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Abstract 
 

Categorical diagnoses from the DSM or ICD manuals are increasingly found to be 

incongruent with emerging neuroscientific evidence that points towards shared 

neurobiological dysfunction underlying attention deficit/hyperactivity disorder and autism 

spectrum disorder. Using resting-state functional magnetic resonance imaging data, 

functional connectivity of the default mode network, the dorsal attention and salience 

network was studied in 1,305 typically developing and diagnosed participants. A trans-

diagnostic hierarchical Bayesian modeling framework combining Indian Buffet Processes and 

Latent Dirichlet Allocation was proposed to address the urgent need for objective brain-

derived measures that can acknowledge shared brain network dysfunction in both disorders. 

We identified three main variation factors characterized by distinct coupling patterns of the 

temporoparietal cortices in the default mode network with the dorsal attention and salience 

network. The brain-derived factors were demonstrated to effectively capture the underlying 

neural dysfunction shared in both disorders more accurately, and to enable more reliable 

diagnoses of neurobiological dysfunction. The brain-derived phenotypes alone allowed for a 

classification accuracy reflecting underlying neuropathology of 67.33% (+/- 3.07) in new 

individuals, which significantly outperformed 46.73% (+/- 3.97) accuracy of categorical 

diagnoses. Our results provide initial evidence that shared neural dysfunction in ADHD and 

ASD can be derived from conventional brain recordings in a data-led fashion. Our work is 

encouraging to pursue a translational endeavor to find and further study brain-derived 

phenotypes which could potentially be used to improve clinical decision-making and 

optimize treatment in the future. 
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Introduction 

Attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) 

are both disabling and heritable neurodevelopmental disorders that manifest early in life 

and have well documented consequences for well-being. Both disorders are associated with 

high levels of family dysfunction, social interaction problems, academic failure, and 

unemployment and thus constitute a significant burden for children, their families, and 

society as a whole (1-3). 

ADHD is characterized by developmentally inappropriate levels of inattention, 

impulsivity, and hyperactivity. In contrast, ASD is defined by core symptoms of persistent 

and pervasive deficits in social communication and interaction along with repetitive 

behavioral patterns and restricted interests or activities. However, these seemingly disparate 

disorders have clinical overlap (4): 30-80% of all ASD children meet the diagnostic criteria for 

ADHD and conversely, 20-50% of children diagnosed with ADHD also meet the diagnostic 

criteria for ASD. Both disorders also show similar associated clinical features, including poor 

social skills, language delay, oppositional defiant behavior, and difficulty with attention and 

emotion regulation (4, 5). This begs the question whether despite superficial differences in 

clinical presentation both ADHD and ASD share a fundamental mechanism of dysfunction. 

Consistent with the hypothesis that both ASD and ADHD depend in part on shared 

underlying dysfunction, genetic and twin studies show familial associations for both 

disorders (6, 7). Twin studies suggested that 50-72% of phenotypic features are shared by 

these disorders, potentially reflecting genetic factors common to both ADHD and ASD (8, 9). 

Additionally, genome-wide association studies as well as linkage and candidate gene studies 

identified a number of genetic risk variants common to both disorders (10). At the 

neuropsychological level, there are several domains in which both ASD and ADHD have a 
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pattern of common deficits. These include executive function (11), emotion recognition (12), 

affective feedback processing (13), as well as sustained attention, and sensory functioning 

(14, 15). 

 Independent functional magnetic resonance imaging (fMRI) experiments in ADHD or 

ASD patients have revealed a substantial role of aberrant connectivity in large-scale 

networks in both disorders (for reviews see: 16, 17). Prior evidence has emphasized the 

importance of the default mode network (DMN) and attention-related macroscopical 

network as a key to both ADHD and ASD dysfunction (18-20). In a seminal cross-diagnostic 

neuroimaging study, Di Martino and colleagues (20) examined network centrality metrics in 

ADHD and ASD patients. Abnormalities were identified in cortical and subcortical areas, 

some of which were common to both disorders, including the posteromedial cortex. In 

contrast, some aberrations, such as limbic areas in the bilateral medial temporal lobe, were 

more closely related to ASD. Moreover, it has been suggested that the salience network (SN) 

is intimately related to the interplay between the DMN and DAN (21), and aberrant coupling 

patterns between the SN, DMN, and DAN have been reported both in ASD (18, 22) and in 

ADHD (23, 24). 

