
Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 1

A Reverse Engineer ing Approach to Framework
Comprehension

 Marcelo Campo Tom Pr ice

 UNICEN-Fac. Cs. Exactas-ISISTAN UFRGS- Instituto de Informática
 San Martín 57 Caixa Postal 15064
 Tandil, Bs. As., Argentina Porto Alegre - RS- Brasil
 e-mail: mcampo@necsus.com.ar e-mail: tomprice@inf.ufrgs.br

Abstract

Framework comprehension is a very limiting factor to take full advantage of the benefits that
frameworks offer to increase quality and productivity in software development. In this paper, a
reverse engineering approach to framework comprehension using the MetaExplorer tool is
presented. MetaExplorer is characterized by the use of meta-objects to gather information from
framework applications, providing a rich set of visualizations, and abstraction capabilities for
subsystem analysis and design-patterns recognition, along with advanced exploration
mechanisms based on semantic zooming and direct-manipulation user interfaces. The
effectiveness the tool to help on the process of framework understanding was tested through
controlled experiments, whose metrics suggest that users of the tool grasp a much better
understanding of an analyzed framework than users not using the tool.

Keywords: frameworks, design patterns, software comprehension, software visualization,
meta-object models

1. Introduction
Program comprehension is one of the most critical problems in the software life cycle. The

success of activities such as debugging and maintenance depends, in a great level, on how easy it is
for a programmer to understand a given program when it is necessary to correct an error or change
its functionality. This problem also affects the reusability of a software artifact. The reuse of
software artifacts is characterized by the need of changes or adaptations on the artifact being
reused, in order to make it adequate to the new application requirements [KRU 92]. Deutsch
suggests that software reuse exists only when exists some change, either in the reused artifact or the
context where it is used [DEU 89]. In this way, independently of the reuse technology (source code
components, software skeleton, very-high-level languages, etc.), a programmer must understand the
nature of the abstractions in order to select among the available components those that fulfill the
new application requirements, as well as to make the needed modifications or extensions with
specific functionality.

Object-oriented programs are, in general, more difficult to understand than traditional
procedural systems (with functional architecture). The well-known problems of the dichotomy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 2

between the source code structure and the execution model, the distribution of functionality among
classes and the dynamic binding, makes object-oriented programs harder to understand [WIL
92][DEP 93][LAN 95].

This complexity is even more acute in the case of frameworks [JOH 88][DEU 89].
Essentially, a framework is constituted by a set of abstract classes that implements a domain
specific architecture [BEC 94]. Framework abstract classes provides the generic behavior of any
application within its domain, leaving the implementation of specific aspects of a given application
to be completed by subclasses. This feature represents an important benefit because, once the
framework was understood, developers have to focus just on the solution of the specific aspects of
the problem being solved, while the overall control structure of the application is inherited from
framework classes. In this way, if a framework is designed by domain experts, users of the
framework are reusing, implicitly, the experience of these experts.

Due to these characteristics, frameworks offers a great potential to increase the productivity
and quality in software development. However, starting to use a framework for building specific
applications remains a complex task for a user other than the framework designer. In order to be
able to adequately specialize abstract classes and to describe the best way an application can be
built through the composition of instances of subclasses of those classes, a user is often faced with
the need of comprehending the detailed design of the framework.

A framework represents a tradeoff between a general and a flexible solution. A general
solution can deal, without changes, with different variants of a given problem. A flexible solution,
on the other side, is a solution that, through little changes on its structure, can be adapted to solve
those different variants. General solutions are certainly desirable, but most of the times, they show
performance problems or they are limited to very restricted domains [PAR 79]. Flexible solutions
can be adapted to particular cases, allowing programmers to exploit those aspects that simplify the
solution, in terms of performance and functionality. Complex frameworks often describe patterns
of collaboration among instances, through flexible design structures, that is, structures that enable
the adaptation (sometimes dynamically) of the general behavior provided by the framework. In
general, flexible design structures implies very complex designs and, in consequence, designs
harder to understand.

In this context, even if documentation is available, visual tools to help a framework user to
analyze the structure and behaviour of applications built using a framework at different levels of
abstraction become a valuable complement to facilitate the process of framework comprehension.
Particularly, reverse engineering tools able to recognize and visualize abstractions of higher level
than the source code, such as subsystems and design patterns [GAM 94], provide an excellent
vehicle for understanding a given framework in a higher level of abstraction than simple
visualizations based on classes or interactions among objects.

In this paper, a reverse engineering approach to the problem of framework comprehension is
presented. The approach is based on the Luthier framework [CAM 96][CAM 97] for building tools
for application analysis and visualization through reflection techniques based on meta-objects.
Luthier provides flexible support for building visualizations tools adaptable to different analysis
functionality, using a hyperdocument manager to organize the collected information. These
mechanisms supports the flexible construction of different visualizations from the analyzed
examples, as well as the navigation among different visual representations and textual

Comentario [DRM1]: Um conjunto de
classes que fornecem uma solução genérica
para um dado domínio de aplicação é
denominado de framework orientado a
objetos [DEU 89][JOH 88].

Comentario [DRM2]: Um framework é
constituído por um conjunto de classes que
definem um projeto abstrato para soluções
de problemas de uma família de aplicações
dentro de um domínio [JOH 88]. Um
framework implementa, em termos de
classes, o comportamento genérico de um
domínio de aplicação, deixando a
implementação dos aspectos específicos de
cada aplicação para serem completados por
subclasses.

Comentario [DRM3]: O problema
habitual que os usuários de um framework
encontram é que, para conseguir
especializar as classes abstratas e descrever
como a aplicação se constrói a partir dessas
classes, precisam geralmente compreender
o projeto detalhado das classes do
framework. Em frameworks complexos,
estas classes codificam padrões de
colaboração entre instâncias, através de
estruturas de projeto flexíveis, isto é,
estruturas que permitem adaptar o
comportamento geral provido pelo
framework.

