
Comparison of SVM

and Some Older Classification Algorithms

in Text Classification Tasks

Fabrice Colas1 and Pavel Brazdil2

1 LIACS, Leiden University, The Netherlands, fcolas@liacs.nl
2 LIACC-NIAAD, University of Porto, Portugal, pbrazdil@liacc.up.pt

Summary. Document classification has already been widely studied. In fact, some
studies compared feature selection techniques or feature space transformation whereas
some others compared the performance of different algorithms. Recently, following
the rising interest towards the Support Vector Machine, various studies showed that
SVM outperforms other classification algorithms. So should we just not bother about
other classification algorithms and opt always for SVM ?

We have decided to investigate this issue and compared SVM to kNN and naive
Bayes on binary classification tasks. An important issue is to compare optimized
versions of these algorithms, which is what we have done. Our results show all the
classifiers achieved comparable performance on most problems. One surprising result
is that SVM was not a clear winner, despite quite good overall performance. If a
suitable preprocessing is used with kNN, this algorithm continues to achieve very
good results and scales up well with the number of documents, which is not the case
for SVM. As for naive Bayes, it also achieved good performance.

1 Introduction

The aim of using artificial intelligence techniques in text categorization is to
build systems which are able to automatically classify documents into cat-
egories. But as the feature space, based on the set of unique words in the
documents, is typically of very high dimension, document classification is not
trivial. Various feature space reduction techniques were suggested and com-
pared in [13, 9]. A large number of adaptive learning techniques have also
been applied to text categorization. Among them, the k nearest neighbors
and the naive Bayes are two examples of commonly used algorithms (see for
instance [7] for details). Joachims applied the Support Vector Machine to
document classification [4]. Numerous classifier comparisons were done in the
past [12, 14, 4, 2].

Some algorithms like the SVM are by default binary classifiers. Therefore,
if we have a problem with more than two classes, we need to construct as

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Fabrice Colas and Pavel Brazdil

many classifiers as there are classes (one versus all strategy). However, it is
not fair to compare a single multi-class naive Bayes (or kNN) classifier to
n SVM classifiers (for n classes). This is why we have decided to focus on
one against one classification tasks. Moreover, Fürnkranz [3] showed that a
round robin approach using the set of one against one classifiers, performs at
least as well as a one versus all approach. These binary problems involve also
smaller amounts of data, which means that the classifiers are faster to train.
The properties of the train set have much influence on the classifier learn-
ing abilities. Therefore, focusing on binary classification tasks allows one to
carefully control the nature of train sets. Finally, directly studying multi-class
classification tasks tends to obscure the particular behaviors of the classifiers
on some classes which may be of interest.

We seek answers to the following questions. Should we still consider old

classification algorithms in text categorization or opt systematically for SVM

classifiers ? What are the strength and weaknesses of the SVM, naive Bayes

and kNN algorithms in text categorization on a set of simple binary problems ?

Are there some parameter optimization results transferable from one problem

to another ? Before giving the answers, our experimental settings and evalu-
ation methodology are described. Then, our results regarding the parameter
optimization are presented. The optimized versions are then used in further
comparative studies, which are used to answer the above questions.

2 Document Collection, Algorithms and Evaluation

Methodology

2.1 Document Collection

For our experiments we used the well known 20newsgroups dataset composed
of 20000 newsgroup emails (removed email headers and no stemming). We
chose to study the set of one against one binary classification tasks of this

dataset. Thus, 20(20−1)
2 = 190 classification tasks were examined. Given the

large dimensions of the problem, sub sampling techniques were applied to
observe the classifier learning abilities for an increasing train set size. We also
used the Information Gain to impose an ordering on a set of attributes. We
chose this heuristic for its simplicity and its good performance [13, 9].

2.2 Algorithms

In this paper, two well known classifiers are compared to the Support Vector
Machine namely the kNN and the naive Bayes. These two classifiers were cho-
sen because of their simplicity and their generally good performance reported
in document classification. With respect to the SVM, the SMO implementa-
tion of Platt, available in the libbow [6] library, has been used.