The collection of genetic, neuropsychological, and neuroimaging evidence 

emphasizes the need to understand the common patterns of neural dysfunction that link 

ADHD and ASD. Both disorders may be best understood from a dimensional point of view 

with patients who suffer from either disorder located at distant points on a symptom 

continuum (8). This intuition is advertised by the Research Domain Criteria (RDoC) initiative 

of the National Institute of Mental Health (25) proposed as an alternative research 

framework to investigate psychopathological disorders, including ADHD and ASD. Within this 

framework, mixed dimensional abnormalities of brain circuits are conceptualized as 
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underlying dysfunction that can contribute to clinically diverging mental disorders to varying 

degrees (26, 27). In the present study, we tested a dimensional view of ADHD and ASD 

combining resting-state brain connectivity and emerging tools from the machine learning 

domain. In a trans-diagnostic fashion, we hypothesized that brain variation in large-scale 

network connectivity in the DMN, DAN, and SN can be used to identify shared fundamental 

network dysfunction in both disorders.  
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Methods 

Data resources and preprocessing 

Already preprocessed neuroimaging data were obtained from two large, publicly 

available datasets: ADHD-200 (http://fcon_1000.projects.nitrc.org/indi/adhd200/) and 

ABIDE (Autism Brain Imaging Data Exchange; 

http://fcon_1000.projects.nitrc.org/indi/abide/). All data were anonymized, and collected 

with the approval of the respective ethics boards. Experienced psychiatrists performed 

patient diagnoses. The ADHD-200 dataset provides demographic and clinical information, 

including age, sex, and measures of symptom severity as assessed by the ADHD rating scale 

(ADHD-RS). The ABIDE data provides subject information, including age, sex, and measures 

of symptom severity as assessed by the Autism Diagnostic Observation Schedule (ADOS). 

Both considered data repositories were preprocessed using the NeuroImaging Analysis Kit 

(NIAK, http://preprocessed-connectomes-project.org, for in-depth description see (28, 29)). 

Particular care has been devoted to help mitigate motion artefacts: Scrubbing (30) was used 

to remove volumes with excessive motion. Rigid-body motion was then estimated within 

and between runs. The first principal component accounting for 95% of the variance of the 

six rigid-body motion parameters, as well as their squares was regressed out in nuisance 

removal. The available pipeline was additionally modified using a standard removal of linear 

effects with site as a regressor of no interest to control for certain acquisition-related 

effects. 

 To help minimize confounding factors, inclusion was restricted to children and 

adolescents who were male and between 7 to 21 years of age to study neural mechanism of 

both disorders during development. Diagnosed and typically developing (TD) participants 

were age-matched in each dataset (see Table 1 for details). This was motivated by previous 

evidence showing that ASD affects the brains of children and adults differently (31). Further, 
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we included only male participants because (i) both disorders are more prevalent in males 

(32, 33) and (ii) to exclude gender-specific differences in brain heterogeneity (34, 35).  Based 

on these selection criteria, 587 age-matched participants (303 TD) from ADHD-200, and 718 

age-matched participants (349 TD) from the ABIDE repository were eligible. This amounted 

to a total of n=1,305 participants.  