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 3

documentation, through the explicit support for editing documentation books. With this support a
prototype of a visual tool for framework comprehension, MetaExplorer, was developed.
MetaExplorer provides a rich set of visualizations, and abstraction capabilities for subsystem
analysis and Gamma design-patterns recognition. The effectiveness of the approach to help on the
process of framework understanding was tested through controlled experiments, which suggest that
users of the tool grasp a much better understanding of an analyzed framework than users not using
the tool.

The paper is organized as follows. The next section discusses the different aspects that
contribute to make difficult the process of framework comprehension and the role that architectural
abstractions play in the design of support tools. In section 3 a brief description of the developed
comprehension tool and the results of controlled experiments are presented and analyzed. Section 4
presents the most relevant mechanisms provided by the Luthier framework. Finally, section 5
discusses related works in the area, and section 6 outlines the main conclusions extracted from the
project.

2. Framework Comprehension and Architectural Abstractions
Software tools for program comprehension are of great importance to help to reduce the

inherent complexity of the comprehension process. These tools aim to help the programmer to
build a mental model of the program, by providing mechanisms for analyzing, exploring and
visualizing information about the program at different abstraction levels. Frequently they provide
different visual representations that synthesize relevant properties about the analyzed artifact, as
well as mechanisms for filtering, organizing and abstracting information, which allow the user to
explore the information from different perspectives. Reverse engineering and software visualization
systems are the lines of research that have made the most important contributions to the
development of software comprehension support techniques. Reverse engineering is the activity
through which relevant information about a program or system is identified, relationships are
discovered and abstractions are generated [CHI 90]. Tools to support this activity aim to provide
automatic mechanisms to extract the information from a program by analyzing its source code, and
to deduce or recognize structural and behavioral abstractions not directly represented in that code.
Reverse engineering tools have shown its usefulness to aid the process of software comprehension,
particularly in the case of legacy systems, but they also offers an interesting alternative to help in
the reuse of object-oriented systems and particularly frameworks.

A framework is, essentially, the implementation, in terms of classes, of a generic architecture
for an application domain [BEC 94]. A previous knowledge about the application domain is,
doubtless, of great importance to help in a given framework comprehension. Through a general
knowledge of the domain, a programmer is able to comprehend the general organization of
concepts or, more specifically, the domain model implemented by the framework. On the other
side, it is also necessary to take into account that the goal of a framework development is to allow
framework users to reuse the designer domain knowledge. Therefore, it is reasonable to expect that
the framework users do not need to have a deep knowledge about the application domain, but just
the needed knowledge about the functionality of the application to be implemented. Ideally, in
order to be actually useful, a framework should allow the user to implement applications knowing
only the functionality that abstract classes leave to be implemented by subclasses.

Comentario [RJO4]: Um framework é,
essencialmente, a implementação, em
termos de classes de uma arquitetura
genérica para um domínio de aplicação. Um
Um conhecimento prévio do domínio de
aplicação é, sem dúvida, de grande
importância para facilitar a compreensão de
um dado framework. Através do
conhecimento geral do domínio, um
programador pode compreender a
organização geral de conceitos, ou, mais
especificamente, o modelo de domínio que
o framework implementa. Por outro lado,
também é necessário ter em consideração
que o objetivo do desenvolvimento de um
framework é permitir a reutilização, por
parte dos usuários do framework, do
conhecimento de domínio que o projetista
possui. Assim, é razoável esperar que os
usuários do framework não necessitem
possuir um conhecimento profundo do
domínio de aplicação, mas só o
conhecimento necessário da funcionalidade
da aplicação que deseja-se implementar.
Idealmente, para ser realmente de utilidade,
um framework deve permitir ao usuário a
implementação de aplicações partindo do
conhecimento da funcionalidade que as
classes abstratas deixam para ser
implementada por subclasses.

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 4

In this context, a reasonable first step on a framework comprehension process is to provide
the user the mechanisms to allow her to build an initial mental model of the structure and behaviour
of the architecture implemented by the framework. According to this, providing support for
recognizing abstractions not supported by the programming language, is an important complement
to make easier the global comprehension of functionality of a framework.

Subsystems and design patterns [GAM 94] represent design abstractions that are not
supported by current object-oriented languages, but are of great importance to comprehend how
system objects are organized and collaborate in order to satisfy the global functionality. A design
pattern names a given combination of classes and methods that solve a general, recurring, design
problem. If a user knows which is the problem that a given pattern is intended to solve, and how the
classes and methods that the pattern prescribes for the generic solution, then such user can quickly
understand the nature of the relationship established among framework classes without a very
detailed analysis. In this way, the identification of potential design patterns that can exist inside a
framework structure is an important complement to make easier the comprehension of how
determined parts of the framework were designed and the function that some methods play inside a
given class.

It is necessary to take into account that an approach centered exclusively on recognizing and
visualizing design patterns is not enough to completely guide the process of framework
comprehension. Design patterns can be useful to drive the process of framework design at
architectural level, but not all the framework structures can be derived from the design patterns
described in, for example, the catalog presented by Gamma et.al [GAM 94]. The number of
patterns in the catalog, which are the most widely known, is relatively small and they vary a lot in
their level of abstractions and the domains where they are useful.

In spite of this, a reverse engineering approach based on the recognition of these functional
units in a framework becomes an important complement to provide the user with more abstract
initial views of the framework organization. Through adequate mechanisms that enable the
framework visualization and, essentially, exploration at different levels of abstraction a user can get
an overall comprehension of the framework that can be gradually refined though a further analysis
of the behaviour at the instance level, whenever this analysis is necessary.

