
HAL Id: hal-01251223
https://hal.archives-ouvertes.fr/hal-01251223v2

Submitted on 14 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Computation of the Rank Profile Matrix and the
Generalized Bruhat Decomposition

Jean-Guillaume Dumas, Clement Pernet, Ziad Sultan

To cite this version:
Jean-Guillaume Dumas, Clement Pernet, Ziad Sultan. Fast Computation of the Rank Profile Matrix
and the Generalized Bruhat Decomposition. Journal of Symbolic Computation, Elsevier, 2017, Special
issue on ISSAC’15, 83, pp.187-210. �10.1016/j.jsc.2016.11.011�. �hal-01251223v2�

https://hal.archives-ouvertes.fr/hal-01251223v2
https://hal.archives-ouvertes.fr

Fast Computation of the Rank Profile Matrix

and the Generalized Bruhat Decomposition

Jean-Guillaume Dumas

Université Grenoble Alpes, Laboratoire LJK, umr CNRS, BP53X, 51, av. des Mathématiques,

F38041 Grenoble, France

Clément Pernet

Université Grenoble Alpes, Laboratoire de l’Informatique du Parallélisme, Université de Lyon,

France.

Ziad Sultan

Université Grenoble Alpes, Laboratoire LJK and LIG, Inria, CNRS, Inovallée, 655, av. de

l’Europe, F38334 St Ismier Cedex, France

Abstract

The row (resp. column) rank profile of a matrix describes the stair-case shape of its row (resp.
column) echelon form. We describe a new matrix invariant, the rank profile matrix, summarizing
all information on the row and column rank profiles of all the leading sub-matrices. We show
that this normal form exists and is unique over a field but also over any principal ideal domain
and finite chain ring. We then explore the conditions for a Gaussian elimination algorithm to
compute all or part of this invariant, through the corresponding PLUQ decomposition. This
enlarges the set of known elimination variants that compute row or column rank profiles. As
a consequence a new Crout base case variant significantly improves the practical efficiency of
previously known implementations over a finite field. With matrices of very small rank, we also
generalize the techniques of Storjohann and Yang to the computation of the rank profile matrix,
achieving an (rω + mn)1+o(1) time complexity for an m × n matrix of rank r, where ω is the
exponent of matrix multiplication. Finally, we give connections to the Bruhat decomposition, and
several of its variants and generalizations. Consequently, the algorithmic improvements made
for the PLUQ factorization, and their implementation, directly apply to these decompositions.
In particular, we show how a PLUQ decomposition revealing the rank profile matrix also reveals
both a row and a column echelon form of the input matrix or of any of its leading sub-matrices,
by a simple post-processing made of row and column permutations.

Key words: Gaussian elimination, Rank profile, Echelon form, PLUQ decomposition, Bruhat
decomposition, McCoy’s rank, Finite Chain ring.

Preprint submitted to Journal of Symbolic Computation 14 May 2018

Contents

1 Introduction 2
2 The rank profile matrix 5
2.1 Definition over a field 5
2.2 Generalization over a commutative ring with unity 7

2.2.1 Over a principal ideal domain 8
2.2.2 Over a finite chain ring 8

3 When does a PLUQ algorithm reveal the rank profile matrix? 9
3.1 Ingredients of a PLUQ decomposition algorithm 9

3.1.1 Pivot search 10
3.1.2 Pivot permutation 10

3.2 How to reveal rank profiles 11
4 Algorithms for the rank profile matrix 14
4.1 Iterative algorithms 15

4.1.1 Row and Column order Search 15
4.1.2 Lexicographic order based pivot search 15
4.1.3 Product order based pivot search 16

4.2 Recursive algorithms 16
4.2.1 Slab recursive algorithms 16
4.2.2 Tile recursive algorithms 16

5 Improvements in practice 18
6 Relations with other triangularizations 19
6.1 The LEU decomposition 19
6.2 The Bruhat decomposition 21
6.3 Relation to LUP and PLU decompositions 22
6.4 Computing Echelon forms 23
6.5 The generalized Bruhat decomposition 24
7 Improvement for low rank matrices 25
7.1 Storjohann and Yang’s algorithm 25
7.2 Online LU decomposition 27

1. Introduction

Triangular matrix decompositions are widely used in computational linear algebra.
Besides solving linear systems of equations, they are also used to compute other objects
more specific to exact arithmetic: computing the rank, sampling a vector from the null-
space, computing echelon forms and rank profiles.

The row rank profile (resp. column rank profile) of an m × n matrix A with rank r,
denoted by RowRP(A) (resp. ColRP(A)), is the lexicographically smallest sequence of r
indices of linearly independent rows (resp. columns) of A. An m× n matrix has generic
row (resp. column) rank profile if its row (resp. column) rank profile is (1, .., r). Lastly, an

⋆ This research was partly supported by the HPAC project of the French Agence Nationale de la
Recherche (ANR 11 BS02 013) and the OpenDreamKit Horizon 2020 European Research Infrastruc-
tures project (#676541) .

Email addresses: jean-guillaume.dumas@imag.fr (Jean-Guillaume Dumas),
clement.pernet@imag.fr (Clément Pernet), mailto:ziad.sultan@imag.fr (Ziad Sultan).

URLs: http://www-ljk.imag.fr/membres/Jean-Guillaume.Dumas/ (Jean-Guillaume Dumas),
http://lig-membres.imag.fr/pernet/ (Clément Pernet),
http://moais.imag.fr/membres/ziad.sultan (Ziad Sultan).

2

m× n matrix has generic rank profile if its r first leading principal minors are nonzero.
Note that if a matrix has generic rank profile, then its row and column rank profiles are
generic, but the converse is false: the matrix [0 1

1 0] does not have generic rank profile even
if its row and column rank profiles are generic. The row support (resp. column support)
of a matrix A, denoted by RowSupp(A) (resp. ColSupp(A)), is the subset of indices of
its nonzero rows (resp. columns).

We recall that the row echelon form of an m × n matrix A is an upper triangular
matrix E = T A, for a nonsingular matrix T , with the zero rows of E at the bottom and
the nonzero rows in stair-case shape: min{j : ai,j 6= 0} < min{j : ai+1,j 6= 0}. As T is
nonsingular, the column rank profile of A is that of E, and therefore corresponds to the
column indices of the leading elements in the staircase. Similarly the row rank profile of
A is composed of the row indices of the leading elements in the staircase of the column
echelon form of A.

Rank profiles and triangular matrix decompositions. The rank profiles of a matrix and
the triangular matrix decompositions obtained by Gaussian elimination are strongly re-
lated. The elimination of matrices with arbitrary rank profiles gives rise to several matrix
factorizations and many algorithmic variants. In numerical linear algebra one often uses
the PLUQ decomposition, with P and Q permutation matrices, L a lower unit triangular
matrix and U an upper triangular matrix. The LSP and LQUP variants of Ibarra et al.
(1982) have been introduced to reduce the complexity of rank deficient Gaussian elim-
ination to that of matrix multiplication. Many other algorithmic decompositions exist
allowing fraction free computations Jeffrey (2010), in-place computations Dumas et al.
(2008); Jeannerod et al. (2013) or sub-cubic rank-sensitive time complexity Storjohann
(2000); Jeannerod et al. (2013). The reader may refer to Jeannerod et al. (2013) for a
detailed comparison between these matrix factorizations, and further details on the CUP
(resp. PLE) variants, revealing the row (resp. column) rank profiles. All these algorithms,
together with the schoolbook Gaussian elimination algorithm share the property that,
for a row rank profile computation, the pivot search processes rows in order, and searches
a pivot in all possible column position before declaring the row linearly dependent with
the previous ones. As a consequence, blocking is limited to only one dimension (in this
case the row dimension) leading to slab algorithms Klimkowski and van de Geijn (1995)
operating on rectangular blocks of unbalanced dimensions. This reduces the data locality
of the algorithm, and therefore penalizes the efficiency of implementations in practice. In
parallel, this blocking also puts more constrains on the dependencies between tasks Du-
mas et al. (2015a).

Contribution with respect to the state of the art. In Dumas et al. (2013) we proposed
a first Gaussian elimination algorithm, with a recursive splitting of both row and col-
umn dimensions, which simultaneously computes the row and column rank profile while
preserving the sub-cubic rank-sensitive time complexity and keeping the computation
in-place. It showed that slab blocking is not a necessary condition for a Gaussian elimi-
nation to reveal rank profiles. Consequently, we have further analyzed the conditions on
the pivoting that reveal the rank profiles in Dumas et al. (2015b), where we introduced
a new matrix invariant, the rank profile matrix. This normal form contains the row and
column rank profile information of the matrix and that of all its leading sub-matrices.

This normal form is closely related to a permutation matrix appearing in the Bruhat
decomposition Bruhat (1956) and in related variants Della Dora (1973); Grigoriev (1981);

3

Bourbaki (2008); Malaschonok (2010); Manthey and Helmke (2007). Still, none of these
did connect it to the notion of rank profile. In another setting, the construction of matrix
Schubert varieties in (Miller and Sturmfels, 2005, Ch. 15) defines a similar invariant, but
presents neither a matrix decomposition nor any computational aspects.

More precisely, the present paper gathers the key contributions of Dumas et al. (2013)
and Dumas et al. (2015b):

(1) we define a new matrix invariant over a field, the rank profile matrix, summarizing
all information on the row and column rank profiles of all the leading sub-matrices;

(2) we study the conditions for a Gaussian elimination algorithm to compute all or
part of this invariant, through the corresponding PLUQ decomposition;

(3) as a consequence, we show that the classical iterative CUP decomposition algorithm
can actually be adapted to compute the rank profile matrix. Used, in a Crout
variant, as a base-case to our recursive implementation over a finite field, it delivers
a significant improvement in efficiency;

(4) we also show that both the row and the column echelon forms of a matrix can be re-
covered from some PLUQ decompositions thanks to an elementary post-processing
algorithm.

Further, we develop three novel aspects:
(1) we study how the notion of rank profile matrix can be generalized over an arbi-

trary ring. We show that none of the common definition of rank over an arbitrary
commutative ring allow to define a rank profile matrix in general. However, over a
principal ideal domain and over a finite chain ring, we can produce such a definition.

(2) we make further connections with existing matrix decompositions, in particular the
Bruhat and the generalized Bruhat decompositions, exhibiting both the row and
the column echelon in a single decomposition;

(3) lastly, we extend the recent algorithmic improvements of Cheung et al. (2013);
Storjohann and Yang (2014, 2015) for low rank matrices: indeed, we show here
that the algorithm in Storjohann and Yang (2014) computes the rank profile matrix;
propose an algorithmic variant thereof, reducing the leading constant by a factor of
three; and lastly show an algorithmic reduction computing the rank profile matrix
in time bounded by (rω + mn)1+o(1) with a Las-Vegas probabilistic algorithm.