 

Target network definition 

For each participant, the preprocessed resting-state connectivity was summarized in 

network coupling statistics. We examined several subregions within each of the four DMN 

nodes (Fig. 1A) as used in a recent computational psychiatry study (36; available for re-use at 

http://neurovault.org/collections/2216/): 4 subregions in the dorsomedial prefrontal cortex 

(dmPFC), 4 subregions in the posteromedial cingulate cortex (PMC), and 2 subregions in the 

right and left temporoparietal junction (TPJ) were drawn from a recently completed 

quantitative meta-analytical atlas of the DMN derived by connectivity-based parcellation 

(37-40). The DMN nodes were supplemented by coordinate-based meta-analyses of closely 

interacting multi-modal networks (Fig. 1B): the salience network, composed of the anterior 

insula (AI), midcingulate cortex (MCC), and amygdala (AM) (41); and the dorsal attention 

network (DAN), composed of the dorsolateral prefrontal cortex (dlPFC) and intraparietal 

sulcus (IPS) (42). This approach yielded a total of 21 nodes with 210 edges capturing 

functional network coupling between all possible connectivity pairs. The fMRI signal was 

summarized by an average time-series for each node, standardized by zero-meaning and 

unit-variance scaling, and detrended. Pearson's correlations were then computed between 

each possible pair of the network nodes. In this way, we effectively reduced each individual’s 

resting-state whole-brain information to an interpretable set of connectivity variables. In 

sum, the set of coupling measures reflects each subject’s specific connectivity profile – 
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analogous to a fingerprint of brain network connectivity.  Constructing analogous 

connectivity variables from networks in the Yeo atlas (43) - without DMN, DAN, and SN - 

yielded only 52.65% accuracy in the autism-health distinction and 56.06% accuracy in the 

ADHD sample (100 cross-validation folds, 90% train and 10% test set, linear support vector 

machine). 

 

Statistical Analysis 

In this study, we devised an innovative hierarchical Bayesian modeling strategy (Fig. 

2) to address the urgent need for objective brain-derived measures that can acknowledge 

shared dysfunction leading to different brain disturbances across disorders, including ADHD 

and ASD. The applied trans-diagnostic framework is able to reflect the premise that different 

underlying pathophysiological mechanisms contribute to mental disorders to varying 

degrees (26, 27). In the following, we will now describe step-by-step what key advantages 

the applied framework offers.  

 

(1) Identification of underlying disease dimension 

 In a first step, we wanted to identify the hidden components of disease variability 

underlying the connectivity profiles. The challenges implicated are to do so in a data-led 

fashion imposing minimal constraints (such as selecting a pre-specified number of 

components) and to allow for the contribution of multiple shared components at the same 

time. In an early application in neuroimaging, we used Indian Buffet Processes (IBP)(44) to 

allow for the derivation of the relative contributions of hidden properties in the connectivity 

profiles across all participants. Rather than extracting a pre-specified number of 

components, as commonly used in principal or independent component analysis, IBP 

enables formal inference on the number of unknown components. This non-parametric 
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model hence automatically determines the number of underlying components flexibly 

adapted to the richness of the available directional functional-connectivity data. 

Additionally, IBP does not perform hard assignments, instead it associates hidden properties 

to patterns of continuous variation in particular node-node couplings rather than to binary 

differences.  

 

(2) Hierarchical Bayesian Modeling  

The identified hidden properties in functional network coupling then provided the 

basis for drawing inference of coherent group-overarching structure (i.e., factors) by means 

of Bayesian hierarchical modeling. Using Latent Dirichlet Allocation (LDA)(45) we imposed a 

hierarchy of pre-specified k number of factors onto the connectivity fingerprints based on 

their association with the hidden properties. In previous research, LDA was successfully 

applied after engineering structural brain data into positive integers (46). But LDA alone is 

not suited to handling negative-valued, non-discrete input, such as connectivity strengths. 