3. Exper imenting Reverse-Engineer ing-Based Techniques
In the past three years, the author have been involved in a research project on the

development of a framework, called Luthier, to build visual tools to help the process of framework
understanding. As a result of the work, a Smalltalk prototype, called MetaExplorer, was developed,
which provides a rich set of features that enables the analysis and visualization of a framework at
different levels of abstraction from both architectural and instance behaviour points of view. In this
section the main capabilities of MetaExplorer are briefly described and the results of its
experimental application are presented. The next section presents a more detailed discussion of the
mechanisms provided by the Luthier framework for the construction of such tool.

Comentario [RJO5]: Assim, um
primeiro passo razoável no processo de
compreender um framework é prover o
usuário com mecanismos que lhe permitam
construir um modelo mental inicial da
estrutura e comportamento da arquitetura
implementada por esse framework. Neste
sentido, a provisão de suporte para o
reconhecimento abstrações que não são
explicitamente suportadas pela linguagem
de programação, é um complemento
importante para facilitar a compreensão
global da funcionalidade de um framework.

Comentario [RJO6]: Os padrões de
projeto [GAM 94] representam abstrações
de projeto que não são suportadas pelas
linguagens orientadas a objetos atuais, mas
que são de grande importância para
compreender como os objetos de um
sistema são organizados e colaboram para
satisfazer a funcionalidade global.

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 5

3.1 MetaExplorer Overview
MetaExplorer is characterized by the use of meta-object-based reflective techniques to

analyze the static structure and dynamic behaviour of applications built using a given framework.
Meta-objects [MAE 88] provide an excellent vehicle to gather both static and dynamic information,
allowing to build dynamically-configurable tools for program analysis in an uniform object-
oriented model.

 The first step to analyze a given framework with MetaExplorer is the reflection of the
classes to be inspected on a pre-defined set of meta-objects. Next the application or example is
executed and, through a specially designed meta-architecture, an abstract representation of the
framework is generated using an advanced hyperdocument manager. This manager implements a
model of aggregate nodes that can persistently store the collected information on the behaviour of
the observed framework in abstracted collections defined by the tool implementor. This
representation provides the support for navigating among multiple visual representations and
documentation books constructed by the user during the comprehension process as well as
generated automatically by the tool.

From such representation different potential abstractions, such as subsystems and Gamma
design-patterns, are automatically recovered, and different visualizations of the framework static
and dynamic structure are produced using conventional notations, as OMT, message flow graphs,
object interaction charts, etc. (Fig. 1). Also, MetaExplorer provide alternative abstract

Subsystem View

Design Patterns
View

Design Patterns Explanation Book

OMT View

Message Flow ViewAbstract
Hierachy View

Fig. 1- Different visualizations provided by the tool

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 6

visualizations as abstract hierarchy graphs and message-flow graphs highlighting characteristic
aspects of frameworks as for example method categories (i.e., abstracts, templates, hooks and
base).

From any of these visualizations, specific meta-objects can be dynamically associated to
application objects to enable the detailed analysis at instance level (i.e., visualization of internal
state changes, breakpoints on methods, and so on). This functionality allows the user to focus on
specific points that require a detailed analysis of the involved instances, avoiding the collection of
full information about instances. This is one of the most problematic points in object-oriented
program visualizations tools due to the huge amount of information that can be gathered in a single
execution. In this way, MetaExplorer induces a two-phase exploration process oriented by the
visualization of high-level architectural representations.

Navigation and direct-manipulation user interfaces are two complementary mechanisms to
facilitate the exploration of complex data. MetaExplorer provides a powerful direct-manipulation
user-interface, which allows, for example, a rubberband selection and zooming of specific portions
of diagrams using alternative notations, as well as the animation of the framework message flow (in
message-flow-based visualizations) under interactive control of the user [CAM 96]. MetaExplorer
also implements an innovative mechanism for semantic zoom [MUT 95] based on symbolic
abstraction scales. This mechanism allows the user for the continuous zooming of diagrams,
showing or hiding pertinent information at each level of abstraction (this feature is described in the
next section). This zooming greatly helps to reduce the proliferation of multiple windows,
contributing to avoid the well-known problem of user disorientation in hypertext systems.

Interactive filtering of information through query capabilities is provided as an additional
mechanism to reduce the complexity of visualizations. Textual queries, based on abstract message
flow properties, allow the user to filter the visualization to show only those components that
satisfies some abstract properties, as for example, classes related by messages that activate
redefinition of abstract methods. Presentations are enhanced by the use of colors to suggest a
relative sequence in which relationships are established at runtime. The semantic of this colors can
be interactively selected by to user, to represent the first, the more frequent or the last message that
determined a relationship between two classes. This feature enables the analysis of dynamic
relationships at architectural level.

One important aspect, missing in most of the visual understanding tools for object-oriented
programs currently reported in the literature, is a support to explain the structure and behaviour of
the analyzed program. Also, these tools provides little or no support to produce additional
documentation product of the comprehension process carried out by a user. For this task
MetaExplorer provides support for the construction of documentation books fully integrated with
the visualizations produced from the captured program information. Books can be organized in
terms of chapters and sections, allowing the interactive use of visual attributes and fonts to
highlight title paragraphs and text. Through this support, a book describing the design patterns that
were recognized in the framework is automatically generated. The book is divided into three
chapters, one for each pattern category, i.e. Creational, Structural and Behavioral. Each chapter is
composed of as many sections as patterns in each category were recognized. A section includes a
short explanation about the pattern that it describes, and textualy explains the reasons that
suggested the existence of one or several occurrences of the pattern in the framework structure. The

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 7

explanation includes an extended OMT diagram of the framework classes where the pattern was
recognized.