Organization of the article. We first introduce in Section 2 the rank profile matrix RA,
and study in Section 2.2 its generalization over an arbitrary ring. We then study in Sec-
tion 3 under which condition a PLUQ decomposition algorithms reveals the rank profile
structure of a matrix. For this, we investigate existing and new pivoting strategies, based
on all combination of elementary search and permutation operations, showing for each
of them what part of the rank profile information is being computed. In particular we
propose three new pivoting strategies that compute the rank profile matrix. As an il-
lustration, we show in Section 4 how these pivoting strategies instantiate in iterative or
recursive algorithms, using slab or tile blocking. Connections are made to the most com-
mon elimination algorithms and we state in full details the recent tile recursive algorithm
of Dumas et al. (2013), implementing one of the new pivoting strategy. Section 5 shows
how this better understanding on the pivoting strategies has resulted in the design of
an iterative Crout CUP decomposition with rotations, to be used as a base case for the
tile recursive algorithm, speeding up the computation efficiency, while still recovering the
rank profile matrix invariant. We then show in Section 6 how a PLUQ decomposition

4

revealing the rank profile matrix relates with other triangular matrix decompositions,
such as the LEU and the classical, modified or generalized Bruhat decompositions, or
the computation of both row and column echelon forms, from a single PLUQ decomposi-
tion. Lastly, we extend in Section 7 the recent algorithms of Storjohann and Yang (2014,
2015) for the row or column rank profile of matrices with low rank to computed the rank
profile matrix within the same complexities.

Notations. In the following, 0m×n denotes the m× n zero matrix. For two list of indices
P and Q, AP,Q denotes the sub-matrix of A formed by the rows of index in P and the
columns of index in Q. In particular, Ai..j,k..l denotes the contiguous block of coefficients
in A of rows position between i and j and columns position between k and l. We may
denote by ∗ the sequence of all possible row or column indices: e.g. Ai,∗ denotes the
i-th row of A. To a permutation σ : {1, . . . , n} → {1, . . . , n} we define the associated
permutation matrix P (σ), permuting rows by left multiplication: the rows of P (σ)A are
that of A permuted by σ. Reciprocally, for a permutation matrix P , we denote by σ(P)
the associated permutation.

2. The rank profile matrix

We propose in Theorem 3 the definition of the rank profile matrix, an invariant summa-
rizing all information on the rank profiles of a matrix. As will be discussed in this section
and in Section 6, this invariant is closely related to the Bruhat decomposition Bruhat
(1956) and its generalizations Grigoriev (1981); Tyrtyshnikov (1997); Miller and Sturm-
fels (2005).

2.1. Definition over a field

We first consider matrices over an arbitrary commutative field K.

Definition 1. An r-sub-permutation matrix is a matrix of rank r with only r non-zero
entries equal to one.

Lemma 2. An m×n r-sub-permutation matrix has at most one non-zero entry per row

and per column, and can be written P
[

Ir

0(m−r)×(n−r)

]

Q where P and Q are permutation

matrices.

Theorem 3. Let A ∈ Km×n of rank r. There exists a unique m× n r-sub-permutation
matrix RA of which every leading sub-matrix has the same rank as the corresponding
leading sub-matrix of A. This sub-permutation matrix is called the rank profile matrix
of A.

Proof. We prove existence by induction on the row dimension. of the leading submatri-
ces.

If A1,1..n = 01×n, setting R(1) = 01×n satisfies the defining condition. Otherwise,
let j be the index of the first invertible element in A1,1..n and set R(1) = eT

j the j-th
n-dimensional canonical row vector, which satisfies the defining condition.

Now for a given i ∈ {1, . . . , m}, suppose that there is a unique i×n rank profile matrix
R(i) such that rank(A1..ℓ,1..j) = rank(R1..ℓ,1..j) for every j ∈ {1..n} and ℓ ∈ {1..i}.

5

If rank(A1..i+1,1..n) = rank(A1..i,1..n), then R(i+1) =
[

R(i)

01×n

]

. Otherwise, consider k,

the smallest column index such that rank(A1..i+1,1..k) = rank(A1..i,1..k) + 1 and set

R(i+1) =
[

R(i)

eT
k

]

. Define
[

B u
vT x

]
= A1..i+1,1..k, where u, v are vectors and x is a scalar.

By definition of k, we have rank(B) = rank(
[

B
vT

]
).

First we show that R(i+1) is an ri+1-sub-permutation matrix. If not, then the k-th

column of R(i) would contain a 1 which, by induction hypothesis, would imply that

rank(
[

B u
]

) = rank(B) + 1. Hence we would have rank(
[

B u
vT x

]
) = rank(

[

B u
]

) + 1 =

rank(B) + 2 = rank(
[

B
vT

]
) + 2, a contradiction.

Then we show that any leading sub-matrix A1..s,1..t of A with s ≤ i + 1, t ≤ n has

the same rank as the corresponding leading sub-matrix of R(i+1). The case s ≤ i is

covered by the induction; second, since rank(B) = rank(
[

B
vT

]
), any leading sub-matrix

of
[

B
vT

]
has the same rank as the corresponding sub-matrix of R(i+1), which covers the

case t < k. Lastly, for s = i + 1 and t ≥ k, the definition of k implies rank(A1..s,1..t) =

rank(A1..i,1..t) + 1 = rank(R
(i)
1..i,1..t) + 1 = rank(R

(i+1)
1..i,1..t).

To prove uniqueness, suppose there exist two distinct rank profile matrices R(1) and

R(2) for a given matrix A and let (i, j) be the lexicographically minimal coordinates

where R
(1)
i,j 6= R

(2)
i,j . The rank of the (i, j)-leading submatrices of R(1) and R(2) differ but

should both be equal to rank(A1..i,1..j), a contradiction. ✷

Example 4. A =

[
2 0 3 0
1 0 0 0
0 0 4 0
0 2 0 1

]

has RA =

[
1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

]

for rank profile matrix over Q.

Remark 5. The permutation matrix introduced in the modified Bruhat decomposition

of Tyrtyshnikov (1997), and defined there only for invertible matrices, is also the matrix

E introduced in Malaschonok’s LEU decomposition (Malaschonok, 2010, Theorem 1).

In the latter paper, an algorithm for this decomposition was only shown over a field for

m = n = 2k, and no connection was made to the relation with ranks and rank profiles. We

have shown in (Dumas et al., 2013, Corollary 1) that E is in fact the rank profile matrix

and made the connection to the PLUQ decomposition explicit, as recalled in Section 6.

We here generalize the existence to arbitrary rank r and dimensions m and n and after

proving its uniqueness, we propose this definition as a new matrix normal form.

The rank profile matrix has the following properties:

Lemma 6. Let A be a matrix.

(1) RA is diagonal if and only if A has generic rank profile.

(2) RA is a permutation matrix if and only if A is invertible

(3) RowRP(A) = RowSupp(RA); ColRP(A) = ColSupp(RA).

Moreover, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have:

(4) RowRP(A1..i,1..j) = RowSupp((RA)1..i,1..j)

(5) ColRP(A1..i,1..j) = ColSupp((RA)1..i,1..j),

These properties show how to recover the row and column rank profiles of A and of

any of its leading sub-matrix.

6

2.2. Generalization over a commutative ring with unity

We now explore if and under which condition, the notion of rank profile matrix can
be generalized over an arbitrary commutative ring with unity. As the rank profile matrix
over a field relies on the notion of rank, which generalization over an arbitrary ring leads
to several definitions, we review the most common of these definitions and explore their
capacity to define a rank profile matrix invariant.

Let R be a commutative ring with unity. Following (Brown, 1992, §4), we will denote
by It(A) the t-th determinantal ideal, namely the ideal in R generated by all t× t minors
of A, and set by definition I0 = R. We have R = I0 ⊇ I1(A) ⊇ I2(A) ⊇ · · · ⊇ (0). We
will also denote by Ann(S) = {x ∈ R : ∀y ∈ S, xy = 0} the annihilator ideal of a set S.

Definition 7. For an m × n matrix A over a communtative ring R, the rank of A can
be defined as:

(1) rSpan = min{t : A = BC where B is m × t and C is t × n}, called spanning rank
by Brown (1998) or Schein rank by (Bhaskara Rao, 2002, §2.4),

(2) rMcCoy = max{t : Ann(It(A)) = (0)} introduced in (McCoy, 1948, Theorem 51),
(3) rDet = max{t : A has a nonzero t × t minor} (Bhaskara Rao, 2002, §2.4) (this is

also max{t : It(A) 6= (0)} defined in (Brown, 1992, §4, Ex. 11)),
(4) rUnitMinor = max{t : A has a unit t× t minor} used in (Norton and Salagean, 2000,

Def. 2.5).

We illustrate the value of these ranks in Table 1 for three 2× 2 matrices (columns 3,
6, 9) and their leading 1× 2 and 2 × 1 sub-matrices (columns 2, 5, 8). These ranks will
be used to argue whether a rank profile matrix can be defined in each case (columns 4,
7 and 10 if it exists).

over Z/4Z over Z/6Z

[0 2], [0
2] [0 2

2 1] R[0 2
2 1] [2 3], [2

3] [2 3
3 0] R[2 3

3 0] [2
1], [2 3] [2 3

1 1] R[2 3
1 1]

rSpan 1 1 none 1 2 [1 0
0 1] 1 2 [1 0

0 1]

rMcCoy 0 1 [0 0
0 1] 1 1 none 1 2 [0 1

1 0]

rDet 1 1 none 1 2 [1 0
0 1] 1 2 [1 0

0 1]

rUnitMinor 0 0 [0 0
0 0] 0 0 [0 0

0 0] 1,0 2 none

Table 1. Ranks of matrices according to the various definitions. These three 2 × 2 matrices are
counterexamples showing that none of the four rank definitions of Definition 7 can be used to
define a rank profile matrix in general.

For instance rSpan([0 2
2 1]) = 1 since [0 2

2 1] = [2
1] [2 1] over Z/4Z. This matrix shows that

rSpan can not be used to define a rank profile matrix. Indeed, if it would exist, its first
row would be [0 1] (as the 1 × 1 leading submatrix has rank 0 and the 1 × 2 leading
submatrix has rank 1). Similarly the first column of this rank profile matrix would be

[0 1]
T

. But the rank of the permutation matrix [0 1
1 0] would be 2 6= rSpan([0 2

2 1]). We will
use the same reasoning pattern, to show that rDet can not define a rank profile matrix
for [0 2

2 1], and neither does rMcCoy for [2 3
3 0] over Z/6Z: in these two cases, the rank profile

matrix should be [0 1
1 0] to satisfy the rank condition on the 2× 1 and 1× 2 sub-matrices,

7

but the 2×2 rank is only 1. Laslty, rUnitMinor([2 3]) = 0 and rUnitMinor([2
1]) = 1, therefore

the rank profile matrix of [2 3
1 1] should be of the form [0 0

1 ∗], but it can then never be of
rank 2, as the matrix [2 3

1 1].
Remark also that the rank profile matrix invariant is strongly connected with elim-

ination as will be presented in the next sections. It therefore needs to be based on a
notion of rank that is stable with multiplication by invertible matrices. This is the case
with McCoy’s rank (Brown, 1992, 4.11.(c)), but not with rUnitMinor. Indeed the rank of
[2 1] = [2 3]

[
1 −1
0 1

]
is 1 whereas the rank of [2 3] is 0.