Here, the realized combination of IBP and LDA modeling naturally suggests itself because IBP 

can seamlessly transform the continuous information encoded in the individual connectional 

fingerprints into discrete, positive-valued vectors indicating the assignment to the underlying 

hidden properties. For ease of interpretation, LDA then reduced the obtained set of 

assignments to hidden properties into a small set of overarching connectivity archetypes 

(i.e., factors). A key advantage of combining IBP and LDA is that it enables us to derive 

hidden sources of variation with mixed memberships. This avoids the necessity of assigning a 

connectional fingerprint of a participant to only one factor. Instead, each particular 

individual’s connectional fingerprint could hence be modeled as being generated by k factors 

(i.e., endo-phenotypes) simultaneously.  
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(3) Deriving biological labels from the neuroimaging-derived phenotypes  

We generated an unbiased set of new labels indicating an assignment to an 

‘neurobiological group’ based on the dimensional factors constituting the brain-phenotypes 

for all individuals. To avoid circularity, we translated a statistical modeling scheme, called 

pre-validation (47), to the neuroimaging domain. As a variant of cross-validation, pre-

validation was applied to obtain a fairer evaluation of the group labels (48). While cross-

validation yields reasonably unbiased estimates of the model’s expected error rate in other 

observations, pre-validation produces a new set of unbiased data or labels which mimic the 

model performance in later recruited subjects labeled as patients and controls (49). These 

authors emphasize that the key feature of pre-validation is that each label is derived from 

the entire data set and independently of its response value. Therefore, each label can be 

treated as if it was derived from a data set completely separate from the test-data. The 

biological group labels hence are statistically independent from the information encoded in 

the connectional fingerprints (48-51), and act as if they were derived from separate data.  

We divided the data into m=10 pseudo-randomized splits to ensure balanced groups 

in both training and test set. The biological labels for all individuals in a given m-th data split 

were generated by fitting an LDA model on combined brain data from the 9 remaining data 

splits and used to infer factor weights for all observations of the m-th data split. In each m-th 

data split, pre-validated biological labels were hence estimated by LDA (i.e., the "internal 

model") without access to any actual clinical labels (TD versus ADHD versus ASD) or any 

brain data from the held-out m-th data split. This procedure generated a new set of labels 

that was then used to evaluate the out-of-sample prediction of the groups based on a linear 

classification algorithm (whereas classical cross-validation directly selects models and 

evaluates their prediction performance). The biological labels were tested for diagnostic 

relevance based on linear support vector machines (SVMs, i.e., the "external model") by 
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training on each combination of m-1 training data splits and testing on the respective 

remaining test data split.  
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Results 

A hierarchical Bayesian approach was used to identify distinct patterns of DMN 

coupling with other large-scale brain networks. These functional network patterns were 

consistently expressed in each of the 1,305 TD, ADHD, and ASD individuals from two 

multisite repositories (i.e., ADHD-200 and ABIDE). The applied trans-diagnostic modeling 

strategy reflects the premise that different biological phenotypes contribute to clinically 

diverging mental disorders to varying degrees (26, 27). After automatic extraction of distinct 

variability components in DMN coupling (i.e., hidden properties), we inferred a hierarchy of 

sources of variation (i.e., factors) that compile the variability in network connectivity of the 

DMN in TD and diagnosed participants.  

The hidden properties of disease variability underlying the connectivity profiles were 

identified in a data-driven fashion across all participants without knowing to which clinical 

group (TD, ADHD, or ASD) they belonged to. The applied non-parametric model 

automatically determined 45 hidden properties as the number of components adapted to the 

complexity of the underlying the available data. We then investigated, whether distinct 

disorder-specific clusters would emerge. However, while every hidden property was 

observed to be present to different extents in each diagnostic group, no property was found 

to be uniquely associated with only one group (Fig. 3).  Together this provides initial 

evidence that different biological phenotypes are partly shared among individuals and 

contribute to the clinical presentation of ADHD and ASD to varying degrees.  

To aid interpretability, we then used Bayesian inference to reduce the obtained set of 

hidden properties into a smaller set of overarching patterns by imposing a latent hierarchy 

of k factors. In the k=2 solution, the underlying factors were only related in opposite 

directions and were hence not able to capture subtle effects in overall network coupling. In 

wanting to choose the lowest yet most informative number of hidden factors, we favored a 
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solution with k=3 factors. Hypothetically, if the three clinical groups were to be 

neurobiologically consistent, three learned LDA components would suffice to describe the 

underlying dysfunctional pattern. For instance, LDA factor 1 could be related to healthy 