This kind of information provides the user with additional information that facilitates the
understanding of the functionality implemented by the involved classes. The combination of
textual and graphical representations allows the user to analyze each pattern according to its class
structure and the functionality of the involved methods from the point of view of the design intent
of the design pattern. Through the navigation capabilities the user can navigate among the different
visual representations up to the implementation of the methods. This functionality allows the
framework exploration at different levels of abstraction, starting at the abstraction levels provided
by subsystems and design patterns.

Fig. 2 shows snapshots of the graphical browsers provided by MetaExplorer to visualize
design patterns recognized in the structure of an analyzed framework and the page for the
Composite design pattern of the explanation book automatically generated by the tool. The lower
pane presents the complete list of design pattern names, highlighting with different colors those
patterns that were recognized during the analysis phase. The selection of a pattern from the list,
highlights in the visualization the classes involved in that pattern with its corresponding color. This
enables the independent analysis of each pattern, as well as, the navigation to the alternative
message flow visualization, in order to analyze the dynamic behavior of the pattern. Alternatively,
it is possible to highlight with the corresponding color those methods and messages that define
each selected pattern. The first visualization is helpful to focus the user attention on occurrences of
particular patterns, whereas the second alternative is useful to visualize those patterns that define
the design of a given class.

Fig. 2- Alternative visualizations of design patterns and documentation book

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 8

3.2 Exper imental Results
The effectiveness of a support tool for framework comprehension can only be empirically

demonstrated through its use in real scenarios. For this reason, controlled experiments with three
groups of students were made to evaluate the effectiveness of the different techniques provided by
MetaExplorer to aid the process of framework understanding.

One experiment consisted of the implementation of a graphical editor for PetriNets using the
HotDraw framework [JOH 92]. The experiment was designed to allow the extraction of
conclusions about the overall usefulness of the tool, as well as the specific advantages that reverse
engineering techniques for abstraction recovery could provide a user to facilitate the
comprehension process. One group, called GS, was provided with a version of the tool that only
supported structural visualizations with animation of message flow capabilities. A second group,
GA, was provided with the same support plus visualizations of subsystems and design patterns,
while a third group, called GN, did not use any tool to understand the HotDraw framework.

The editor all groups had to develop was specified to satisfy exclusively the following
functionality:

• Figure creation: Transitions, with rectangular shape and two bounded texts, the name
(inside the rectangle) and the transition condition (external to the rectangle). States, with
elliptical shape and two internal texts. Connections, represented by an arrow relating one
state with one transition and vice-versa, with an associated text representing the
parameters of the transition.

• Direct manipulation for creating, moving and resizing figures and basic editing
commands with undo (i.e., insertion, deletion, etc.).

• Visual Feedback for the creation of connections indicating the valid targets of a new
connection starting at a given transition or state.

The definition of figures to be edited and the use of the constraint system were the most
important design aspects of the required editors, because most of the needed functionality is
provided by the framework. In this way, it was possible to analyze the degree of framework
comprehension in the aspects of redefinition of abstract classes and the reuse of finished
components.

The developed applications were compared using a tool for metrics collection also built
using the Luthier framework. This tool implements the metrics described in [LOR 94], from which,
only a relevant subset to analyze differences among applications developed using a framework was
considered for evaluating the results. Table 1 presents the values corresponding to the three groups.
These values admit several interpretations, as they strongly depend on the characteristics of the
analyzed program. Nevertheless, they offer interesting suggestions about relative differences
among the three developed applications, which can be further checked through a deeper analysis
using the understanding tool. Values highlighted in the table represent values that are particularly
interesting as a suggestion of the reuse level of the framework.

The values shown in the table make evident a substantial difference in the number of classes
created by the groups using the tool and the group not using it. This represents a strong suggestion
of a poorer comprehension of the framework by the GN group. Also, not too many differences can

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 9

be appreciated between the GS and GA groups, particularly in the amount of lines of code and the
number of added methods. The specialization index (Hierarchy Nesting Level * Number of
Methods / Number of Added Methods), provides a clue about the level of reuse of a class hierarchy
relative to the number of added methods. The values for this index for groups GS and GA are
nearly equivalent, while the index of the GN is significantly lower. This index shows a low level of
method redefinition and reuse of the functionality provided by the framework, as the number of
new methods is high. On average, though, GS presents the greater number of new methods per
class and the higher nesting level. In this case, the specialization index is complemented with a
great number of inherited methods.

It is necessary to take into account that, in general, it is considered that an adequate design
should add behaviour in subclasses, redefining a few methods. This is not necessarily true with
well-designed frameworks, in which few additional methods are supposed to be necessary.
Obviously, this consideration is relative to each particular framework, and it also depends on the
inheritance or compositional design style that predominates in the framework design. However, in
order to compare applications, a relation between the number of overridden and added methods can
be useful as a suggestion of the reuse level obtained by different applications, especially, if the
framework is an inheritance-based one. In this case, this relation should tend to infinite for an ideal
framework, in which any application could be produced by implementing just abstract and hook
methods (a class could add private methods for internal design decisions, which do not extend the
protocol of the framework). For this reason, the Proportion of Overridden/Added metric was
included to represent this value. A higher value of this relation can suggest a greater reuse of the

Metric GS GA GN
Totals

Number of Classes 16 12 32
Lines of Code 1427 980 1854
Hierarchy Nesting Level (max.) 7 7 8
Number of Methods 178 148 281
Number of Overridden Methods 102 95 126
Number of Added Methods 76 53 155
Number of Sentences 700 718 1217
Number of Messages 815 781 1370
Number of Class Variables 0 0 16
Number of Instance Variables 23 12 15
Number of not Called Methods 51 25 115
Number of not Called Public Methods 94 75 125
Number of not Called Private
Methods

33 38 41

Averages
Number of Inherited Methods/Class 127.50 130.75 127.56
Number of Overridden
Methods/Class

6.37 7.91 3.93

Number of Added Methods/Class 8.56 4.41 6.85
Proportion Overridden/Added 0.63 1.55 0.61
Specialization Index 3.47 3.20 2.36
Lines of Code/Method 8.215 6.62 7.23
Number of Messages/Method 4.58 5.27 4.87

Table 1- Values of Some Relevant Metrics

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 10

framework. The values shown in the table for this metric show a high parity between groups GS
and GN, while the value for GA is almost twice in magnitude. The combination of both indexes
suggest a better degree of reuse for group GA.