Consequently there is no notion of rank over an arbitrary commutative ring with unity
supporting the definition of a rank profile matrix. We will now show that with additional
assumptions on the ring, some of the above definitions for the rank coincide and make
the existence of the rank profile matrix possible.

2.2.1. Over a principal ideal domain
Over a principal ideal domain, the existence of an underlying field of fractions guar-

antees that the McCoy rank, the spanning rank and the rank over the field of fractions
coincide.

Corollary 8. Let D be a principal ideal domain (PID) and let A ∈ Dm×n with McCoy’s
rank r. There exists a unique m×n r-sub-permutation matrix RA of which every leading
sub-matrix has the same rank as the corresponding leading sub-matrix of A. This sub-
permutation matrix is called the rank profile matrix of A.

Proof. From (Brown, 1998, Proposition 1.6), over a PID with field of fractions K, sr =
rM = rankK. Thus RA over K satisfies the requirements over D and is the unique such
matrix. ✷

2.2.2. Over a finite chain ring
A finite chain ring is a finite commutative ring with identity which ideals are ordered

by inclusion (Clark and Liang, 1973). Equivalently, it is a finite local ring which maximal
ideal is principal. These rings include Z/pkZ and GF(pk) for p prime, as well as all Galois
rings of characteristic pk.

Over a finite chain ring, McCoy rank and the UnitMinor rank coincide, and therefore
allow to define a rank profile matrix, as shown next.

Lemma 9. Over a finite chain ring, McCoy’s rank is the largest positive integer r ≤
{m, n} such that there exist a unit r × r minor of A.

Proof. Krull’s theorem (Krull, 1938, Theorem 2) (see also (Hungerford, 1968, Propo-
sition 4)) states that in a local ring, an element is a unit if and only if it is not in the
maximal ideal. As the maximal ideal of the ring is principal, let g be a generator thereof.
Then g is nilpotent. Indeed the ring is finite so there exists indices i < j such that gi = gj .
Therefore gi(1 − gj−i) = 0. But as g is not a unit, gj−i is not a unit either, but then
1− gj−i must be a unit (otherwise the maximal ideal would contain 1 and would not be
proper). Therefore gi = 0. The nilpotency index of g is then the smallest positive integer
ν such that gν = 0.

Let r = rMcCoy(A) and suppose that all r× r minors are non-unit. They belong to the
maximal ideal and Ir(A) = (gi) for some 1 ≤ i < ν. Therefore, Ann(Ir(A)) = (gν−i), a
contradiction. ✷

8

Corollary 10 ((Norton and Salagean, 2000, Corollary 2.7)). Over a finite chain ring R,
with maximal ideal (g), McCoy’s rank is the rank over the field R/gR.

Corollary 11. Let R be a finite chain ring and let A ∈ Rm×n with McCoy’s rank r.
There exists a unique m × n r-sub-permutation matrix RA of which every leading sub-
matrix has the same McCoy’s rank as the corresponding leading sub-matrix of A. This
sub-permutation matrix is called the rank profile matrix of A.

Proof. From Corollary 10, we consider the residue field K = R/gR. Then RA over K
satisfies the requirements over R and is the unique such matrix. ✷

3. When does a PLUQ algorithm reveal the rank profile matrix?

From now on, for the sake of simplicity, we consider algorithms over a field.

3.1. Ingredients of a PLUQ decomposition algorithm

Over a field, the LU decomposition generalizes to matrices with arbitrary rank profiles,
using row and column permutations (in some cases such as the CUP, or LSP decomposi-
tions, the row permutation is embedded in the structure of the C or S matrices). However
such PLUQ decompositions are not unique and not all of them will necessarily reveal rank
profiles and echelon forms. We will characterize the conditions for a PLUQ decomposition
algorithm to reveal the row or column rank profile or the rank profile matrix.

We consider the four types of operation of a Gaussian elimination algorithm in the
processing of the k-th pivot:
Pivot search: finding an element to be used as a pivot,
Pivot permutation: moving the pivot in diagonal position (k, k) by column and/or

row permutations,
Update: applying the elimination at position (i, j): ai,j ← ai,j − ai,ka−1

k,kak,j ,
Normalization: dividing the k-th row (resp. column) by the pivot.
Choosing how each of these operation is done, and when they are scheduled results in
an elimination algorithm. Conversely, any Gaussian elimination algorithm computing a
PLUQ decomposition can be viewed as a set of specializations of each of these operations
together with a scheduling.

The choice of doing the normalization on rows or columns only determines which of U
or L will be unit triangular. The scheduling of the updates vary depending on the type
of algorithm used: iterative, recursive, slab or tiled block splitting, with right-looking,
left-looking or Crout variants (see Dongarra et al. (1998)). Neither the normalization nor
the update impact the capacity to reveal rank profiles and we will thus now focus on the
pivot search and permutation.

Choosing a search and a permutation strategy sets the matrices P and Q of the PLUQ
decomposition obtained and, as we will see, determines the ability to recover information
on the rank profiles. Once these matrices are fixed, the L and the U factors are unique.
We therefore introduce the pivoting matrix.

Definition 12. The pivoting matrix of a PLUQ decomposition A = P LUQ of rank r is
the r-sub-permutation matrix

ΠP,Q = P
[

Ir

0(m−r)×(n−r)

]

Q.

9

The r nonzero elements of ΠP,Q are located at the initial positions of the pivots in
the matrix A. Thus ΠP,Q summarizes the choices made in the search and permutation
operations.

3.1.1. Pivot search
The search operation vastly differs depending on the field of application. In numerical

dense linear algebra, numerical stability is the main criterion for the selection of the
pivot. In sparse linear algebra, the pivot is chosen so as to reduce the fill-in produced by
the update operation. In order to reveal some information on the rank profiles, a notion
of precedence has to be used: a usual way to compute the row rank profile is to search
in a given row for a pivot and only move to the next row if the current row was found
to be all zeros. This guarantees that each pivot will be on the first linearly independent
row, and therefore the row support of ΠP,Q will be the row rank profile. The precedence
here is that the pivot’s coordinates must minimize the order for the first coordinate (the
row index). As a generalization, we consider the most common preorders of the cartesian
product {1, . . . m}×{1, . . . n} inherited from the natural orders of each of its components
and describe the corresponding search strategies, minimizing this preorder:
Row order: (i1, j1) �row (i2, j2) iff i1 ≤ i2: search for any invertible element in the first

nonzero row.
Column order: (i1, j1) �col (i2, j2) iff j1 ≤ j2. search for any invertible element in the

first nonzero column.
Lexicographic order: (i1, j1) �lex (i2, j2) iff i1 < i2 or i1 = i2 and j1 ≤ j2: search for

the leftmost nonzero element of the first nonzero row.
Reverse lexicographic order: (i1, j1) �revlex (i2, j2) iff j1 < j2 or j1 = j2 and i1 ≤ i2:

search for the topmost nonzero element of the first nonzero column.
Product order: (i1, j1) �prod (i2, j2) iff i1 ≤ i2 and j1 ≤ j2: search for any nonzero

element at position (i, j) being the only nonzero of the leading (i, j) sub-matrix.

Example 13. Consider the matrix

[
0 0 0 a b
0 c d e f
g h i j k
l m n o p

]

, where each literal is a nonzero element.

The nonzero elements minimizing each preorder are the following:

Row order a, b Column order g, l

Lexicographic order a Reverse lexic. order g

Product order a, c, g

3.1.2. Pivot permutation
The pivot permutation moves a pivot from its initial position to the leading diagonal.

Besides this constraint all possible choices are left for the remaining values of the per-
mutation. Most often, it is done by row or column transpositions, as it clearly involves a
small amount of data movement. However, these transpositions can break the precedence
relations in the set of rows or columns, and can therefore prevent the recovery of the rank
profile information. A pivot permutation that leaves the precedence relations unchanged
will be called k-monotonically increasing.

Definition 14. A permutation of σ ∈ Sn is called k-monotonically increasing if its last
n− k values form a monotonically increasing sequence.

10

In particular, the last n− k rows of the associated row-permutation matrix Pσ are in
row echelon form. For example, the cyclic shift between indices k and i, with k < i defined
as Rk,i = (1, . . . , k−1, i, k, k + 1, . . . , i−1, i + 1, . . . , n), that we will call a (k, i)-rotation,
is an elementary k-monotonically increasing permutation.

Example 15. The (1, 4)-rotation R1,4 = (4, 1, 2, 3) is a 1-monotonically increasing per-

mutation. Its row permutation matrix is

[
0 1
1

1
1 0

]

.

Monotonically increasing permutations can be composed as stated in Lemma 16.

Lemma 16. If σ1 ∈ Sn is a k1-monotonically increasing permutation and σ2 ∈ Sk1 ×
Sn−k1 a k2-monotonically increasing permutation with k1 < k2 then the permutation
σ2 ◦ σ1 is a k2-monotonically increasing permutation.

Proof. The last n− k2 values of σ2 ◦σ1 are the image of a sub-sequence of n− k2 values
from the last n− k1 values of σ1 through the monotonically increasing function σ2. ✷

Therefore an iterative algorithm, using rotations as elementary pivot permutations,
maintains the property that the permutation matrices P and Q at any step k are k-
monotonically increasing. A similar property also applies with recursive algorithms.

3.2. How to reveal rank profiles

A PLUQ decomposition reveals the row (resp. column) rank profile if it can be read
from the first r values of the permutation matrix P (resp. Q). Equivalently, by Lemma 6,
this means that the row (resp. column) support of the pivoting matrix ΠP,Q equals that
of the rank profile matrix.

Definition 17. The decomposition A = P LUQ reveals:
(1) the row rank profile if RowSupp(ΠP,Q) = RowSupp(RA),
(2) the column rank profile if ColSupp(ΠP,Q) = ColSupp(RA),
(3) the rank profile matrix if ΠP,Q = RA.

Example 18. A =

[
2 0 3 0
1 0 0 0
0 0 4 0
0 2 0 1

]

has RA =

[
1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

]

for rank profile matrix over Q. Now

the pivoting matrix obtained from a PLUQ decomposition with a pivot search operation
following the row order (any column, first nonzero row) could be the matrix ΠP,Q =
[

0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 0

]

. As these matrices share the same row support, the matrix ΠP,Q reveals the

row rank profile of A.

Remark 19. Example 18 suggests that a pivot search strategy minimizing row and
column indices could be a sufficient condition to recover both row and column rank
profiles at the same time, regardless the pivot permutation. However, this is unfortunately
not the case. Consider for example a search based on the lexicographic order (first nonzero
column of the first nonzero row) with transposition permutations, run on the matrix:
A = [0 0 1

2 3 0]. Its rank profile matrix is RA = [0 0 1
1 0 0] whereas the pivoting matrix would

be ΠP,Q = [0 0 1
0 1 0], which does not reveal the column rank profile. This is due to the fact

11

that the column transposition performed for the first pivot changes the order in which
the columns will be inspected in the search for the second pivot.

