 10 years. Bioperl relies on
a large number of scripts to access, steer, and orchestrate a growing number
of bioinformatic tools and databases. These scripts are becoming increasingly
complex and intertwined, so that their correctness has become a legitimate
concern of the community.

The application of software validation techniques to Bioperl is attempting
to provide an ongoing, systematic testing of the Bioperl basis, with patches and
validated new code being added to the public codebase. The goal is to establish
user confidence that software components will work as described. R2D2C is a
comprehensive software validation method that has been already successfully
applied to problems in this domain.

We consider here again the application example already handled with
R2D2C in [29] and solve the model creation problem with the combined method-
ology, using the requirement completion in replace mode.

4.1 From Scenarios to CSP

Let us consider again the same example from [30] (pp. 146-147). The problem
is described in the form of a scenario:

– Gene GeneOne produces protein ProteinOne in t1 units of time; ProteinOne

dissipates in time u1 and triggers condition cone.
– Gene GeneTwo produces protein ProteinTwo in t2 units of time; ProteinTwo

dissipates in time u2 and triggers condition ctwo.
– Once produced, ProteinTwo positions itself in GeneOne for u2 units of time

preventing ProteinOne from being produced.
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Fig. 2. Learned models of the single actors

The scenario represents a process that is expressed and implemented in
Bioperl using a Perl script. However, it is also possible to express this scenario
using a formal model based on CSP [31]. GeneOne, ProteinOne, GeneTwo,

ProteinTwo can be considered as separate processes with timing constraints
implicitly included. (Timing constraints may be explicitly handled by using
Timed CSP, a variant of CSP which extends the semantics of CSP with time
[32].) The implicit pre-condition that GeneOne must be enabled is handled
by the Start process. The events and conditions describing protein production
are represented as messages gone, cone, gtwo, ctwo, and enabled. The resulting
R2D2C input scenario is (D1):

Start sends enabled.

GeneOne receives enabled then sends gone.

ProteinOne receives gone then sends cone.

GeneTwo sends gtwo.

ProteinTwo receives gtwo then sends ctwo.

GeneOne receives ctwo then sends enabled.

and the corresponding system description in CSP (after Phase D2):

channel cone, ctwo, enabled, gone, gtwo : T ;

Start = enabled ! 0 -> Start ;

GeneOne = enabled ? x -> gone ! 0 -> GeneOne ;

ProteinOne = gone ? x -> cone ! 0 -> ProteinOne ;

GeneTwo = gtwo ! 0 -> GeneTwo ;

ProteinTwo = gtwo ? x -> ctwo ! 0 -> ProteinTwo ;

GeneOne = ctwo ? x -> enabled ! 0 -> GeneOne ;

System =

GeneOne [| {| |} |]

GeneTwo [| {| |} |]

ProteinOne [| {| |} |]

ProteinTwo [| {| |} |]

Start ;

4.2 Learning and Adapting the Models

Instead of analyzing the CSP model, as in [29], we have here used our learn-
ing technique to fully automatically produce automata models for each system
component (see Fig. 2), as well as for the model of the whole system (Fig. 3).
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These graphs show in a very intuitive way the global behaviour of the system.
It is thus very direct also for someone unfamiliar with CSP and its tools to
validate the behaviour by inspection.

A frequent mistake in implementing these requirements is in fact the omis-
sion of constraints, either due to their implicit presence in the requirements, or
due to errors in code development. For example, omitting Start sends enabled

(which makes explicit an implicit precedence) nothing prevents GeneOne from
constantly generating ProteinOne and ignoring ProteinTwo inhibition. The cor-
responding erroneous system of [29] has also been learnt with our method, re-
sulting in the global behaviour of Fig. 4(4).

This inspection could then be used to revise the requirements before devel-
oping the Bioperl code, even before carrying out a formal analysis at D4.

Fig. 3. Learned model of the biological system
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Fig. 4. Stepwise learned model of the incorrect biological system

4.3 Successive Refinement

The erroneous system could be learned in only four iterations. Fig. 4 illustrates
the concrete learning process starting from the initial hypothesis along the
application of the algorithm.

To learn this model from scratch we initialize the learning algorithm with
no information about the system except for the alphabet of symbols. No initial
trace is provided, no hints on possible symmetries or independent actions.

1. After processing the queries of length 0 and 1 with these outcomes
() acc

gone acc

gtwo acc

ctwo nonacc

cone nonacc

the learning algorithm generates the hypothesis model depicted in Figure
4(1): there is at least one state, which accepts gone and gtwo and rejects cone

and ctwo. In the picture we show only the accepting traces: the automata
are incomplete in the sense that all the absent symbols lead to a single
nonaccepting state.

2. By model checking an expert-given corresponding property we find out that
gone.gone is not an accepting sequence, thus the model (1) is not yet accu-
rate and must be refined. We refine it starting from this counterexample,
and reach a new hypothesis shown in Fig. 4(2). Here, the counterexample
sequence leads to the discovery of a second state, state 1, and we have
distinguished further behaviours.

3. Due to expert knowledge, we find out that gtwo.gtwo is another trace that
must be rejected. This leads to the further refinement of state 1 and by
completion we reach a new hypothesis as in Fig. 4(3).
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4. After also rejecting gone.gtwo.ctwo.gone in a similar fashion, we arrive at
the automaton shown in Fig. 4(4), which satisfies all our expectations.

In order for this method to scale, and to limit the required expert-interaction, we
provide a number of optimizations that exploit other sources of expert knowl-
edge, like prefix closure of the language, symmetry between certain components
(genes always behave like genes), and the independence of certain observations.

5 Conclusions and Perspectives

We have presented a learning-based method for model completion and adapta-
tion, which is based on the combination of two approaches: 1) R2D2C, a tech-
nique for mechanically transforming system requirements via provably equiva-
lent models to running code, and 2) automata learning-based model extrapola-
tion. The intended impact of this new combination is to make model completion
and adaptation accessible to experts of the field, like biologists or engineers.

Currently, we are investigating the power of our method. Until now, we
used it for an initial model completion, as a support for the creation of the first
model. We are currently carrying out case studies that concern model evolution
and change, in this case continuously updating the model of biological processes
according to new information.

We are also building and adapting models of servicing procedures for space-
crafts, and adaptive control procedures for remote autonomic systems. These
are the application areas that in our opinion are going to profit enormously of
the combined completion-adaptation technique.
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