subjects, LDA factor 2 to ADHD, and factor 3 to ASD.  However, following the shared hidden 

properties, we found that the three factors did not align in a one-on-one fashion with the 

clinical groups (cf. Fig. 1d).  Consistent with our hypothesis, the shared influence of three 

connectivity factors was associated with aspects of both ASD and ADHD. The identified 

factors yielded the following coupling weights (Fig. 4): Factor 1 showed high DMN-DAN, 

medium DMN-SN, and low intra-DMN coupling weights, while factor 2 exhibited positive 

weights for connections between DMN subregions, most pronounced for the right and left 

posterior TPJ, and between the right and left AM. The highest negative weights of factor 2 

were observed for connections between the dmPFC subregions and the right and left dlPFC, 

closely followed by the right and left IPS. Factor 3 exhibited subtle effects for connections 

between DMN subregions. The connections between the right posterior TPJ and the PMC, 

and between the right and left posterior TPJs showed particularly high negative weights. In 

sum, each of the biological three factors reflected a coherent pattern of resting-state 

connectivity between the DMN, DAN, and SN. Capitalizing on the mixed memberships 

approach of our framework, each individual’s resting-state network connectivity could hence 

be expressed as a flexible recombination of only these three factors. 

 

Clinical associations of the biological phenotypes 

We then examined the subject-by-subject expression of the imaging-derived endo-

phenotypes (i.e., factors 1-3) in regard to the clinical questionnaires and assessments 

available from the ADHD-200 and ABIDE repositories. The subject-by-subject expression of 

factor 1 showed the highest positive associations with ADHD symptom measures, including 
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the level of inattention (r=0.26, p < 0.001) and hyperactivity/impulsivity (r=0.24, p < 0.001), 

as well as a negative association with performance, verbal, and total IQ scores (r=-0.13/-

0.15/-0.13, each p < 0.05). In contrast, factor 2 showed the highest associations with ASD 

diagnosis (r=0.15, p < 0.05), and positive associations with verbal and total IQ (r=0.21/0.14, p 

< 0.001/0.05), as well as negative associations with ADHD diagnosis (r=-0.22, p < 0.001) and 

hyperactivity/impulsivity (r=-0.21, p < 0.001). Factor 3 did not show significant associations 

with any behavioral items. 

 

Validating the predictive nature of the biological phenotypes against clinical diagnoses  

In a final step, we explored the association between the discovered brain-derived 

connectivity factors and the biological and categorical labels (Fig. 5). Note that the 

connectivity factors and biological labels were derived without using the original disease 

group labels or any questionnaire scores. To enable systematic assessment of the predictive 

accuracy added by the discovered dimensional endo-phenotypes, we generated an unbiased 

set of new data-derived neurobiological labels for all individuals. The neurobiological labels 

were then systematically compared against the clinical labels by testing for diagnostic 

relevance based on linear SVMs. We conducted three plausibility tests to provide 

quantitative answers to different questions. 

1) We asked whether the new data-derived neurobiological labels capture the neural 

dysfunction encoded in the connectional fingerprints more accurately than the categorical 

labels (i.e., TD versus ADHD versus ASD) (Fig. 5A).  We would like to point out, that all 

biological labels were statistically independent of the connectivity fingerprint and therefore 

act just like a regular input variable (c.f. pre-validation in methods) (50, 51). SVMs correctly 

predicted the independent neurobiological label from connectional fingerprints in unseen 

participants in 67.33 +/- 3.07 percent of the time (chance is at 33.33 percent). Predicting the 
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original categorical diagnoses provided by board-certified psychiatrists achieved only an 

accuracy of 46.73 +/- 3.97 percent in new participants. This difference in classification 

accuracy across predictions was statistically significant at p < 0.0001 as evaluated by a t-test. 

This finding indicates that the imaging-derived neurobiological labels captured the 

underlying variation of disease dimension within the connectivity information more 

accurately than the original categorical group labels. 