We will show that if the pivot permutations preserve the order in which the still
unprocessed columns or rows appear, then the pivoting matrix will equal the rank pro-
file matrix. This is achieved by the monotonically increasing permutations. Theorem 20
shows how the ability of a PLUQ decomposition algorithm to recover the rank profile
information relates to the use of monotonically increasing permutations. More precisely,
it considers an arbitrary step in a PLUQ decomposition where k pivots have been found
in the elimination of an ℓ× p leading sub-matrix A1 of the input matrix A.

Theorem 20. Consider a partial PLUQ decomposition of an m× n matrix A:

A = P1

L1

M1 Im−k

U1 V1

H

 Q1

where

L1

M1

 is m × k lower triangular and
[

U1 V1

]

is k × n upper triangular, and let

A1 be some ℓ× p leading sub-matrix of A, for ℓ, p ≥ k. Let H = P2L2U2Q2 be a PLUQ
decomposition of H. Consider the PLUQ decomposition

A = P1

Ik

P2

︸ ︷︷ ︸

P

L1

P T
2 M1 L2

︸ ︷︷ ︸

L

U1 V1QT

2

U2

︸ ︷︷ ︸

U

Ik

Q2

 Q1

︸ ︷︷ ︸

Q

.

Consider the following clauses:
(i) RowRP(A1) = RowSupp(ΠP1,Q1)

(ii) ColRP(A1) = ColSupp(ΠP1,Q1)
(iii) RA1 = ΠP1,Q1

(iv) RowRP(H) = RowSupp(ΠP2,Q2)
(v) ColRP(H) = ColSupp(ΠP2,Q2)

(vi) RH = ΠP2,Q2

(vii) P T
1 is k-monotonically increasing or (P T

1 is ℓ-monotonically increasing and p = n)

(viii) QT
1 is k-monotonically increasing or (QT

1 is p-monotonically increasing and ℓ = m)
Then,

(a) if (i) or (ii) or (iii) then H =

0(ℓ−k)×(p−k) ∗

∗ ∗

(b) if (vii) then ((i) and (iv)) ⇒ RowRP(A) = RowSupp(ΠP,Q);
(c) if (viii) then ((ii) and (v)) ⇒ ColRP(A) = ColSupp(ΠP,Q);
(d) if (vii) and (viii) then (iii) and (vi) ⇒RA = ΠP,Q.

Proof. Let P1 =
[

P11 E1

]

and Q1 =

Q11

F1

 where E1 is m×(m−k) and F1 is (n−k)×n.

On one hand we have

12

A =
[

P11 E1

]

L1

M1

[

U1 V1

]

Q11

F1

︸ ︷︷ ︸

B

+E1HF1. (1)

On the other hand,

ΠP,Q = P1

Ik

P2

Ir

0(m−r)×(n−r)

Ik

Q2

 Q1

= P1

Ik

ΠP2,Q2

 Q1 = ΠP1,Q1 + E1ΠP2,Q2 F1.

Let A1 =

A1 0

0 0(m−ℓ)×(n−p)

 and denote by B1 the ℓ× p leading sub-matrix of B.

(a) The clause (i) or (ii) or (iii) implies that all k pivots of the partial elimination
were found within the ℓ × p sub-matrix A1. Hence rank(A1) = k and we can write

P1 =

P11

0(m−ℓ)×k

E1

 and Q1 =

Q11 0k×(n−p)

F1

, and the matrix A1 writes

A1 =
[

Iℓ 0
]

A
[

Ip

0

]
= B1 +

[

Iℓ 0
]

E1HF1

[
Ip

0

]
. (2)

Now rank(B1) = k as a sub-matrix of B of rank k and since

B1 =
[

P11

[

Iℓ 0
]

· E1

]

L1

M1

[

U1 V1

]

Q11

F1 ·
[

Ip

0

]

= P11L1U1Q11 +
[

Iℓ 0
]

E1M1

[

U1 V1

]

Q1

[
Ip

0

]

where the first term, P11L1U1Q11, has rank k and the second term has a disjoint
row support.

Finally, consider the term
[

Iℓ 0
]

E1HF1

[
Ip

0

]
of equation (2). As its row support

is disjoint with that of the pivot rows of B1, it has to be composed of rows linearly
dependent with the pivot rows of B1 to ensure that rank(A1) = k. As its column
support is disjoint with that of the pivot columns of B1, we conclude that it must
be the zero matrix. Therefore the leading (ℓ− k)× (p− k) sub-matrix of E1HF1 is
zero.

(b) From (a) we know that A1 = B1. Thus RowRP(B) = RowRP(A1). Recall that
A = B + E1HF1. No pivot row of B can be made linearly dependent by adding rows
of E1HF1, as the column position of the pivot is always zero in the latter matrix. For
the same reason, no pivot row of E1HF1 can be made linearly dependent by adding
rows of B. From (i), the set of pivot rows of B is RowRP(A1), which shows that

RowRP(A) = RowRP(A1) ∪ RowRP(E1HF1). (3)

13

Let σE1 : {1..m− k} → {1..m} be the map representing the sub-permutation E1

(i.e. such that E1[σE1 (i), i] = 1 ∀i). If P T
1 is k-monotonically increasing, the matrix

E1 has full column rank and is in column echelon form, which implies that

RowRP(E1HF1) = σE1 (RowRP(HF1))

= σE1 (RowRP(H)), (4)

since F1 has full row rank. If P T
1 is ℓ monotonically increasing, we can write E1 =

[

E11 E12

]

, where the m × (m− ℓ) matrix E12 is in column echelon form. If p = n,

the matrix H writes H =

0(ℓ−k)×(n−k)

H2

. Hence we have E1HF1 = E12H2F1 which

also implies
RowRP(E1HF1) = σE1 (RowRP(H)).

From equation (2), the row support of ΠP,Q is that of ΠP1,Q1 +E1ΠP2,Q2 F1, which is
the union of the row support of these two terms as they are disjoint. Under the condi-
tions of point (b), this row support is the union of RowRP(A1) and σE1 (RowRP(H)),
which is, from (4) and (3), RowRP(A).

(c) Similarly as for point (b).
(d) From (a) we have still A1 = B1. Now since rank(B) = rank(B1) = rank(A1) = k,

there is no other nonzero element in RB than those in R
A1

and RB = R
A1

. The
row and column support of RB and that of E1HF1 are disjoint. Hence

RA = R
A1

+RE1HF1 . (5)

If both P T
1 and QT

1 are k-monotonically increasing, the matrix E1 is in column eche-
lon form and the matrix F1 in row echelon form. Consequently, the matrix E1HF1 is
a copy of the matrix H with k zero-rows and k zero-columns interleaved, which does
not impact the linear dependency relations between the nonzero rows and columns.
As a consequence

RE1HF1 = E1RHF1. (6)

Now if QT
1 is k-monotonically increasing, P T

1 is ℓ-monotonically increasing and p = n,
then, using notations of point (b), E1HF1 = E12H2F1 where E12 is in column echelon
form. ThusRE1HF1 = E1RHF1 for the same reason. The symmetric case where QT

1 is
p-monotonically increasing and ℓ = m works similarly. Combining equations (2), (5)
and (6) gives RA = ΠP,Q.

✷

4. Algorithms for the rank profile matrix

Using Theorem 20, we deduce what rank profile information is revealed by a PLUQ
algorithm by the way the search and the permutation operations are done. Table 2
summarizes these results, and points to instances known in the literature, implementing
the corresponding type of elimination. More precisely, we first distinguish in this table
the ability to compute the row or column rank profile or the rank profile matrix, but we
also indicate whether the resulting PLUQ decomposition preserves the monotonicity of

14

the rows or columns. Indeed some algorithm may compute the rank profile matrix, but
break the precedence relation between the linearly dependent rows or columns, making
it unusable as a base case for a block algorithm of higher level.

Search Row Perm. Col. Perm. Reveals Monotonicity Instance

Row order Transposition Transposition RowRP Ibarra et al. (1982); Jeannerod et al. (2013)

Col. order Transposition Transposition ColRP Keller-Gehrig (1985); Jeannerod et al. (2013)

Lexico.

Transposition Transposition RowRP Storjohann (2000)

Transposition Rotation RowRP, ColRP, R Col. here

Rotation Rotation RowRP, ColRP, R Row, Col. here

Rev. lexico.

Transposition Transposition ColRP Storjohann (2000)

Rotation Transposition RowRP, ColRP, R Row here

Rotation Rotation RowRP, ColRP, R Row, Col. here

Product

Rotation Transposition RowRP Row here

Transposition Rotation ColRP Col here

Rotation Rotation RowRP, ColRP, R Row, Col. Dumas et al. (2013)

Table 2. Pivoting Strategies revealing rank profiles

4.1. Iterative algorithms

We start with iterative algorithms, where each iteration handles one pivot at a time.
Here Theorem 20 is applied with k = 1, and the partial elimination represents how one
pivot is being treated. The elimination of H is done by induction.

4.1.1. Row and Column order Search
The row order pivot search operation is of the form: any nonzero element in the first

nonzero row. Each row is inspected in order, and a new row is considered only when the
previous row is all zeros. With the notations of Theorem 20, this means that A1 is the
leading ℓ × n sub-matrix of A, where ℓ is the index of the first nonzero row of A. When
permutations P1 and Q1, moving the pivot from position (ℓ, j) to (k, k) are transpositions,
the matrix ΠP1,Q1 is the element Eℓ,j of the canonical basis. Its row rank profile is (ℓ)
which is that of the ℓ × n leading sub-matrix A1. Finally, the permutation P1 is ℓ-
monotonically increasing, and Theorem 20 case (b) can be applied to prove by induction
that any such algorithm will reveal the row rank profile: RowRP(A) = RowSupp(ΠP,Q).
The case of the column order search is similar.

4.1.2. Lexicographic order based pivot search
In this case the pivot search operation is of the form: first nonzero element in the

first nonzero row. The lexicographic order being compatible with the row order, the
above results hold when transpositions are used and the row rank profile is revealed. If
in addition column rotations are used, Q1 = R1,j which is 1-monotonically increasing.
Now ΠP1,Q1 = Eℓ,j which is the rank profile matrix of the ℓ × n leading sub-matrix A1

of A. Theorem 20 case (d) can be applied to prove by induction that any such algorithm
will reveal the rank profile matrix: RA = ΠP,Q. Lastly, the use of row rotations, ensures
that the order of the linearly dependent rows will be preserved as well. Algorithm 2 is
an instance of Gaussian elimination with a lexicographic order search and rotations for
row and column permutations.

15

The case of the reverse lexicographic order search is similar. As an example, the
algorithm in (Storjohann, 2000, Algorithm 2.14) is based on a reverse lexicographic order
search but with transpositions for the row permutations. Hence it only reveals the column
rank profile.

