
Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 1

Design and Implementation of the Visual
DaVinci Language

Raúl Champredonde1

Armando De Giusti

2

Laboratory of Investigation and Development on Computer Sciences

3

Department of Computer Sciences

Faculty of Exact Sciences
National University of La Plata.

Abstract
A visual language, called Visual DaVinci is presented in this article, along

with its implementation most important aspects.
Visual DaVinci was specially developed for structured programming initial

teaching at computer sciences courses of studies.
It uses the control flow paradigm by specifying diagrams similar to the

Nassi-Schneiderman one, thus forcing the development of a structured code.
Diagrams are automatically derived to textual code, which can be

modified by the programmer.
It also allows a textual development of the code, with a restricted syntax

that also requires the generation of a structured code and the keeping of certain
rules regarding programming style.

Syntactic verification and execution are based on the code, in order to
free language efficiency from its visual nature.

Key words : Visual languages - Objects - Compilation and interpretation

1 Semi Full-time Practical Classes Coordinator. LIDI. UNLP
e-mail : rchampre@info.unlp.edu.ar
2 Full-time Chair Professor. Director of the LIDI. UNLP
Principal Researcher of the CONICET
e-mail : degiusti@info.unlp.edu.ar
3 LIDI Laboratorio de Investigación y Desarrollo en Informática
Departamento de Informática. Facultad de Ciencias Exactas. Universidad Nacional de La Plata
Calle 50 y 115, Primer Piso, 1900 La Plata
Tel/Fax : 54-21-22-7707
e-mail : lidi@info.unlp.edu.ar

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 2

Introduction
Some years ago, a group of researchers at the LIDI developed the

specifications for an abstract machine (Lubo-I robot) and an associate
programming language, which were intended for the teaching of structured
programming initial concepts[DeGiusti88] [DeGiusti89].

These specifications are since then being used at the entrance course
and at the first year subject Computers Programming of the Course of Studies
on Computer Sciences at the National University of La Plata.

The robot can perform a series of actions over the city, which are
determined by the execution of a program. The city is one hundred streets by
one hundred avenues. Streets are horizontally oriented, while avenues are
vertically oriented.

Corners are determined by the intersection of streets and avenues. Each
corner is identified by an ordinate pair (Av, St), where Av and St are integers
between 1 and 100.

At the beginning, the robot is placed at the (1,1) corner and facing North.
Robot orientation can be modified so that it faces one of the four cardinal points.

Each movement carries the robot from one corner to the following one,
according to the direction in which it is oriented.

At each corner there may be an arbitrary amount of flowers and papers,
which can be collected by the robot. In order to do this the robot carries two
bags, one for flowers and the other for papers. Each time it collects a flower, it
puts it in its flower-bag; and each time it puts a flower on a corner, it takes it
from the flower-bag. The same procedure is repeated with papers and the
paper-bag. The robot can put flowers or papers at the corner where it is
standing only if the corresponding bag is not empty.

There may also be obstacles preventing the robot to pass through a
certain corner; in this case the robot will have to find an alternative way, that is,
it will have to modify its normal trajectory. Obstacles may be either simple or
barriers. An obstacle is simple if there is no other obstacle at the neighboring
corners. A set of obstacles form a barrier if they are placed over a straight line
at consecutive corners.

The language used for the robot programming is structured and has the
minimal constructions needed for learning this programming paradigm.

Every program written with this language consists of three parts: header,
statements, and body. The header simply determines the name of the program.
The second part is used for variables and subprograms statements. A variable
statement determines its name and type. Subprograms have the same general
structure than the program except for the formal parameters. The parameters
passage model chosen is Ada [Olsen83] [DoD], since it is the most
representative one of those used by most conventional languages.

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 3

The body of the main program, the same as the subprograms, is a
statements sequence. These statements may be primitive, simple, or
composite. Primitive statements are those directly executable by the robot. That
is, those telling it to walk from one corner to another, to turn right, to pick or
leave a flower or a paper, etc. Simple statements are subprograms allocations
and modifications defined by the user or by the system. Composite statements
are selection control structures (if / if not), conditional iteration (while), and
unconditional iteration (repeat).

Expressions are formed from values, user or system-defined variables,
input parameters or input/output parameters, connected with relational,
arithmetic or logical operators.

A more detailed description of robot specifications and language syntax
and semantics can be found in [DeGiusti88] [DeGiusti89].

Due to several reasons related to the learning process and to the
experimental research, the already mentioned specifications were converted
into a visual language based on the flow control paradigm [Glinert90a], so that
the robot can be programmed highlighting program structure over
implementation language syntax. This technology is thus simultaneously
presented as a development tool [Chang86] [Burnett94] [Chang90] [Glinert90b]
[Shu88] [Golin90a].