These values suggest a better performance of group GA, but they do not indicate a solution
of higher quality nor reuse, between groups GS and GA. In order to determine which was the better
solution, a detailed analysis about design differences that these metrics do not reflect, was
necessary. Analyzing the applications using MetaExplorer, similar information to that provided by
the metrics was extracted: the application developed by group GN presents greater problems related
to the design of the editor, while the other two applications show little difference between them.
Comparing the results in a general way, the main differences among the design decisions of the
three groups are related to the design of the figures to be edited and the utilization of the constraint
system:

• GS presents a better utilization of the constraint system, which allowed them to easily
solve some problems that arose due to bad decisions about class specialization.

• GA presents the better structure, in terms of reuse of the framework functionality, due to
an adequate selection of the classes to be specialized, but they make a weak utilization of
the constraint system.

• GN presents problems on the reuse of the behaviour implemented by the framework,
mainly on the aspects related with abstraction design as well as on the use of the
constraint system.

3.2.1 Development Times

In order to evaluate the impact of the tool usage, registrations of the time spent on
developing the editors were taken. Table 2 presents times used by each group, according to the time
taken up exclusively by comprehension activities and the time involved in application development.

These times present interesting data that complete and explain some of the differences shown
above. As can be seen, group GS dedicated more time to comprehension activities and less time to
development, while GA was the group that used less total time. The difference between the times
of tool use is the reason for the much better use of the constraint system by group GS. This group
preferred to postpone the development phase until achieving the total comprehension of the
framework; GA, on the other hand, having more abstract visualizations that guide the exploration
of the framework used the tool to achieve a global comprehension and to analyze partial aspects
that could not be solved during the programming phase. A similar strategy was also used by GN,
which analyzed the examples through code inspection, and had similar comprehension times as
GA.

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 11

3.2.2 Conclusions from the Exper iment

Some relevant conclusions can be outlined from the experiment described above about the
utilization of MetaExplorer.

In a first place, the experiment suggest that the use of MetaExplorer helped to obtain better
results, in terms of the reuse of the functionality provided by the used framework and quality of the
developed editors. This result, combined with the similar development times, suggest an important
gain in terms quality of the final solutions. Considering the differences between both groups using
the tool, the total time used by GA group suggest that the exploration based on abstractions as
subsystems and design patterns induced more adequate design decisions, making the framework
exploration easier and more productive.

On the other side, it was noticed that the tool can induce an exaggerated exploration of
details that are not necessarily relevant. Nevertheless, the comprehension of these details helped the
group GS to use a very complex subsystem, such as the constraint system, very well.

Certainly, these conclusions cannot be considered as definitive because of the small size of
the sample and the narrow scope of the experiment. However, they empirically confirm the
hypotheses that an abstraction-oriented exploration strategy, complemented by navigation
capabilities among alternative representations can effectively help inexperienced users to better
understand a framework, and therefore to make a better reuse of such framework.

4. An Overview of the Luthier Framework
MetaExplorer was developed using the Luthier framework [CAM 96] designed, and

implemented in VisualWorks-Smalltalk, with the goal of providing a flexible support for the
construction of tools for object-oriented framework analysis and visualization, through reflective
techniques based on Maes-style meta-objects [MAE 88].

Luthier is constituted by four sub-frameworks, which provides adaptable support for the four
essential tasks that characterize both reverse engineering tools and visualization systems, that is,
LuthierMOPs for information gathering, LuthierBooks for information representation,
LuthierViews for visualization and exploration of gathered information and LuthierAbstractors for
abstraction analysis and recovery.

Fig. 3 presents the generic structure of a visualization tool built using Luthier. A typical tool
built using Luthier will be composed of a set of meta-objects monitoring the execution of an
application, generating an abstract representation of the program information using a specific
hyperdocument manager. The visualizations will request at the lower level the information to be
visualized, which will be provided by abstractor objects. Abstractors are in charge of recognizing

Group Comprehension Activities

(Hs)
 Development

 (Hs)
Total Time

(Hs)

GS 72 100 172
GA 25 108 133
GN 26 131 157

Average/ Deviation 41 / 26.8 113 / 16.1 154 / 19.6

Table 2- Time Used in Application Development

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 12

or building abstractions from the information contained in the hyperdocument representation. The
next sub-sections briefly describe the four sub-frameworks emphasizing the most relevant
contributions of Luthier: meta-object managers and abstractors.

4.1 LuthierMOPs: Customizable Meta-Object Protocols
 A distinctive characteristic of Luthier is the sub-framework for meta-object support based

on the concept of meta-object managers [CAM 96]. A meta-object manager (MOM) is an object
which determines how meta-objects are associated to base-level objects and how these meta-
objects are activated. Through this support customized meta-object protocols, specially adapted for
different dynamic program analysis functions, can be implemented with little effort. Specific meta-
object classes can be implemented to extract relevant static and dynamic information from the
analyzed program, and to build an abstract representation of the framework.

This approach presents two main advantages from a program analysis tools point of view:

• Activation strategies: Operationally, a MOM acts as a mediator between base-level
objects and meta-objects. Messages reflected from the base-level are directed towards a
given MOM which decides what meta-objects, if any, must be activated. In this way,
MOMs can support different strategies for meta-object activation, as for example,
priorities of activation when several meta-objects are associated with the same object.