4.1.3. Product order based pivot search
The search here consists in finding any nonzero element Aℓ,p such that the ℓ×p leading

sub-matrix A1 of A is all zeros except this coefficient. If the row and column permutations
are the rotations R1,ℓ and R1,p, we have ΠP1,Q1 = Eℓ,p = RA1 . Theorem 20 case (d) can
be applied to prove by induction that any such algorithm will reveal the rank profile
matrix: RA = ΠP,Q. An instance of such an algorithm is given in (Dumas et al., 2013,
Algorithm 2). If P1 (resp. Q1) is a transposition, then Theorem 20 case (c) (resp. case (b))
applies to show by induction that the columns (resp. row) rank profile is revealed.

4.2. Recursive algorithms

A recursive Gaussian elimination algorithm can either split one of the row or column
dimension, cutting the matrix in wide or tall rectangular slabs, or split both dimensions,
leading to a decomposition into tiles.

4.2.1. Slab recursive algorithms
Most algorithms computing rank profiles are slab recursive Ibarra et al. (1982); Keller-

Gehrig (1985); Storjohann (2000); Jeannerod et al. (2013). When the row dimension
is split, this means that the search space for pivots is the whole set of columns, and
Theorem 20 applies with p = n. This corresponds to either a row or a lexicographic
order. From case(b), one shows that, with transpositions, the algorithm recovers the
row rank profile, provided that the base case does. If in addition, the elementary column
permutations are rotations, then case (d) applies and the rank profile matrix is recovered.
Finally, if rows are also permuted by monotonically increasing permutations, then the
PLUQ decomposition also respects the monotonicity of the linearly dependent rows and
columns. The same reasoning holds when splitting the column dimension.

4.2.2. Tile recursive algorithms
Tile recursive Gaussian elimination algorithms Dumas et al. (2013); Malaschonok

(2010); Dumas and Roch (2002) are more involved, especially when dealing with rank
deficiencies. Algorithm 1 recalls the tile recursive algorithm that the authors proposed
in Dumas et al. (2013).

Here, the search area A1 has arbitrary dimensions ℓ×p, often specialized as m/2×n/2.
As a consequence, the pivot search can not satisfy either a row, a column, a lexicographic
or a reverse lexicographic order. Now, if the pivots selected in the elimination of A1

minimize the product order, then they necessarily also respect this order as pivots of the

whole matrix A. Now, from (a), the remaining matrix H writes H =
[

0(ℓ−k)×(p−k) H12

H21 H22

]

and its elimination is done by two independent eliminations on the blocks H12 and
H21, followed by some update of H22 and a last elimination on it. Here again, pivots
minimizing the row order on H21 and H12 are also pivots minimizing this order for H ,
and so are those of the fourth elimination. Now the block row and column permutations
used in (Dumas et al., 2013, Algorithm 1) to form the PLUQ decomposition are r-
monotonically increasing. Hence, from case (d), the algorithm computes the rank profile

16

Algorithm 1 PLUQ

Input: A = (aij) a m× n matrix over a field
Output: P, Q: m×m and n× n permutation matrices, r, the rank of A
Output: A←

[
L\U V

M 0

]
where L and U are r × r resp. unit lower and upper triangular,

and A = P [L
M] [U V] Q.

if min(m, n) ≤ Threshold then

Call a base case implementation
end if

Split A =
[

A1 A2

A3 A4

]
where A1 is ⌊m

2 ⌋ × ⌊
n
2 ⌋.

Decompose A1 = P1

[
L1

M1

]
[U1 V1] Q1 ⊲ PLUQ(A1)

[
B1

B2

]
← P T

1 A2 ⊲ PermR(A2, P T
1)

[C1 C2]← A3QT
1 ⊲ PermC(A3, QT

1)

Here A =

[
L1\U1 V1 B1

M1 0 B2

C1 C2 A4

]

.

D ← L−1
1 B1 ⊲ TRSM(L1, B1)

E ← C1U−1
1 ⊲ TRSM(C1, U1)

F ← B2 −M1D ⊲ MM(B2, M1, D)
G← C2 − EV1 ⊲ MM(C2, E, V1)
H ← A4 − ED ⊲ MM(A4, E, D)

Here A =
[

L1\U1 V1 D

M1 0 F
E G H

]

.

Decompose F = P2

[
L2

M2

]
[U2 V2] Q2 ⊲ PLUQ(F)

Decompose G = P3

[
L3

M3

]
[U3 V3] Q3 ⊲ PLUQ(G)

[
H1 H2

H3 H4

]
← P T

3 HQT
2 ⊲ PermR(H, P T

3); PermC(H, QT
2)

[
E1

E2

]
← P T

3 E ⊲ PermR(E, P T
3)

[
M11

M12

]
← P T

2 M1 ⊲ PermR(M1, P T
2)

[D1 D2]← DQT
2 ⊲ PermR(D, QT

2)
[V11 V12]← V1QT

3 ⊲ PermR(V1, QT
3)

Here A =

L1\U1 V11 V12 D1 D2

M11 0 0 L2\U2 V2

M12 0 0 M2 0
E1 L3\U3 V3 H1 H2

E2 M3 0 H3 H4

.

I ← H1U−1
2 ⊲ TRSM(H1, U2)

J ← L−1
3 I ⊲ TRSM(L3, I)

K ← H3U−1
2 ⊲ TRSM(H3, U2)

N ← L−1
3 H2 ⊲ TRSM(L3, H2)

O ← N − JV2 ⊲ MM(N, J, V2)
R← H4 −KV2 −M3O ⊲ MM(H4, K, V2); MM(H4, M3, O)
Decompose R = P4

[
L4

M4

]
[U4 V4] Q4 ⊲ PLUQ(R)

[
E21 M31 0 K1

E22 M32 0 K2

]
← P T

4 [E2 M3 0 K] ⊲ PermR
[

D21 D22

V21 V22
0 0

O1 O2

]

←

[
D2

V2
0
O

]

QT
4 ⊲ PermC

17

Here A =

L1\U1 V11 V12 D1 D21 D22

M11 0 0 L2\U2 V21 V22

M12 0 0 M2 0 0
E1 L3\U3 V3 I O1 O2

E21 M31 0 K1 L4\U4 V4

E22 M32 0 K2 M4 0

.

S ←

Ir1+r2

Ik−r1−r2
Ir3+r4

Im−k−r3−r4

T ←

Ir1

Ir2

Ir3

Ir4

Ik−r1−r3

In−k−r2−r4

P ← Diag(P1

[
Ir1

P2

]

, P3

[
Ir3

P4

]

)S

Q← T Diag(
[

Ir1

Q3

]

Q1,
[

Ir2

Q4

]

Q2)

A← ST AT T ⊲ PermR(A, ST); PermC(A, T T)

Here A =

L1\U1 D1 V11 D21 V12 D22

M11 L2\U2 0 V21 0 V22

E1 I L3\U3 O1 V3 O2

E21 K1 M31 L4\U4 0 V4

M12 M2 0 0 0 0
E22 K2 M32 M4 0 0

Return (P, Q, r1 + r2 + r3 + r4, A)

matrix and preserves the monotonicity. If only one of the row or column permutations
are rotations, then case (b) or (c) applies to show that either the row or the column rank
profile is computed.

5. Improvements in practice

In Dumas et al. (2013), we identified the ability to recover the rank profile matrix via
the use of the product order search and of rotations. Hence we proposed an implementa-
tion combining a tile recursive algorithm and an iterative base case, using these search
and permutation strategies.

The analysis of sections 3.2 and 4 shows that other pivoting strategies can be used
to compute the rank profile matrix, and preserve the monotonicity. We present here a
new base case algorithm and its implementation over a finite field that we wrote in the
FFLAS-FFPACK library 1 . It is based on a lexicographic order search and row and column
rotations. Moreover, the schedule of the update operations is that of a Crout elimination,
for it reduces the number of modular reductions, as shown in (Dumas et al., 2014, § 3.1).
Algorithm 2 summarizes this variant.

In the following experiments, we report the median of the real time for up to 60
computations (depending on the size of the instance), with n×n matrices of rank r = n/2
(left) or r = n/8 (right). In order to ensure that the row and column rank profiles of
these matrices are random, we construct them as the product A = LRU , where L and
U are random nonsingular lower and upper triangular matrices and R is an m × n

1 FFLAS-FFPACK Git rev. d420b4b, http://linbox-team.github.io/fflas-ffpack/, linked against
OpenBLAS-v0.2.9.

18

http://linbox-team.github.io/fflas-ffpack/

Algorithm 2 Crout variant of PLUQ with lexicographic search and column rotations

1: k ← 1
2: for i = 1 . . . m do

3: Ai,k..n ← Ai,k..n −Ai,1..k−1 ×A1..k−1,k..n

4: if Ai,k..n = 0 then

5: Loop to next iteration
6: end if

7: Let Ai,s be the left-most nonzero element of row i.
8: Ai+1..m,s ← Ai+1..m,s −Ai+1..m,1..k−1 ×A1..k−1,s

9: Ai+1..m,s ← Ai+1..m,s/Ai,s

10: Bring A∗,s to A∗,k by column rotation
11: Bring Ai,∗ to Ak,∗ by row rotation
12: k ← k + 1
13: end for

r-sub-permutation matrix whose nonzero elements positions are chosen uniformly at
random. The effective speed is obtained by dividing an estimate of the arithmetic cost
(2mnr + 2/3r3 − r2(m + n)) by the computation time.

Figure 1 shows the computation speed of Algorithm 2 (3), compared to that of the
pure recursive algorithm (6), and to our previous base case algorithm in Dumas et al.
(2013), using a product order search, and either a left-looking (4) or a right-looking (5)
schedule. At n = 200, the left-looking variant (4) improves over the right looking variant
(5) by a factor of about 3.18 as it performs fewer modular reductions. Then, the Crout
variant (3) again improves variant (4) by a factor of about 9.29. Lastly we also show
the speed of the final implementation, formed by the tile recursive algorithm cascading
to either the Crout base case (1) or the left-looking one (2). The threshold where the
cascading to the base case occurs is experimentally set to its optimum value, i.e. 256 for
variant (1) and 40 for variant (2). This illustrates that the gain on the base case efficiency
leads to a higher threshold, and improves the efficiency of the cascade implementation
(by an additive gain of about 1 effective Gfops in the range of dimensions considered).

Note that the experiments reported here differ from that of Dumas et al. (2015b).
We found a mistake in the code generating the random matrices, making their row rank
profile generic, which led to a reduced amount of row permutations and therefore a much
higher computation speed. After fixing this issue, we noticed a slow-down of most base
case implementations, but all variants still compare in the same way. The spikes in curves
(1) and (2) showing drops in computation speed in a few points are reproducible, and
seem to correspond to pathological dimensions, for which the blocking generates worst
case cache misses scenari.

6. Relations with other triangularizations

6.1. The LEU decomposition

The LEU decomposition of Malaschonok (2010) involves a lower triangular matrix L,
an upper triangular matrix U and a r-sub-permutation matrix E. It is also called the
modified Bruhat decomposition in Tyrtyshnikov (1997). Theorem 21 shows how to recover
an LEU decomposition from a PLUQ decomposition revealing the rank profile matrix.