2) We explored whether the categorical diagnostic labels could be better predicted 

from the individual connectional fingerprint (i.e., the full node-node connectivity 

information for each participant), if the factor weights were added to the explanatory 

variables (Fig. 5B). We hence asked whether adding the information about the individual 

factor weights (i.e., three continuous numbers) to the connectional fingerprint enhances the 

diagnostic classification to capture the underlying shared pathology more accurately. The 

classification accuracy on the original connectivity fingerprints alone reached 46.73 +/-3.97 

percent (chance still at 33.33 percent), whereas the original features supplemented with the 

weights of biological factors reached 46.61 +/-1.98 percent. When adding the dimensional 

information of the biological groups, there was hence no statistically significant difference in 

out-of-sample prediction accuracy (p = 0.73). However, notably, the prediction model 

improved according to another clinically relevant performance metric: The variance of the 

prediction model was reduced by a factor of 2. This finding indicated that aiding the 

prediction model based on categorical group labels by adding information on the biological 

groups did not enhance categorizing the shared neuropathology reflected in the sets of 

connectivity features on average across predictions, but made prediction in a given 

individual more reliable. 

3) We compared the predictability of the categorical labels based on the full 

connectional fingerprint with the predictability based on the 3 factor weights alone (i.e., a 
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total of 3 numbers per participant; Fig. 5C). The analysis achieved a classification 

performance of 44.48 +/-9.11 percent accuracy in unseen participants based on the factors, 

and was very close to the 46.73 +/- 3.97 percent accuracy in prediction of the clinical labels 

based on the full connectivity matrix. This difference in prediction performance was not 

statistically significant (p = 0.47). To emphasize the importance of this finding: Reducing the 

210 node-node connectivity features to 3 indicators of biological phenotypes in each 

individual still allowed for classification of TD, ADHD, and autistic participants with 

essentially identical predictive performance. 

In summary, we identified imaging-derived brain phenotypes based on large-scale 

network connectivity in the DMN, DAN, and SN using a hierarchical Bayesian framework. The 

phenotypes were derived in a data-driven fashion without access to any clinical or diagnostic 

information, and were gradually shared across TD, ADHD, and ASD individuals. Finally, we 

demonstrated that these brain endo-phenotypes were reliable to enhance categorical 

diagnoses made by board-certified psychiatrists to capture the underlying neural dysfunction 

shared in both disorders more effectively. 
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Discussion 

The present computational investigation sought formal models to capture the shared 

neural dysfunction in ADHD and ASD. Given the overlap in clinical presentation (i.e., exo-

phenotypes), we hypothesized that distinct neural signatures (i.e., endo-phenotypes) can be 

found to describe common underlying brain network dysfunction. We introduced a novel 

framework of hierarchical Bayesian inference to identify brain phenotypes of DMN coupling 

which were gradually shared across 1,305 TD, ADHD, and ASD individuals. We showed that 

both disorders could be situated along three dimensions of neurobiological variation. We 

decided to focus our study on previous empirical evidence for shared abnormal large-scale 

network function in ADHD and ASD. The present data hence suggest that the clinical overlap 

seen in ADHD and ASD is caused by a shared underlying pattern of brain network 

dysfunction characterized by distinct coupling patterns of the temporoparietal cortices in the 

DMN with the DAN and SN. In the following, we discuss the coupling patterns of each factor 

in the light of the current neuroimaging literature.  

Factor 1 was characterized by high DMN-DAN, medium DMN-SN, low intra-DMN and 

low intra-DAN coupling weights. The subject-by-subject expression of this factor showed the 

highest positive associations with ADHD symptom measures. These observations largely 

confirm previous findings that the manifestation of ADHD symptoms involves altered DMN-

DAN interactions, e.g. as implicated in attentional lapses (52). Our results are consistent with 

reports of decreased connectivity within the DMN and DAN in ADHD populations (19, 23), 

which the investigators proposed to explain attention deficits. In contrast to the behavioral 

associations of factor 1, the subject-specific expression of factor 2 was positively correlated 

with ASD diagnosis. On a network level, factor 2 showed high negative functional 

connectivity for DMN-DAN, low DMN-SN and AI-AM connections. This confirmed and 

expanded previous findings of observed hypo-connectivity within the salience network itself 
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and between the SN and DMN in ASD (18, 53). The aberrant DMN-SN interaction might 

potentially be the origin of deficits seen in ASD regarding impaired emotional awareness of 

the self and others, and impaired reorienting to salient social or emotional stimuli.   