Visual languages
There are a number of definitions of what a visual language is. Some

authors speak of visual languages, some others of visual programming, and
others of visual programming languages.

The following are some of those definitions:
 Visual programming refers to any system allowing the user to specify a

program in two or more dimensions. Conventional textual languages are not
considered to be two-dimensional because compilators or interpreters
process them as a large unidimensional sequence [Myers90].

 A visual language handles visual information, or supports visual interaction,
or allows programming with visual expressions. This last concept is taken to
be the definition of a visual programming language.
Visual programming languages are better classified, according to the type
and scope of the visual expressions used, into icons-based languages,
shapes-based languages, and diagrammatic languages (or diagrams-based
languages).
Visual programming environments provide graphic or iconic elements which
can be interactively handled by users according to some specific spatial
grammar for programs building [Golin90b].

 Visual programming is usually defined as the use of visual expressions (such
as graphics, drawings, animations or icons) during the programming process.
These visual expressions can be used in programming environments as
graphic interfaces for textual programming languages; they can be used to
form the syntax of new visual programming languages leading to new
paradigms such as programming through demonstration; or they can be used
in the graphic representation of a program structure or behavior [McIntyre92].

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 4

 A visual language is a programming language that mainly uses a graphic
notation [Najork94].

A considerable amount of visual languages paradigms has been created
in time. The two more interesting ones are control flow and data flow [Chang90]
[Shu88].

Control flow paradigm uses a flow-diagram-type visual diagram to
describe a program’s control flow. Visual languages using this paradigm are
based on the same semantic model as procedural languages of the Fortran,
Algol and Pascal family.

Data flow paradigm uses boxes to denote directed arches and functions
in order to connect the output of certain functions with the input of some others.
Languages using this paradigm are based on the semantic model used by
functional programming languages.

There are many arguments in favor of visual programming. They are
generally centered on the fact that human beings process, due to their nature,
more easily and quickly images than text. That is, they acquire more information
and in a shorter time if they discover an image graphic relations than if the read
a text [Raeder85].

Some of these arguments are here listed:
 The text is strictly sequential, whereas images allow a varying access to any

of their parts.
 Images indistinctly allow a global or detailed vision, depending on what the

person expects to find.
 The human sensorial system is “designed” for images processing in real

time. Therefore, images can be more quickly accessed and decodified.
 Text is unidimensional by nature, whereas images are multi-dimensional.
 Images provide a much richer language due to their visual properties, such

as colors, shapes, sizes, textures. This leads to an information codification
much more compact than that of texts.

 Images can capture an abstract idea in an easier way.
 Texts are sequences of words and punctuation marks. In turn, each word is a

sequence of letters. And each letter is but a little image simply representing
an only symbol of the whole text.

Even though these are reasonable arguments, they are based on
intuition and can only be verified by means of empirical studies.

Different studies have been carried out in order to measure the benefits
of the use of visual programming for programs development [Pandey93]. These
studies have not determined that, in a general sense, visual languages are
better than textual languages for programming activities. However, they at least
suggest that, for many tasks, a suitable visual programming language is
potentially better than any textual language.

It is clear that visual programming has a great potential. However, there
are some problems with the existing visual languages.

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 5

Visual languages tend to use a relatively disperse notation. This may
mean that they use more space of textual languages screen. This can be solved
by using the procedural abstraction concept. That is, by representing a sub-
diagram with an only simple symbol, and by treating it as a “black box”.

Many visual languages are interpreted, and, in most of the cases, the
interpreter directly operates on diagram components representations. This
obviously results in a very low efficiency.

In addition to this, many of them are latently typed, which means that the
verification that an operator may receive adequate type values can only be
done when that operator is applied, that is, during running time.

Development environment
Visual DaVinci development environment is formed by five windows: the

main window, the visual diagrams editor, the textual code editor, the city, and
the system variables inspector.

Figure 1.a. : Diagrams Editor

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 6

The main window is in charge of assisting the user with the global
handling of program files, from edition, saving and restoring to syntactic
verification, execution and depuration.

Programs visual specification is done by means of the confection of a
Nassi-Schneiderman-style diagram [Nassi73] [Yourdon93] in the diagrams
editor (Figure 1.a.).

It may contain several pages. The first of them corresponds to the main
program, and the following ones to the different sub-programs.

Each page is divided into three parts: one for formal parameters
definition, a second one for local variables declaration, and a third one for the
body. Naturally, the first page formal parameters definition part is non usable,
since the main program does not receive nor return parameters.

Diagram confection is done by means of the insertion of different
elements of a program, selected from the editor buttons bar, and using the
technique known as “drag&drop” for the cases in which a change in the position
of an element is required, or when a variable, an output parameter, or an
input/output parameter has to placed in an expression or at the left of an
assignation.