19

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700

E
ffe

ct
iv

e
G

fo
ps

n

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

Rec->Crout Lexico. (1)
Rec->Left look. Prod. (2)

Crout Lexico. (3)
Left-looking Product (4)

Right-Looking Product (5)
Pure Recursive (6)

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000 6000

E
ffe

ct
iv

e
G

fo
ps

n

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

Rec->Crout Lexico. (1)
Rec->Left look. Prod. (2)

Crout Lexico. (3)
Left-looking Product (4)

Right-Looking Product (5)
Pure Recursive (6)

Fig. 1. Computation speed of PLUQ decomposition base cases.

Theorem 21. Let A = P LUQ be a PLUQ decomposition revealing the rank profile

matrix (ΠP,Q = RA). Then an LEU decomposition of A with E = RA is obtained as

follows (only using row and column permutations):

A = P
[

L 0m×(m−r)

]

P T

︸ ︷︷ ︸

L

P

Ir

0

 Q

︸ ︷︷ ︸

E

QT

U

0(n−r)×n

 Q

︸ ︷︷ ︸

U

(7)

20

Proof. First E = P
[

Ir

0

]
Q = ΠP,Q = RA. Then there only needs to show that L is

lower triangular and U is upper triangular. Suppose that L is not lower triangular, let i
be the first row index such that Li,j 6= 0 for some i < j. First j ∈ RowRP(A) since the
nonzero columns in L are placed according to the first r values of P . Remarking that A =
P [L 0m×(n−r)]

[
U

0 In−r

]
Q, and since right multiplication by a nonsingular matrix does not

change row rank profiles, we deduce that RowRP(ΠP,Q) = RowRP(A) = RowRP(L). If
i /∈ RowRP(A), then the i-th row of L is linearly dependent with the previous rows, but
none of them has a nonzero element in column j > i. Hence i ∈ RowRP(A).

Let (a, b) be the position of the coefficient Li,j in L, that is a = σ−1
P (i), b = σ−1

P (j). Let
also s = σQ(a) and t = σQ(b) so that the pivots at diagonal position a and b in L respec-
tively correspond to ones in RA at positions (i, s) and (j, t). Consider the ℓ × p leading
sub-matrices A1 of A where ℓ = maxx=1..a−1(σP (x)) and p = maxx=1..a−1(σQ(x)). On
one hand (j, t) is an index position in A1 but not (i, s), since otherwise rank(A1) = b.
Therefore, (i, s) ⊀prod (j, t), and s > t as i < j. As coefficients (j, t) and (i, s) are pivots
in RA and i < j and t < s, there can not be a nonzero element above (j, t) at row i when
it is chosen as a pivot. Hence Li,j = 0 and L is lower triangular. The same reasoning
applies to show that U is upper triangular. ✷

Remark 22. Note that the LEU decomposition with E = RA is not unique, even for
invertible matrices. As a counter-example, the following decomposition holds for any
a ∈ K:

0 1

1 0

 =

1 0

a 1

0 1

1 0

1 −a

0 1

 (8)

However, uniqueness of the full rank LEU decomposition can be achieved by imposing
an additional constraint on the L matrix: there is a unique LEU decomposition where
L is such that ET LE is also lower triangular (Manthey and Helmke, 2007, Th. 2.1). We
remark that for the LEU decomposition proposed in (7), this condition becomes:

the matrix ET L̄E = QT
∗,1..rL1..r,1..rQ∗,1..r must be lower triangular. (9)

Whenever Q∗,1..r is in column echelon form, which means that the sequence of the pivot’s
column positions is monotonically increasing, then the above matrix is lower triangular.
A sufficient condition to ensure it, is thus that the pivoting strategy of the corresponding
PLUQ decomposition minimizes the reverse lexicographic order.

Corollary 23. Let A = P LUQ be a full-rank PLUQ decomposition computed with a
pivoting strategy minimizing the reverse lexicographic order and performing row rotations.
Then the LEU decomposition of equation (7) is the unique modified Bruhat decomposition
as defined in (Manthey and Helmke, 2007, Theorem 2.1).

6.2. The Bruhat decomposition

The Bruhat decomposition, from which Malaschonok’s LEU decomposition was in-
spired in Malaschonok (2010), is another decomposition with a central permutation ma-
trix, see Bruhat (1956); Della Dora (1973); Bourbaki (2008); Grigoriev (1981). Bruhat’s
theorem is stated in terms of Weyl groups but reduces to the following:

21

Theorem 24 (Bourbaki (2008)). Any invertible matrix A can be written as A = V P U
for V and U uppper triangular invertible matrices and P a permutation matrix. The
latter decomposition is called the Bruhat decomposition of A.

It was then naturally extended to singular square matrices in Grigoriev (1981) and
an algorithm over principal ideals domains given in Malaschonok (2013). Corollary 25
generalizes it to matrices with arbitrary dimensions, and relates it to the PLUQ decom-
position.

Corollary 25. Any m× n matrix of rank r has a V P U decomposition, where V and U
are upper triangular matrices, and P is a r-sub-permutation matrix.

Proof. Let Jn be the unit anti-diagonal matrix. From the LEU decomposition of JnA,
we have A = JnLJn

︸ ︷︷ ︸

V

JnE
︸︷︷︸

P

U where V is upper triangular. ✷

Remark 26. Manthey and Helmke (2007) gives also a unique generalized Bruhat de-
composition, A = XP Y , but with non-square and non-triangular matrices X , Y . There,
P is called the Bruhat permutation but contains only the r nonzero rows and columns
of the rank profile matrix. We show in Section 6.5, that X and Y are actual row and
column echelon forms of the matrix.

6.3. Relation to LUP and PLU decompositions

The LUP decomposition A = LUP only exists for matrices with generic row rank
profile (including matrices with full row rank). Corollary 27 shows upon which condition
the permutation matrix P equals the rank profile matrixRA. Note that although the row
rank profile of A is trivial in such cases, the matrixRA still carries non-trivial information
not only on the column rank profile but also on the row and column rank profiles of any
leading sub-matrix of A.

Corollary 27. Let A be an m× n matrix.
If A has generic column rank profile, then any PLU decomposition A = P LU computed

using reverse lexicographic order search and row rotations is such that RA = P
[

Ir

0

]
.

In particular, P = RA if r = m = n.
If A has generic row rank profile, then any LUP decomposition A = LUP computed

using lexicographic order search and column rotations is such that RA =
[

Ir

0

]
P . In

particular, P = RA if r = m = n.

Proof. Consider A has generic column rank profile. From table 2, any PLUQ decompo-
sition algorithm with a reverse lexicographic order based search and rotation based row
permutation is such that ΠP,Q = P [Ir] Q = RA. Since the search follows the reverse
lexicographic order and the matrix has generic column rank profile, no column will be
permuted in this elimination, and therefore Q = In. The same reasoning hold for when
A has generic row rank profile. ✷

Note that the L and U factors in a PLU decomposition are uniquely determined
by the permutation P . Hence, when the matrix has full row rank, P = RA and the

22

decomposition A = RALU is unique. Similarly the decomposition A = LURA is unique

when the matrix has full column rank. Now when the matrix is rank deficient with generic

row rank profile, there is no longer a unique PLU decomposition revealing the rank profile

matrix: any permutation applied to the last m− r columns of P and the last m− r rows

of L yields a PLU decomposition where RA = P [Ir].

Lastly, we remark that the only situation where the rank profile matrixRA can be read

directly as a sub-matrix of P or Q is as in corollary 27, when the matrix A has generic

row or column rank profile. Consider a PLUQ decomposition A = P LUQ revealing the

rank profile matrix (RA = P [Ir] Q) such that RA is a sub-matrix of P . This means

that P = RA + S where S has disjoint row and column support with RA. We have

RA = (RA+S) [Ir] Q = (RA+S)
[

Q1

0(n−r)×n

]

. HenceRA(In−
[

Q1

0(n−r)×n

]

) = S
[

Q1

0(n−r)×n

]

but the row support of these matrices are disjoint, hence RA

[
0

In−r

]
= 0 which implies

that A has generic column rank profile. Similarly, one shows that RA can be a sub-matrix

of Q only if A has a generic row rank profile.

6.4. Computing Echelon forms

Usual algorithms computing an echelon form by Ibarra et al. (1982); Keller-Gehrig

(1985); Storjohann (2000); Jeannerod et al. (2013) use a slab block decomposition (with

row or lexicographic order search), which implies that pivots appear in the order of the

echelon form. The column echelon form is simply obtained as C = P L from the PLUQ

decomposition.

We extend here this approach to any PLUQ decomposition that reveals the rank

profile matrix (RA = ΠP,Q) and show how both the row and column echelon forms

can be recovered by only permutations on the L and U matrices. Besides the ability to

compute both echelon forms from one Gaussian elimination, this enables one to choose

from a broader range of algorithmic variants for this Gaussian elimination.

Consider a PLUQ decomposition A = P LUQ revealing the rank profile matrix and

let PC = P∗,1..r be the first r columns of P . The ones in PC indicate the row position

of the pivots in the column echelon form of A, but they may not appear in the same

column order. There exist an r× r permutation matrix S sorting the columns of PC , i.e.

such that PS = PCS is in column echelon.

Lemma 28. The matrix
[

P LS 0m×n−r

]

is a column echelon form of A.

Proof. P LS = P
[

L 0m×(m−r)

]

P T P
[

S
0(m−r)×r

]

= L̄PS . From Theorem 21, the matrix

L̄ = P
[

L 0m×(m−r)

]

P T is lower triangular. Multiplying L̄ on the right by PS simply

removes the zero columns in L̄ putting it in column echelon form. Now the relation

A =
[

P LS 0m×(n−r)

] [
ST

In−r

] [
U

0(n−r)×r In−r

]

Q shows that
[

P LS 0m×(n−r)

]

is right-

equivalent to A and is therefore a column echelon form for A. ✷

Equivalently, the same reasoning applies for the recovery of a row echelon form of A.

Algorithm 3 summarizes how a row and a column echelon form of A can be computed

by sorting the first r values of the permutations σP and σQ.

23

Algorithm 3 Echelon forms from a PLUQ decomposition

Input: P, L, U, Q, a PLUQ decomposition of A with RA = ΠP,Q

Output: C: a column echelon form of A
Output: R: a row echelon form of A

1: (p1, .., pr) = Sort(σP (1), .., σP (r))
2: (q1, .., qr) = Sort(σQ(1), .., σQ(r))
3: τ = (σ−1

P (p1), .., σ−1
P (pr)) ∈ Sr

4: χ = (σ−1
Q (q1), .., σ−1

Q (qr)) ∈ Sr

5: Sτ = P (τ)
6: Sχ = P (χ)T

7: Return C ← P
[

LSτ 0m×(n−r)

]

and R←
[

SχU
0(m−r)×n

]

Q

Remark 29. A row and column echelon form of the i × j leading sub-matrix can be

computed by removing rows of P L below index i and filtering out the pivots of column

index greater than j. The latter is achieved by replacing lines 1 and 2 in Algorithm 3 by:

1’: (p1, .., ps) = Sort({σP (k) : σQ(k) ≤ j and 1 ≤ k ≤ r})

2’: (q1, .., qs) = Sort({σQ(k) : σP (k) ≤ i and 1 ≤ k ≤ r}).