Finally, factor 3 showed negative coupling relations among the DMN and between 

DAN nodes. In particular, the posterior subregion of the right TPJ depicted lower functional 

coupling than the anterior subregion, while no such dissociation was observed in the left TPJ. 

In contrast, factor 2 showed the inverse coupling pattern, while overall showing more 

positive associations with ASD than ADHD.  Earlier studies found a functional separation of 

the anterior and posterior rTPJ (37, 54): While the anterior subregion was shown to be 

closely related to the reorientation of attention, the posterior cluster was functionally 

associated with Theory-of-Mind and social cognition. Across brain phenotypes, distinct 

patterns of dysconnectivity in the rTPJ effectively differentiated between ADHD and ASD. 

We hence suggest that a shared expression of factor 2 and 3 may play a critical role in 

contributing to the variability of shared deficits seen in both disorders.   

Connectivity-derived biomarkers anchored in the partly shared functional 

architecture of the DMN may further disentangle the observed heterogeneity in ADHD and 

ASD diagnostics and potentially lead to targeted treatment options in the future. In ADHD, 

Peterson and colleagues specifically reported that psychostimulants may improve ADHD 

related symptoms by normalizing dysfunctional connections between DMN and DAN related 

activity in adolescents (55). ASD, in turn, was reported to show aberrant intra-DMN coupling 

and diminished antagonistic correlation with task-positive networks, such as DAN and SN 

(56, 57). However, dedicated translational research will be needed to extend the search for 

transdiagnostic biomarkers and eventually evaluate their potential use in treatment. 

 In conclusion, we used an innovative hierarchical Bayesian modeling strategy to 

identify and formalize intermediate brain phenotypes to interrogate our hypothesis of 
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shared dysfunctional connectivity in the DMN, DAN, and SN. The endo-phenotypes derived 

in a data-driven fashion without access to any clinical or diagnostic information were 

gradually shared across the neurodevelopmental disorders of ADHD and ASD. We 

demonstrated that hundreds of resting-state brain scans for each participant could be re-

expressed in only three numbers that captured hidden heterogeneity in DMN coupling. The 

derived brain endo-phenotypes were then demonstrated to enhance categorical diagnoses 

made by board-certified psychiatrists to capture the neural dysfunction shared in both 

disorders more accurately. The realized analysis strategy is not constrained to ADHD and 

ASD, but may be applied to a variety of major psychiatric disorders. Further investigations 

may not only target shared dysfunction (58) but also individual treatment response, similar 

to recent work in depression (59). Identifying and validating brain-based endo-phenotypes 

will most likely be and continue to be an unavoidable cornerstone for personalized medicine 

in child psychiatry (26, 60) and general psychiatry (26, 27, 61).  
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Figures  

 