Comparison of SVM and some Older Algorithms in Text Classification 3

Let us consider the classification function Φ of the data points xi (i = 1...l)
into a class yi ∈ C = {+1,−1}. Let d be the dimension of the feature space.
The three classification algorithms are presented in the following subsections.

Support Vector Machine.

The SVM problem (primal) is to find the decision surface that maximizes
the margin between the data points of the two classes. Following our results
and previously published studies in document classification [12, 14], we limit
our discussion to linear SVM. The dual form of the linear SVM optimisation
problem is to maximize :

α
∗ = maximiseα

l∑

i=1

αi −
1

2

l∑

i=1

l∑

j=1

yiyjαiαj〈xi, xj〉,

subject to
l∑

i=1

yiαi = 0

0 ≤ αi ≤ C, i = 1...l

(1)

with αi the weight of the examples and C the relative importance of the
complexity of the model and the error. The class prediction Φ̂(x′) of the point
x
′ is given by :

Φ̂(x′) = sign(
l∑

i=1

αiyi〈xi, x
′〉 + b) = sign(〈w∗, x′〉 + b) (2)

where w
∗ =

∑l

i=1 αiyixi.

k Nearest Neighbors.

Given a test point, a predefined similarity metric is used to find the k most
similar points from the train set. For each class yi, we sum the similarity of
the neighbors of the same class. Then, the class yi with the highest score is
assigned to the data point x

′ by the k nearest neighbors algorithm.

Φ̂(x′) = argmaxyj∈C

k∑

i=1

δ(yj , Φ(xi))sim(xi, x
′) (3)

Naive Bayes

Let P (yi) be the prior probability of the class yi and P (a′
j |yi) be the con-

ditional probability to observe attribute value a′
j given the class yi. Then, a

naive Bayes classifier assign to a data point x
′ with attributes (a′

1...a
′
d) the

class Φ̂(x′) maximizing :

4 Fabrice Colas and Pavel Brazdil

Φ̂(x′) = argmaxyi∈CP (yi)

d∏

j=1

P (a′
j |yi) (4)

2.3 Evaluation Methodology

A classical 10-fold cross validation was used to estimate classifier performance.
We chose the macro averaged F1 measure MF1 = 2×MPrecision×MRecall

MPecision+MRecall
[10],

where the MPrecision and the MRecall measures are the averages of the
precision and the recall computed on the basis of the two confusion matrices
(in one, a class is considered positive and the other negative ; in the other the
assignment is interchanged). Finally, we recorded the global processing time
in seconds (the sum of the training and the testing time). As the size of the
test set is nearly the same for each experiment, this processing time reflects
mostly the train time of the classifiers.

3 Experimental Results

3.1 Parameter Optimization Results

We ran some preliminary experiments on 20newsgroups to find the best pa-
rameter values. These experiments were restricted to three binary classifica-
tion tasks3. Our results are presented in the following sections for SVM and
kNN.

Support Vector Machines.

Various parameters of SVM were considered in the attempt to optimize the
performance of this algorithm. The parameter C was varied and various kernel
functions were tried as well. None of those lead to interesting improvements in
terms of performance (MF1) or processing time. So, the default value C = 200
and a linear kernel are used.

We have also varied the ǫ parameter controlling the accepted error. We
have found that ǫ had no influence on MF1 as long as its value was smaller
or equal to 0.1. However, ǫ did affect the training time. Indeed the time could
be reduced by a factor of 4 in the best case (see Fig. 1 (A) with 500 features),
when the largest value of ǫ (0.1) was used. Our hypothesis is that the precision
of the optimisation problem is simplified when an acceptable optimal hyper
plane is bounded by a larger error ǫ. Therefore, it seems that no high precision
is needed to train SVM on these binary classification tasks. Fig. 1 (A) and
(B) portray the training time of SVM for various values of ǫ when the size of
the feature space is varied and when the number of documents in the train
set is increased.
3
alt.atheism vs. talk.religion.misc, comp.sys.ibm.pc.hardware vs. comp.-

sys.mac.hardware, talk.politics.guns vs. talk.politics.misc

Comparison of SVM and some Older Algorithms in Text Classification 5

Fig. 1. Processing time of the SVM
classifier on alt.atheism vs. talk.-
religion.misc, for several values of
ǫ, given an increasing number of fea-
tures (A) and an increasing number
of documents in the train set (B).

k Nearest Neighbors.