6.5. The generalized Bruhat decomposition

The generalization of the Bruhat decomposition for rank deficient matrices of (Man-

they and Helmke, 2007, Theorem 2.4) is of the form A = XFY where X is in column

echelon form, Y in row echelon form, and F is a r×r permutation matrix. Such a decom-

position immediately follows from the echelon forms computed by Algorithm 3. Indeed,

by Lemma 28, P LSτ is in column echelon form and SχUQ is in row echelon form. The

identity

A = (P LSτ)
︸ ︷︷ ︸

X

ST
τ ST

χ
︸ ︷︷ ︸

F

(SχUQ)
︸ ︷︷ ︸

Y

(10)

then directly gives an A = XFY decomposition.

In a similar way as in the full-rank case (see Section 6.1) (Manthey and Helmke, 2007,

Theorem 2.4) requires an additional condition on the X matrix to ensure the uniqueness

of the decomposition: F T XRowRP(X),∗F must be lower triangular, where XI,∗ denotes the

lower triangular submatrix of X formed by the rows of its row rank profile. This condition

is not satisfied in general by the X and Y matrices computed from Algorithm 3 and a

PLUQ decomposition revealing the rank profile matrix. As a counter example, the matrix

[0 1
1 a] has two PLUQ decompositions revealing the rank profile matrix F = J2 = [0 1

1 0]:

A = J2I2 [1 a
0 1] I2 and A = I2 [1 0

a 1] I2J2. For the latter one, F T XF = [1 a
0 1] which is not

lower triangular.

In a same way as in equation (9), we derive an equivalent condition for the uniqueness

of the generalized Bruhat decomposition. We first need the following Lemma.

Lemma 30. Let C be an m × r matrix in column echelon form, and P the m × r

r-sub-permutation matrix with ones at the location of the pivots of C. Then

CRowRP(X),∗ = P T C.

24

As P∗,1..rSτ is the r-sub-permutation matrix with ones on the locations of the pivots
of the column echelon form X , we deduce that

F T XRowRP(X),∗F = SχSτ ST
τ (P∗,1..r)T P LSτST

τ ST
χ = SχL1..r,1..rST

χ .

Again, a sufficient condition for this matrix to be lower triangular is that Sχ = Ir which
happens if the PLUQ decomposition has been computed using a pivoting respecting the
reverse lexicographic order.

Corollary 31. Let A = P LUQ be a PLUQ decomposition computed with a pivoting
strategy minimizing the reverse lexicographic order and performing row rotations. Then
the XFY decomposition of equation (10) is the unique generalized Bruhat decomposition
as defined in (Manthey and Helmke, 2007, Theorem 2.4).

7. Improvement for low rank matrices

7.1. Storjohann and Yang’s algorithm

An alternative way to compute row and column rank profiles has recently been pro-
posed by Storjohann and Yang in Storjohann and Yang (2014, 2015), reducing the
time complexity from a deterministic O(mnrω−2) to a Monte Carlo probabilistic 2r3 +
O(r2(log m + log n) + mn) in Storjohann and Yang (2014) first, and to (rω + mn)1+o(1)

in Storjohann and Yang (2015), under the condition that the base field contains at least
2 min(m, n)(1+⌈log2 m⌉+⌈log2 n⌉) elements. We show how these results can be extended
to the computation of the rank profile matrix.

The technique of Storjohann and Yang originates from the oracle system solving tech-
nique of (Mulders and Storjohann, 2000, §2). There, a linear system is solved or proved
to be inconsistent, by the incremental construction of a non-singular sub-matrix of the
augmented matrix of the system, and the computation of its inverse by rank one updates.

Applied to a right-hand-side vector b sampled uniformly from the column space of a
matrix, this technique is used to incrementally build a list of row indices P = [i1, . . . , is]
and of column indices Q = [j1, . . . js], for s = 1, . . . , r, forming an incrementally growing
invertible sub-matrix AP,Q. Each coordinate (is, js) is that of a pivot as in a standard
Gaussian elimination algorithm, but the complexity improvement comes from the fact
that the elimination is only performed on this s× s submatrix, and not on the linearly
dependent rows and columns of the matrix A. To achieve this, the search for pivots is
done by limiting the Schur complement computation to the last column of the augmented

system
[

A b
]

:

b−A∗,Q · (AP,Q)−1 · bP .

Under a randomized assumption, the first non-zero component of this vector indicates the
value is of the next linearly independent row. A similar approach is used for determining
the value of js.

As shown in (Storjohann and Yang, 2014, Theorem 6), the algorithm ends up com-
puting the row rank profile in P and the column rank profile in Q. In fact, it computes
all information of the rank profile matrix.

Theorem 32. The r-permutation matrix whose ones are located at positions (is, js) for
1 ≤ s ≤ r is precisely the rank profile matrix of A.

25

Proof. In this algorihtm, the pivot search looks for the first non-zero element in the
Schur complement of b which, with probability 1 − 1/#K, will correspond to the first
linearly independent row. The exact Schur complement can then be computed on this
row only:

Ais,∗ −Ais,Q · (AP,Q)−1 ·AP,∗,

so as to find the column position js of the first non zero element in it. This search strategy
minimizes the lexicographic order of the pivot coordinates. No permutation strategy is
being used, instead the columns where pivots have already been found are zeroed out
in the Schur complement computation, which has the same effect as a Column rotation.
From the 4th line of Table 2, this pivoting strategy reveals the rank profile matrix. ✷

The complexity of the direct Monte Carlo algorithm, in O((m + n)r2), hence directly
applies for the computation of the rank profile matrix. This complexity is reduced to
2r3 + O(r2(log n + log m) + mn) by the introduction of linear independence oracles in
a divide and conquer scheme. Upon success of the probabilistic asumption, the values
for P and Q are unchanged. Consequently, (Storjohann and Yang, 2014, Theorem 19,
Corollary 21) also hold for the computation of the rank profile matrix.

Corollary 33. There exist a Monte Carlo algorithm computing the rank profile matrix
that has running time bounded by 2r3 + (r2 + m + n + |A|)1+o(1), where |A| denotes the
number of non-zero elements in A.

The r3 term in this complexity is from the iterative construction of the inverses of
the non-singular sub-matrices of order s for 1 ≤ s ≤ r, by rank one updates. To reduce
this complexity to O(rω), Storjohann and Yang (2015) propose a relaxed computation
of this online matrix inversion. In order to group arithmetic operations into matrix mul-
tiplications, their approach is to anticipate part of the updates on the columns that will
be appended in the future. This however requires that one has an a priori knowledge on
the position of r linearly independent columns of the initial matrix A and, even further,
that the sub-matrix formed by these linearly independent columns has generic rank pro-
file. The first condition is ensured by the Monte Carlo selection of linearly independent
columns of (Cheung et al., 2013, Theorem 2.11) and the second by the use of a lower
triangular Toeplitz preconditioner as in (Kaltofen and Saunders, 1991, Theorem 2). In
the process, the row rank profile can be recovered, but all information on the column
rank profile is lost, and the rank profile matrix can thus not be recovered.

Yet, this algorithm can be run twice (once on A and once on AT), to recover the row
and the column rank profiles, and extract the corresponding r × r invertible sub-matrix
AP,Q of A. Following Corollary 27, it then suffices to compute a PLU decomposition of
this sub-matrix, using an appropriate pivoting strategy, to recover its rank profile matrix
and therefore that of A as well.

Theorem 34. Algorithm 4 is Monte Carlo probabilistic and computes the rank profile
matrix of A in time (rω + m + n + |A|)1+o(1) field operations in K.

Note that the last operation consists in the introduction of zero rows and columns to
expand the r× r permutation matrix P into the m×n matrix RA. The position of these
zero rows and columns are deduced from the row rank profile P and the column rank
profile Q.

26

Algorithm 4 Low Rank Profile Matrix

Input: A, an m× n matrix of rank r over a field K.
Output: RA the rank profile matrix of A or FAILURE

1: Compute the Row rank profile P = [i1, . . . , ir] of A using Storjohann and Yang (2015)
2: Compute the Column rank profile Q = [j1, . . . , jr] of A using Storjohann and Yang

(2015) applied on AT .
3: Let B = AP,Q

4: Compute B = LUP a LUP decomposition of B using a lexicographic pivot search
and rotations for the column permutations.

5: Return RA = PP

[
P

0(m−r)×(n−r))

]

P T
Q

7.2. Online LU decomposition

The rank profile algorithms of Storjohann and Yang rely on an online computation
of a matrix inverse, either by rank one updates in Storjohann and Yang (2014) or by a
relaxed variant Storjohann and Yang (2015), that corresponds to an online version of the
classic divide and conquer algorithm Strassen (1969). We remark that these inversion
algorithms can be advantageously replaced by LU decomposition algorithms. Following
the argument in (Jeannerod et al., 2013, Fig 2), the use of LU decomposition for linear
system solving offers a speed-up factor of about 3, compared to the use of a matrix inverse.
Indeed, solving a system from an LU decomposition is done by two back substitutions,
which has the same costs of 2n2 + O(n) field operations, as applying the inverse of the
matrix to the right-hand-side vector. But the cost computing an LU decomposition is
about three times as fast as computing a matrix inverse (2/3n3 versus 2n3 when classic
matrix arithmetic is used). We present now how to replace the online matrix inverse by
an online LU decomposition in Storjohann and Yang (2014, 2015).

First consider the iterative construction of the LU decomposition of AP,Q by rank one
updates. Suppose that As−1 = LU with L lower triangular with a unit diagonal, and U
upper triangular. Then we have

As−1 u

v d

 =

L

vU−1 1

 ·

U L−1u

w

 , (11)

where w = d − vU−1L−1u. This rank one update of the LU decomposition of the work
matrix costs 2s2 + O(s) to compute for an (s − 1) × (s − 1) matrix AP,Q (compared
with 6s2 + O(s) in (Storjohann and Yang, 2014, Lemma 2)). The remaining of the paper
can then be used, replacing every multiplication by the pre-computed matrix inverse
x ← (AP,Q)−1 · b by two consecutive triangular system solving: y ← L−1b; x ← U−1y.
This leads to a Monte Carlo algorithm computing the rank profile matrix in time 2/3r3 +
(r2 + m + n + |A|)(1+o(1)).

Note that the decomposition in (11) uses two kinds of matrix vector products: vU−1 and
L−1u contrary to the matrix inverse formula (12) used in Storjohann and Yang (2014)
and Storjohann and Yang (2015)

As−1 u

v d

−1

=

Is−1 −A−1

s−1us(d− vsA−1
s−1us)−1

(d− vsA−1
s−1us)−1

 ·

Is−1

−vs 1

 ·

A−1

s−1

1

 , (12)

27

where only one matrix-vector product, A−1
s−1us, appears. The relaxation is achieved there

by anticipating part of these products into larger matrix-matrix multiplications. This
requires that all of the column vectors that will be treated are known in advance: this is
ensured by the selection of r linearly independent columns of Cheung et al. (2013). Since
no matrix-vector product involves row vectors vs, it is still possible to select and add
them incrementally one after the other, thus allowing to compute the row rank profile.