• Association policies: MOMs provides a greater level of flexibility to encapsulate in
different objects different policies of meta-object association. This allows the separation
of specific aspects of meta-object functionality from the aspects related to their
organization in a meta-architecture. For example, a MOM can implement the association
of a single meta-object to a given class, in such a way that meta-object be activated if a
given instance does not has its own meta-object. Alternatively, another MOM may allow

Meta-Object Support

Meta-Object
Library

Functionality Selection

through Dynamic Association of
Meta-Objects

Dynamic Configuration

Visualizations

Hyperdocument representation

Abstractions

Meta-Objects

Aplication

Meta-Architecture

Framework

Fig. 3- Generic structure of a visualization tool built using Luthier

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 13

the
associati
on of
multiple
meta-
objects
to a
given
object,
or even
to
restrict
the
associati
on of
one meta-object per object.

From a point of view of tool construction, MOMs offer the advantage of providing a high-
level interface to organize meta-objects independently of the functionality implemented by them.
The separation of the association mechanism allows for its specialization to implement specific
management services adequated to the requirements of each particular tool. This ability is essential
to enable the interactive substitution of meta-objects which allows the comprehension tool to
switch among different data gathering functionality. The ability to activate meta-objects, enables a
MOM to dynamically suspend and restart the reflection of messages of all the reflected objects, or
just some of them. This capability allows, for example, the user to interactively determine whether
a tool should activate meta-objects. Also, different functions of the meta-level can be activated or
deactivated without accessing any specific meta-object.

LuthierMOPs defines four abstract classes which reify the different aspects involved in the
implementation of a meta-object support. The abstract interaction among these classes is presented
in Fig. 4. When a reflected object receives a message, this message is deviated by the interception
mechanism to the associated MOM. The MOM looks for meta-objects associated to the object that
reflected the message (findMetaObjectsFor: message) and decides whether to activate the selected
meta-objects (activateMetaObjects: message) by sending to them the handleMessage: manager:.
message. When a meta-object is activated receives an instance of the ReflectedMessage class which
contains all the information relative to the reflected message. The meta-object can execute the
original method by sending to the ReflectedMessage instance the send message.

Customized meta-object management mechanisms can be easily implemented by providing
specific implementations for the findMetaObjectsFor and activateMetaObjects messages. Different
meta-objects must provide the implementation of the handleMessage:manager: method.

4.2 LuthierBooks: Information Representation
The LuthierBooks sub-framework provides support to define specific representation of the

gathered information in terms of an hypertext model based on contexts objects. Contexts define

MessageInterceptor MetaObjectManager

reflect:selector:args:

ReflectedMessage

new

findMetaObjects

activateMeta
Objects

MetaObject

handleMessage

Object

aMessage

Indirect activation denpendent on the interception mechanism

send

Fig. 4. Abstract controlflow of LuthierMOPs

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 14

aggregate nodes whose semantic is defined by the class that implements it. The model supports
classes of nodes and bi-directional links that make easier the navigation through the complex web
of information determined by the execution of an object-oriented program. This representation can
be stored persistently as part of documentation books. These books, are implemented in terms of
the same hypertext model, enabling the constructions of design libraries organized as an
hyperdocument.

4.3 LuthierViews: Information Exploration
The LuthierViews sub-framework provides the common infra-structure to implement

dynamically configurable visualizations with direct-manipulation user interfaces. This sub-
framework is an extension of the MVC framework, providing facilities to build direct-manipulation
zooming mechanisms using alternative visualizations for the selected information. LuthierViews
also provides components to create books with formatted text through user-defined styles, text
editing capabilities and insertions of visual components generated by visualizations, and even
complete visualization tools, as part of a standard page of a book. This functionality enables a
better organization and enhanced visual presentations of the framework information.

4.4 LuthierAbstractors: Mater ializing and Managing Software Abstractions
Luthier introduces the concept of abstractor objects, which explicitly separate the

information representation from visualizations (Fig. 5). Abstractors represents a generic
architectural component of tools, by which different analytical algorithms and selection criteria can
be located, without the need of modificating either classes of the information representation or
classes implementing visualizations. Following the conventional communication mechanism among
views and models in MVC, views request their model the information to be visualized through
direct messages. An abstractor substitutes a model and decides whether to ask the original model
for the requested information. In this way an abstractor can be designed to behave in three different
ways:

• Information generation: an abstractor can encapsulate the algorithms to recognize
subsystems, collaborative groups or design patterns and to provide such abstractions as
normal data to be visualized.

• Information selection: an abstractor can be designed to select information from the model,
according to some criteria established either internally or externally. Selectors allows for
the specification of selection criteria, as for example, to visualize only classes that are
related through messages that activate abstract methods in redefined in subclasses. These
selections can be externally defined by the user, providing in this way the ability to vary
the detail level of a given visualization according to the type of information a user wants
to focus, at any time of the exploration.

• Information filtering: an abstractor can decide whether a given data element will be
visible or not, making it available or not to the visualization. In this way, through the use
of abstractors, visualizations must only deal with the graphical presentation of the
information to be shown, without take into account the necessary detail level. This greatly

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 15

reduces the complexity of programming new visualizations, which is, perhaps, the most
time-consuming task in the construction of visualizations tools.

Essentially, abstractors behave as proxies of the objects contained in the model, controlling
the access to these objects by visualization classes. In this way, abstractors can be hierarchically
composed to provide independent control over each object contained in the model. Also, they can
be dynamically composed to combine different functionality, as for example, filtering on a specific
selection of the program information. This powerful feature enables the combination and reuse of
different algorithms for abstraction recognition with different visualizations styles, as for example,
subsystem analysis, structural relationship analysis and design patterns.