Figure 1: Target network definitions 
The regions of interest (ROIs) used for all present analyses are rendered on the MNI 
standard brain with frontal, diagonal, and top views. A The 4 main default mode network 
(DMN) nodes are subdivided into 12 ROIs reflecting distinct subregions (dmPFC1-4, PMC1-4, 
left and right TPJ1-2) (37-40). B The DMN subregions are supplemented by 9 ROIs for the 
dorsal attention network (DAN) and salience network (SN), drawn from previously published 
quantitative meta-analyses. The DAN was composed of the dorsolateral prefrontal cortex 
(dlPFC) and intra-parietal sulcus (IPS) bilaterally (42). The SN included the anterior insula (AI), 
midcingulate cortex (MCC), and amygdala (AM) bilaterally (41). NeuroVault permanent link 
to all ROI definitions used in the present study: http://neurovault.org/collections/2216/. 
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Figure 2: Workflow  
A DMN, DAN, an SN network coupling was studied in a composite sample of 1,305 TD, ADHD, 
and ASD individuals taken from two multisite open-data repositories (ADHD-200 and ABIDE). 
B In a data-driven fashion, Indian Buffet Processes (IBP) automatically derived the number of 
hidden properties in the connectional fingerprints across participants without recourse to 
their clinical status. Automatic detection and weighing of shared and distinct unknown 
biological causes prompts its use in the identification of endo-phenotypes. C Latent Dirichlet 
Allocation (LDA) then inferred 3 overarching factors of underlying brain variation. 
Importantly, LDA allowed to derive hidden variability factors with mixed membership. 
Therefore, each participant’s connectional fingerprint was modeled to be simultaneously 
caused by multiple implicit neurobiological factors. D Each individual composition of the 3 
neurobiological factors (representing distinct network-coupling profiles, lower section) was 
related to their respective clinical diagnoses (TD, ADHD, ASD). In a preliminary analysis based 
on t-distributed stochastic neighbor embedding (t-SNE; 62), biological subtypes can be 
identified from network connectivity patterns that are partly shared across TD, ADHD, and 
ASD. 
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Figure 3: Hidden properties in connectivity profiles 
Healthy (middle section in columns), ADHD (upper section in columns), and ASD (lower 
section in columns) participants are compared with regard to the relative occurrence of each 
distinct hidden component (columns). Each hidden property resulted directly from the Indian 
Buffet Process and is depicted here with its occurrence (present versus not present) added 
up across all participants. These were automatically discovered in the whole-brain 
connectivity profiles without knowing to which of the 3 groups each participant belonged. 
Visibly, the identified connectivity features are dispersed across the participant groups. No 
single connectivity feature was exclusively associated with only one group. 
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Figure 4: Three neurobiological factors of variation with distinct connectivity patterns 
Bayesian inference allowed extracting a hierarchy of brain-defined subgroups, without 
access to the clinical diagnoses. Each of the biological three factors reflected a coherent 
pattern of resting-state connectivity between the default mode network (dmPFC-1/2/3/4, 
PMC-1/2/3/4, and bilateral TPJ-1/2), dorsal attention network (bilateral dlPFC and IPS), and 
salience network (bilateral AI, MCC, and AM). In each TD, ADHD, or ASD individual, the 
resting-state measurements of overall network-coupling patterns were driven by flexible 
recombinations of these three factors of connectivity variation. L/R=left/right hemisphere. 
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Figure 5:  Evaluation of predictability, robustness, and expressiveness of the trans-
diagnostic brain phenotypes for clinical validation 
Evaluating intra-subject predictions, the clinical usefulness of the measured network 
connectivity strengths (blue) was systematically evaluated against the discovered 
neurobiological endo-phenotypes (green). Violin plots are similar to box plots in showing the 
median (white point), quartiles (thick black lines), and outliers (below/above thin black 
whiskers) but also expose the probability densities of the data points (sideways shapes). A 
Classification performance (1.0=all subjects correct, 0.33=chance as red line) of predicting 
the original diagnosis groups (TD, ADHD, ASD) versus the neurobiologically derived groups 
(indicated by the most important factor in each participant) based on the overall brain 
connectivity. The data-derived disease factors could be much better predicted in 
connectivity profiles from new, previously unseen participants (p < 0.0001). B Classification 
performance of predicting the original diagnosis groups based on connectivity profiles versus 
connectivity profiles and additional factor weights. Knowledge of the brain-derived disease 
factors much decreased the variance (concentration around medium), thus decreasing the 
uncertainty of each prediction for a given participant. C Group prediction performance from 
full connectivity profile versus exclusive knowledge of the brain-derived factor weights. 
Without direct access to the original brain connectivity measurements, 3 factor weights 
summarizing each subject were sufficient for non-inferior prediction (p=0.47). The brain-
imaging-derived phenotypes hence improved predictability, robustness, and expressiveness. 
 
 

 

 

 