Now, relaxing the LU decomposition of equation (11) in a similar way would require
to also anticipate computations on the rows, namely vU−1. This would be either too
expensive, if no pre-selection of r linearly independent rows is performed, or such a pre-
selection would lose the row rank profile information that has to be computed. Hence we
can not propose a similar improvement of the leading constant in the relaxed case.

References

K.P.S. Bhaskara Rao. The Theory of Generalized Inverses Over Commutative Rings,
volume 17 of Algebra Logic and Application series. Taylor and Francis, London, 2002.

N. Bourbaki. Groupes et Algègres de Lie. Number Chapters 4–6 in Elements of mathe-
matics. Springer, 2008.

William C. Brown. Matrices over Commutative Rings. Chapman & Hall Pure and
Applied Mathematics. CRC Press, 1992. ISBN 9780824787554.

William C. Brown. Null ideals and spanning ranks of matrices. Communications in
Algebra, 26(8):2401–2417, 1998. doi: 10.1080/00927879808826285.

François Bruhat. Sur les représentations induites des groupes de Lie. Bul-
letin de la Société Mathématique de France, 84:97–205, 1956. URL
http://eudml.org/doc/86911.

Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast Matrix Rank Algorithms
and Applications. J. ACM, 60(5):31:1–31:25, October 2013. ISSN 0004-5411. doi:

10.1145/2528404.
W. Edwin Clark and Joseph J Liang. Enumeration of finite commutative chain

rings. Journal of Algebra, 27(3):445–453, December 1973. ISSN 0021-8693. doi:

10.1016/0021-8693(73)90055-0.
Jean Della Dora. Sur quelques algorithmes de recherche de valeurs pro-

pres. Theses, Université Joseph Fourier - Grenoble I, July 1973. URL
https://tel.archives-ouvertes.fr/tel-00010274.

Jack J. Dongarra, Lain S. Duff, Danny C. Sorensen, and Henk A. Vander Vorst. Numerical
Linear Algebra for High Performance Computers. SIAM, 1998. ISBN 0898714281.

Jean-Guillaume Dumas and Jean-Louis Roch. On parallel block algorithms for ex-
act triangularizations. Parallel Computing, 28(11):1531–1548, November 2002. doi:

10.1016/S0167-8191(02)00161-8.
Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. Dense linear al-

gebra over prime fields. ACM TOMS, 35(3):1–42, November 2008. doi:

10.1145/1391989.1391992.
Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Simultaneous computation of

the row and column rank profiles. In Manuel Kauers, editor, Proc. ISSAC’13, pages
181–188. ACM Press, 2013. doi: 10.1145/2465506.2465517.

Jean-Guillaume Dumas, Thierry Gautier, Clément Pernet, and Ziad Sultan. Parallel com-
putation of echelon forms. In Euro-Par 2014 Parallel Proc., LNCS (8632), pages 499–
510. Springer, 2014. ISBN 978-3-319-09872-2. doi: 10.1007/978-3-319-09873-9 42.

28

http://dx.doi.org/10.1080/00927879808826285
http://eudml.org/doc/86911
http://dx.doi.org/10.1145/2528404
http://dx.doi.org/10.1016/0021-8693(73)90055-0
https://tel.archives-ouvertes.fr/tel-00010274
http://dx.doi.org/10.1016/S0167-8191(02)00161-8
http://dx.doi.org/10.1145/1391989.1391992
http://dx.doi.org/10.1145/2465506.2465517
http://dx.doi.org/10.1007/978-3-319-09873-9_42

Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Recursion based paralleliza-
tion of exact dense linear algebra routines for Gaussian elimination. Parallel Comput-
ing, 2015a. doi: 10.1016/j.parco.2015.10.003.

Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Computing the rank profile
matrix. In Proceedings of the 2015 ACM on International Symposium on Symbolic
and Algebraic Computation, ISSAC ’15, pages 149–156, New York, NY, USA, 2015b.
ACM. ISBN 978-1-4503-3435-8. doi: 10.1145/2755996.2756682.

Dima Yu. Grigoriev. Analogy of Bruhat decomposition for the closure of a cone of
Chevalley group of a classical serie. Soviet Mathematics Doklady, 23(2):393–397, 1981.

Thomas W. Hungerford. On the structure of principal ideal
rings. Pacific Journal of Mathematics, 25(3):543–547, 1968. URL
http://projecteuclid.org/euclid.pjm/1102986148.

Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of the fast LUP matrix
decomposition algorithm and applications. J. of Algorithms, 3(1):45–56, 1982. doi:

10.1016/0196-6774(82)90007-4.
Claude-Pierre Jeannerod, Clément Pernet, and Arne Storjohann. Rank-profile revealing

Gaussian elimination and the CUP matrix decomposition. J. Symbolic Comput., 56:
46–68, 2013. ISSN 0747-7171. doi: 10.1016/j.jsc.2013.04.004.

David John Jeffrey. LU factoring of non-invertible matrices. ACM Comm. Comp. Algebra,
44(1/2):1–8, July 2010. ISSN 1932-2240. doi: 10.1145/1838599.1838602.

Erich Kaltofen and B. David Saunders. On Wiedemann’s method of solving sparse linear
systems. In Harold F. Mattson, Teo Mora, and T. R. N. Rao, editors, Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, number 539 in Lecture Notes in
Computer Science, pages 29–38. Springer Berlin Heidelberg, January 1991. ISBN 978-
3-540-54522-4 978-3-540-38436-6. doi: 10.1007/3-540-54522-0 93.

Walter Keller-Gehrig. Fast algorithms for the characteristic polynomial. Th. Comp.
Science, 36:309–317, 1985. doi: 10.1016/0304-3975(85)90049-0.

Kenneth Klimkowski and Robert A. van de Geijn. Anatomy of a parallel out-of-core
dense linear solver. In International Conference on Parallel Processing, volume 3,
pages 29–33. CRC Press, aug 1995.

Wolfgang Krull. Dimensionstheorie in stellenringen. Journal für die reine und angewandte
Mathematik, 179:204–226, 1938. URL http://eudml.org/doc/150048.

Gennadi Malaschonok. Generalized Bruhat decomposition in commutative domains. In
VladimirP. Gerdt, Wolfram Koepf, ErnstW. Mayr, and EvgeniiV. Vorozhtsov, editors,
Computer Algebra in Scientific Computing, volume 8136 of Lecture Notes in Computer
Science, pages 231–242. Springer International Publishing, 2013. ISBN 978-3-319-
02296-3. doi: 10.1007/978-3-319-02297-0 20.

Gennadi Ivanovich Malaschonok. Fast generalized Bruhat decomposition. In CASC’10,
volume 6244 of LNCS, pages 194–202. Springer-Verlag, Berlin, Heidelberg, 2010. ISBN
3-642-15273-2, 978-3-642-15273-3. doi: 10.1007/978-3-642-15274-0 16.

Wilfried Manthey and Uwe Helmke. Bruhat canonical form for linear systems. Lin-
ear Algebra and its Applications, 425(2–3):261 – 282, 2007. ISSN 0024-3795. doi:

10.1016/j.laa.2007.01.022. Special Issue in honor of Paul Fuhrmann.
Neal H. McCoy. Rings and ideals. Carus Monograph Series, no. 8. The Open Court

Publishing Company, LaSalle, Ill., 1948.
Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra, volume 227.

Springer, 2005. doi: 10.1007/b138602.

29

http://dx.doi.org/10.1016/j.parco.2015.10.003
http://dx.doi.org/10.1145/2755996.2756682
http://projecteuclid.org/euclid.pjm/1102986148
http://dx.doi.org/10.1016/0196-6774(82)90007-4
http://dx.doi.org/10.1016/j.jsc.2013.04.004
http://dx.doi.org/10.1145/1838599.1838602
http://dx.doi.org/10.1007/3-540-54522-0_93
http://dx.doi.org/10.1016/0304-3975(85)90049-0
http://eudml.org/doc/150048
http://dx.doi.org/10.1007/978-3-319-02297-0_20
http://dx.doi.org/10.1007/978-3-642-15274-0_16
http://dx.doi.org/10.1016/j.laa.2007.01.022
http://dx.doi.org/10.1007/b138602

Thom Mulders and Arne Storjohann. Rational Solutions of Singular Linear Systems. In
Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC ’00, pages 242–249, New York, NY, USA, 2000. ACM. ISBN 1-58113-218-2.
doi: 10.1145/345542.345644.

Graham H. Norton and Ana Salagean. On the hamming distance of linear codes over
a finite chain ring. IEEE Trans. Information Theory, 46(3):1060–1067, 2000. doi:

10.1109/18.841186.
Arne Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, ETH-Zentrum,

Zürich, Switzerland, November 2000.
Arne Storjohann and Shiyun Yang. Linear Independence Oracles and Applications

to Rectangular and Low Rank Linear Systems. In Proceedings of the 39th In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages
381–388, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2501-1. doi:

10.1145/2608628.2608673.
Arne Storjohann and Shiyun Yang. A Relaxed Algorithm for Online Matrix Inversion. In

Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC ’15, pages 339–346, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3435-8. doi: 10.1145/2755996.2756672.

Prof Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13
(4):354–356, August 1969. ISSN 0029-599X, 0945-3245. doi: 10.1007/BF02165411.

E. Tyrtyshnikov. Matrix Bruhat decompositions with a remark on the QR (GR) algo-
rithm. Linear Algebra and its Applications, 250:61 – 68, 1997. ISSN 0024-3795. doi:

10.1016/0024-3795(95)00453-X.

30

http://dx.doi.org/10.1145/345542.345644
http://dx.doi.org/10.1109/18.841186
http://dx.doi.org/10.1145/2608628.2608673
http://dx.doi.org/10.1145/2755996.2756672
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1016/0024-3795(95)00453-X

	Introduction
	The rank profile matrix
	Definition over a field
	Generalization over a commutative ring with unity
	Over a principal ideal domain
	Over a finite chain ring

	When does a PLUQ algorithm reveal the rank profile matrix?
	Ingredients of a PLUQ decomposition algorithm
	Pivot search
	Pivot permutation

	How to reveal rank profiles

	Algorithms for the rank profile matrix
	Iterative algorithms
	Row and Column order Search
	Lexicographic order based pivot search
	Product order based pivot search

	Recursive algorithms
	Slab recursive algorithms
	Tile recursive algorithms

	Improvements in practice
	Relations with other triangularizations
	The LEU decomposition
	The Bruhat decomposition
	Relation to LUP and PLU decompositions
	Computing Echelon forms
	The generalized Bruhat decomposition

	Improvement for low rank matrices
	Storjohann and Yang's algorithm
	Online LU decomposition