4.4.1 Abstraction Scales

LuthierAbstractors provide the generic support for managing symbolic abstraction scales,
which enable the semantic zoom of visualizations without the need of programming special filters
in visualizations. An abstraction scale is an ordered tuple naming the order in which constructions,
like subsystems, classes, methods, and so on, should be visualized. An scale has its own user-
interface control (usually a slider) through which the user can interactively vary the level of
abstraction of the visualization (i.e. showing or hiding dynamically details). The visualizations, in
turn, only have to worry about what must be shown according to the data that abstractors pass to
them, in the current abstraction level. For example, the scale below is used to define the different
detail levels in which a subsystem-based visualizations can be shown.:

 (subsystemAbstracion abstractHierarchy abstractMethod concreteMethod concreteHierarchy)

A selection of a level in this scale will define which information the visualization will
receive to be graphically presented. That is, if the selected abstraction level is abstractHierarchy
the visualization will only receive the subsystems and the top of each component class hierarchies.
After that if the user selects abstractMethod, the same visualization will receive subsystems,
abstract classes and the abstract methods defined in such classes (Fig. 6).

The scale below defines a scale in which methods are shown only in the last (or higher)
level of detail:

Model

Properties Selector

Subsystem Abstractor

Visualization Visualization

Design Patterns Abstractor

Fig. 5- Relationship among visualizations, abstractors and information representation

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 16

(subsystemAbstracion abstractHierarchy concreteHierarchy abstractMethod concreteMethod)

LuthierAbstractors provides the generic mechanisms that implement this behaviour, and the

standard protocol through which visualizations request information to be visualized. Each
abstractor object has its own instance of abstraction scale, so it is possible to vary independently
the abstraction level of each abstractor representing data to be visualized.

Each view asks its model information to be visualized though two standard messages
getNodes e getLinks. The generic behaviour of this messages implements the control mechanism of
the current abstraction level. If such level is greater than the level represented by the abstractor, the
complete information of the model is returned. Otherwise only the corresponding abstract
information is returned:

 getNodes
 self abstractioLevel > self abstractionRepresented
 ifTrue:[^self getFullNodesInformation]
 ifFalse:[^self getAbstractNodesInformation].

 getLinks
 self abstractioLevel > self abstractionRepresented
 ifTrue:[^self getFullLinkInformation]
 ifFalse:[^self getAbstractLinkInformation].

The default implementation of getFullNodesInformation method return the full component

list of the abstractor, while getAbstractNodesInformation returns an empty list indicating that there
is no information to be visualized at the current level of abstraction. This mechanism can be
specialized in subclasses to implement, for example, semantic zoom mechanisms based on the
current attention focus of the user. In the case of hierarchically-composed abstractors, the
abstraction level is common to all the component abstractors, and changes produced in the upper
levels are automatically propagated to the lower ones.

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 17

5. Related Work
In the last years, several tools aimed to help on the object-oriented software comprehension

were described in the literature. These approaches are centered, mainly, either on providing
microscopic visions of program behavior for debugging purposes [BRU 93][STA 94][VIO 94], or
providing alternative visualizations of program data[DEP 93][DEP 94]. Even so, excepting by the
work of Lange and Nakamura [LAN 95], little work has been reported on tools to help in the
process of framework comprehension.

The use of visualization and animation techniques to assist object-oriented program
understanding is specially being explored in the area of program debugging. Most of the current
systems are based on event generation mechanisms. Events are used to inform the visualization
system on, for example, the sending of messages, instance creation/destruction and method
entry/exit. Event-based mechanisms are specially suitable for program animation tools because they
support the definition of events at any level of abstraction, but they are not so adequate to support
the analysis of abstractions that require program static information.

The BEE++ application framework [BRU 93], provides a platform to build tools for dynamic
analysis of distributed programs. It supports event monitoring, visualization and graphic
debugging-tools distributed across different nodes of the network. Luthier does not support the
analysis of distributed frameworks, but the use of meta-objects could enable the transparent
monitoring of such applications too.

The use of 3D visualizations was addressed by Vion-Dury and Santana [VIO 94]. They
introduced the concept of virtual images for debugging distributed object-oriented applications. A
virtual image is a graphic representation of an object that uses a 3D spatial model. Objects are
represented by polyhedrons that have significant shapes, colors, volumes and orientation. From a
cognitive point of view, this representation offers interesting possibilities to represent more abstract

Abstration Scale Interface

Subsystem level

Class level

Fig. 6- Example of an interactive change produced in the abstraction level of the visualization of Luthier
subsystems

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 18

structures. However, it does not seem certain that text can be entirely substituted by polyhedral
shapes.

DePauw, Helm, Kimelman and Vlissides [DEP 93,94] proposed matrix-based visualizations
of the dynamic behavior of C++ programs. They use multiple views to represent different aspects
of execution data, using colors to denote instance creation/destruction frequency, inter and intra
class invocations, instance-allocation history, among others. These representations are generated
through a portable platform for instrumenting C++ classes, enabling the generation of interesting
events and the control of the program execution. These representations do visualize partial aspects
of program behavior and support navigation functions, but it does not emphasize aspects
concerning frameworks as those discussed in this paper.

Software Refactory [OPD 92] is the first example of using reverse engineering tools to
support framework development. This tool supports the restructuring process of a framework
programmed in C++, starting from the static analysis of applications built with that framework.
Software Refactory provides a valuable support for code manipulation and restructuring, but it does
not provide any support for documenting the result of factorizations that were made.

The work described in this paper is heavily related to the work of Lange and Nakamura on
the Program Explorer [LAN 95]. They also propose the use of interactive program visualization
based on design patterns as the way to obtain structured access to the interaction of framework
components. Their work intends to provide a uniform Prolog-based model to represent static as
well as dynamic framework information, but it does not make explicit how design patterns are
automatically recognized, or even if actually they are.

6. Conclusions
The understanding of object-oriented programs and particularly object-oriented frameworks

is undoubtedly a difficult task. To alleviate this task, MetaExplorer attempts to provide an adequate
set of tools that can be used to analyze a framework from different points of view and by users with
different background.