As it can be seen, no disperse visual notation is used. Still, it uses more
screen space than the code. Procedural abstraction solves this inconvenient;
however, in this particular case it would be desirable to keep such inconvenient
in order to encourage modular decomposition.

Figure 1.b. : Code Editor

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 7

Every modification made to the diagram is automatically translated to the
textual code. This translation is instantly reflected at the corresponding position
of the code editor (Figure 1.b.).

This is a simple text editor whose only assistance to the user is related to
a semiautomatic indentation of code lines, and to execution line highlighting
during the depuration process.

Robot behavior during the execution of a program can be seen on the
city window (Figure 1.c.).

Implementation aspects
In general terms, Visual DaVinci is a development environment. A

program can be specified in a visual way, in a textual way or in a combination of
both. The syntax of the developed program must be always verified, which
generates an intermediate code which is in turn interpreted for its execution.

From the interpretation of Visual DaVinci, the most important aspects are
those related to diagrams visual edition, automatic translation from diagrams to
code, code verification, programs execution, and effects visualization.

The system variables inspector allows to assign an initial value to them
before the visualization of their contents during the execution of a program.

Figure 1.c. : City Window

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 8

Syntax verification, as well as execution, is directly done based on the
textual code. Therefore, the efficiency of the developed programs does not
depend on the language visual condition, this problem inherent to visual
languages being thus avoided. This is the basis of the importance of the
automatic derivation from diagrams to textual code.

Compilators and interpreters generally have an analyzer that generates
data structures such as parsing trees, symbol tables, etc., and a synthesizer
that generates machine code or intermediate code [Ghezzi87] [Hunter85].

The reasons for choosing an interpreter are its development relative
simplicity as compared with a compilator, and the absence of important
requirements on execution efficiency.

However, for the implementation of Visual DaVinci, the scheme chosen
was quite different from that of conventional interpreters and compilators.

Instead of going through the code to ensure its syntactic correction,
building a parse tree, which will be then run through to generate some kind of
intermediate code, a program object is created, instance of the TPrograma
class, which “knows” how to analyze the corresponding code.

In turn the program creates a sub-program object for each of the sub-
programs defined in the program, a variable object for each declared variable,
and a body object.

Similarly, a subprogram object will create a series of parameter objects
(instances of the TParametro class), a list of subprogram objects, a list of
variable objects, and a body.

Thus, different classes of objects will successively be part of this
process, such as TSecuencia, TSentencia, TPrimitiva, TAsignación,
TInvocacion, TEstructura, TSi, TMientras, TRepetir, TExpresion,
etc., which form the hierarchy in Figure 2.a.

Each of these objects has a method called Analizar, by means of
which syntax verification of its own code is possible. If the syntax is incorrect,
the object verifying it produces an exception which aborts verification and
shows the user the error detected in compilation time by means of a message.

With this scheme, the result of the verification (which could be called
compilation though pretentious it may sound [Hunter85]), is the intermediate
code in itself. On the other hand, all aspects related to tables and trees
implementation used by conventional interpreters can be completely
unattended.

In addition to the Analizar method, each of the objects of the
mentioned hierarchy has a method called Ejecutar giving it the necessary
knowledge to execute itself.

Thus, the result of the syntactic verification is not only the intermediate
code, but also its own interpreter. Therefore, in order to execute a program, only
an instance of the TPrograma class needs be executed.

The same as before, the program object will tell each sentence of the
body to execute, following the sequence in which they were specified.

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 9

As a way of complementing the previous one, there is another hierarchy
of objects, shown in figure 2.b., which is in charge of visualization and
translation into code of visual diagram elements. To do so, a class has been
defined for each visible element of the program. Each of these classes knows
how to visualize itself within the program and how to translate itself into code.

Each time a change in the diagram is produced, be it an insertion, a
deletion, or a modification, the Codificar method of the involved objects is
called, to reflect those events in the code editor text.

Even if both hierarchies - execution and verification objects on the one
hand and translation and visualization objects on the other - could have been
implemented as an only hierarchy, it is preferable to respect the separation of
visible from non-visible objects, as most object-oriented languages do.

Improvements and Extensions
Visual DaVinci design and implementation have been developed bearing

in mind possibilities for improvements and extension of their application to other
areas.

One of the improvements proposed is to include a diagram/code
synchronization, so that every modification of the diagram be automatically
reflected in the code (current practice), and that every modification of the code
be automatically reflected on the diagram.

To do this, the code editor could be changed by other of the so called
“assisted” ones, in which each input textual code line is analyzed to determine
the type of sentence and then create the corresponding visible object and insert
it at the adequate spot of the visual diagram.

Another improvement proposed is the possibility of easily re-using the
developed code by encapsulating subprograms in entities similar to Delphi
components.