The strengths of the reverse engineering approach proposed in this paper was empirically
demonstrated through experiments, which suggest that the use of the support tool helps a user to
grasp a better understanding of a framework and, therefore, to produce better applications in terms
of framework reuse. Particularly, empirical data about the effectiveness of the mechanisms
proposed by visualization tools for object-oriented program understanding are rarely found in the
literature.

The mechanisms introduced by the Luthier framework allow to implement different
visualization tools with little effort. The use of meta-objects-based techniques centered on the
concept of meta-object managers enables the construction of sophisticated meta-architectures,
specially adapted to the requirements of each tool, in a simple and clear manner. The concepts of
abstractor objects and symbolic abstraction scales enable the construction by composition of
complex filtering mechanisms that greatly simply the implementation of visualizations, which is
often the more time-consuming task in the development of visualization systems. Currently,
LuthierAbstractors is demonstrating its versatility to support other types of complex visualizations,
as for example, visualizations in geographic information systems.

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 19

7. References

[AMA 97] Amandi, A; Price, A. Towards Object-Oriented Agent Programming: The
Brainstorm Meta-Level Architecture. Procs. of 1st Autonomous Agents
Conference, Los Angeles, ACM Press, February 1997.

[BEC 94] Beck, K.; Johnson, R. Patterns Generate Architectures. Procs. ECOOP’94,
Bologna, Italy, Berlin:Springer-Verlag, 1994. p. 89-110.

[BRU 93] Bruegge, B.; Gottschalk, T.; Luo, B. A Framework for Dynamic Program
Analyzers, Procs. OOPSLA’93, Washington D.C. New York:ACM Press, Oct.
1993.

[BUH 92] Buhr, R.; Casselman, R. Architectures with Pictures. Procs. OOPSLA’92,
Vancouver, Canadá.October1992.

[CAM 96] Campo, M.; Price, R. A Reflective Framework for Software Visualization Tools.
Procs. of the 10th Brazilian Symposium on Software Engeneering, São Carlos,
Brazil. October 1996. (in portuguese)

[CAM 97] Campo, M. Visual Understanding of Frameworks through Instrospection of
Examples. Ph.D. Thesis. UFRGS, CPGCC, 1997. (in portuguese)

[CHI 90] Chikofsky, E.; Cross, J. Reverse Engineering and Design Recovery: ATaxonomy.
IEEE Software, v.7, n.1, p. 13-17, Jan. 1990.

[DEP 93] De Pauw, W.; et al. Visualizing the Behavior of Object-Oriented Programms. ACM
Sigplan Notices, v.28, n.10, New York:ACM Press, p.326-337, Oct.1993.

[DEP 94] De Pauw, W.; et al. Procs. ECOOP’94, 10, 1994, Bologna, Italia. Berlin:Springer-
Verlag, 1994. p. 175-194.

[DEU 89] Deutsch, P. Frameworks and reuse in the Smalltalk-80 system, In: Biggerstaf, T.,
Perlis, A. (Eds.) Software Reusability: Applications and Experience, New York:
ACM Press, 1989.

[GAM 94] Gamma, E.; et al. Design Patterns: Reusable Elements of Object-Oriented Design,
Reading: Addison-Wesley, 1994.

[JOH 92] Johnson, R. Documenting Frameworks Using Patterns. Procs. OOPSLA’92,
Vancouver, Canadá. New York:ACM Press, Oct.1992.

[KRU 92] Krueger , C. Software Reuse. ACM Computing Surveys, v.24, n.2, June 1992.

[LAN 95] Lange, D.; Nakamura Y. Interactive Visualization of Design Patterns Can Help in
Framework Understanding. ACM Sigplan Notices, v.30, n.10. Oct. 1995.

[LOR 94] Lorenz, M; Kid, J. Object-Oriented Software Metrics - A practical guide..
Englewood Cliffs: Prentice-Hall, 1994.

[MAE 88] Maes, P. Issues in Computational Reflection. In: Meta-Level Architecture and
Reflection. Amsterdam: Elsevier Science, 1988.

[MUT 95] Muthukumarasamy, J.; Stasko, J. Visualizing Program Executions on Large Data
Sets using Semantic Zooming. Georgia, Georgia Institute of Technology, 1995.
(Tech. Report. GIT-GVU-95-02).

Proceedings CACIC ‘97
Ingeniería de Software. Bases de Datos UNLP

Departamento de Informática - Facultad de Ciencias Exactas 20

[OPD 92] Opdyke, W. Refactoring Object Oriented Frameworks. Ph.D. Thesis, University of
Illinois at Urbana-Champaign, 1992.

[PAR 79] Parnas, D. Designing software for ease extension and contraction, IEEE
Transactions on Software Engineering, v.5, n.2, p. 128-137, Feb 1979.

[VIO 94] Vion-Dury, J.; Santana, M. Virtual Images: Interactive Visualization of Distributed
Object-Oriented Systems. Procs. OOPSLA’94, Portland, Oregon, 1994.

[WIL 92] Wilde, N.; Huit, R. Maintenance Support for Object-Oriented Programs, IEEE
Transactions on Software Engineering, v.18, n.12, Dec.1992.

	Introduction
	Framework Comprehension and Architectural Abstractions
	Experimenting Reverse-Engineering-Based Techniques
	MetaExplorer Overview
	Experimental Results
	Development Times
	Conclusions from the Experiment

	An Overview of the Luthier Framework
	LuthierMOPs: Customizable Meta-Object Protocols
	LuthierBooks: Information Representation
	LuthierViews: Information Exploration
	LuthierAbstractors: Materializing and Managing Software Abstractions
	Abstraction Scales

	Related Work
	Conclusions
	References