As regards extensions, there are two of them proposed.
The first one intends to place an arbitrary amount of robots in the city,

which will have different synchronization methods and will communicate with
each other, in order to teach concurrent programming.

The other is the incorporation of a real robot on a maquette of the city to
execute the developed programs.

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 10

Figure 2.a. : Execution and verification objects hierarchy

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 11

Figure 2.b. : Translation and diagrams objects hierarchy

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 12

Conclusions
A visual language based on the control flow paradigm, which uses a

diagram similar to the Nassi-Schneiderman one for programs specification
which is automatically and simultaneously translated into code, has been
presented.

The automatic translation from diagrams to code presents certain
advantages, such as elimination of useless programs definition, independence
of the syntax to which it is derived, code organization, style, etc.

Execution efficiency of the developed programs is independent of the
fact that we are dealing with a visual language, since syntactic verification and
execution are based on the textual code and not on the diagram.

Maintenance complexity and auxiliary structures run time usually used by
compilators and interpreters, are replaced by a scheme of simple objects
hierarchies.

Diagrams confection and automatic translation into code is simplified by
means of a similar mechanism.

Even though the program does not use a disperse visual notation, the
spatial problem persists, and it is solved by using procedural abstraction. This is
only a partial solution, used as a way of promoting decomposition into modules.

References

[Burnett94] "Visual Object-Oriented Programming". M. M. Burnett, A. Goldberg,

T. G. Lewis. Prentice Hall and Manning. 1994
[Chang86] "Visual Languages". S.-K. Chang, T. Ichikawa, P.A. Ligomenides.

Plenum Press. 1986
[Chang90] "Visual Languages and Visual Programming". S.-K. Chang.

Plenum Press. 1990
[DeGiusti88] "LUBO-1: Una Máquina Abstracta para un Primer Curso de

Programación". A. De Giusti, C. Madoz, P. Pesado. Anales de
XIV Conferencia Latinoamericana de Informática. 1988

[DeGiusti89] "Abstract Machines in a first Course of Computer Science".
A. De Giusti, L. Lanzarini, C. Madoz. Proceedings 11th International
Symposium "Computer at the University", Zagreb, Yugoeslavia

[DoD] “The Programming Language ADA. Reference Manual”. Proposed
Standard Document. United States Department of Defense.
Springer-Verlag. 1981

[Ghezzi87] “Programming Languages Concepts”. Ghezzi, M. Jazayeri. John Wiley
and Sons. 1987

[Glinert90a] "Visual Programming Environment: Paradigms and Systems".
E. P. Glinert. IEEE Computer Society Press. 1990

Proceedings CACIC ‘97
Ateneo de Profesores Universitarios de Computación - Informática Educativa UNLP

Departamento de Informática - Facultad de Ciencias Exactas 13

[Glinert90b] "Visual Programming Environment: Applications and Issues".
E. P. Glinert. IEEE Computer Society Press. 1990

[Golin90a] "A Method for the Specification and Parsing of Visual Languages".
E. J. Golin. Brown University. 1990

[Golin90b] "The Specification of Visual Language Syntax". E. J. Golin, S. P. Reiss.
J. Visual Languages and Computing. Volumen 1. Número 2. 1990

[Hunter85] “Compilers. Their Design and Construction Using Pascal”. R. Hunter.
John Wiley & Sons. 1985

[McIntyre92] "Visual Tools for Generating Iconic Programming Environments".
D. W. McIntyre, E. P. Glinert. 1992 IEEE Workshop Visual Languages.
1992

[Myers90] "Taxonomies of Visual Programming and Program Visualization".
B. A. Myers. J. Visual Languages and Computing. Volumen 1.
Número 1. 1990

[Najork94] “Programming in Three Dimensions”. M. Najork. Ph. D. Thesis.
University of Illinois. 1994

[Nassi73] “Flowchart Techniques for Structured Programming”. I. Nassi,
B. Schneiderman. ACM SIGPLAN Notices. Volumen 8. Número 8. 1973

[Olsen83] “Ada for Programmers”. E. Olsen, S. Whitehill. Reston Publishing,
Prentice-Hall. 1983

[Pandey93] “Is it Easier to Write Matrix Manipulation Programs Visually or
Textually? An Empirical Study”. R. Pandey, M. Burnett. IEEE
Symposium on Visual Languages. 1993

[Raeder85] “A Survey of Current Graphical Programming Techniques”. G. Raeder.
IEEE Computer. Volumen 18. Número 8. 1985

[Shu88] "Visual Programming". N. C. Shu. Van Nostrand Reinhold Company.
1988

[Yourdon93] “Análisis Estructurado Moderno”. Yourdon. Prentice Hall. 1993