Two parameters were considered to optimize the performance of the kNN, the
number k of nearest neighbor and the feature space transformation. Indeed, to
achieve good performance with kNN, the feature space should be transformed
to a new one. Common transformation in text mining are based on the number
of occurences of the ith term tfi, the inverse document frequency which is
defined as the ratio between the total number of documents N and the number
of documents containing the term dfi, a normalization constant κ.

Φatc(xi) =
(1
2 + tfi

2tfmax
) log(N

dfi
)

κ

Φntn(xi) =tfi log(
N

dfi

)

Φlnc(xi) =
log(tfi)

κ

(5)

Thirty measures (3 problems, 10-fold cross validation) caracterized the exper-
imental results for each parameter setting. To compare these results, a simple
heuristic based on a pairwise t-test (95% confidence interval) was used. When
a significative difference was observed regards the results of one parameter
setting to one other, a victory point was attributed to the best setting. In
case of tie, no point was given. Train sets with the maximum number of doc-
ument4 were used whereas the feature space was composed of all the possible
attributes.

Number of Nearest Neighbors.

We observed that large k values lead to relatively good performance. Indeed,
the contribution towards the class score of the neighbors is weighted by their

4 A binary task involves 2 × 1000 documents. Considering that 10-fold cross vali-
dation is used, each training set includes 1800 documents and the test set 200.

6 Fabrice Colas and Pavel Brazdil

similarity to the test point. Therefore, the farthest neighbors have little effect
on the class score. However, the best number of nearest neighbors is k = 49.
This optimal k value (49) is interestingly quite close to the one of Yang

(45) in [12] with completely different experimental settings (Reuters-21570,
classification task seen as a single multi-class problem). As a result, it seems
that k values between 45 and 50 are well suited for text classification tasks.

We first ran all our experiments with k = 5. Therefore the kNN results
could be slightly improved in the following comparative study if we used the
optimized value for k.

Feature Space Transformation.

About 400 transformations were evaluated. Our observation is that any term
frequency is suitable, but not the binary transformation (value 1 or 0), de-
pending whether a particular word is (or is not) present. This is coherent to
the previous study of McCallum et al. [5]. In the same way, the inverse
document frequency should be systematically applied because, as it is well
known, it decreases the importance of common words occurring in numerous
documents. The normalization did not affect the performance. In the coming
comparative study, the transformations5 presented in formulas 5 are used.

3.2 Some Classifier Comparisons

The aim of our experiments was to examine the classifier learning abilities
for an increasing number of documents in the train set (learning curves),
and also, how the performance is affected by the number of attributes of the
feature space. In the study involving learning curves, all the features were
selected. Similarly, when the behaviors for an increasing number of features
were studied, the train set was composed of its maximum size, containing as
many documents of both classes.

First of all, we have observed that architectural variables (sample selec-
tion, algorithm parameters, feature subset selection, working feature space)
had often a larger impact on the performance than the choice of individual
classifiers. In fact, if suitable architectural variables are chosen and if the pa-
rameter settings of the classifiers get correctly optimized, then the differences
between the algorithms are not very large.

Moreover, the behaviors of the classifiers are very similar across the clas-
sification tasks. This is illustrated in Fig. 2 (A) and (B) which shows the
performance of the three algorithms on two typical binary classification tasks
among the 190. The figure shows how the performance depends on the number
of documents in the train set. Fig. 2 (A) shows that naive Bayes is slightly

5 A weighting scheme is composed of two parts, for example ntn.lnc or atc.atc

(SMART Information Retrieval System notations). The first group of three letters
word describes the feature space transformation for the documents in the train
set, whereas the second group describes the feature space for the test documents.

Comparison of SVM and some Older Algorithms in Text Classification 7

Fig. 2. Performance (A), (B) and processing time (C), (D) of kNN, SVM and naive
Bayes for two problems : comp.graphics vs.comp.sys.ibm.pc.hardware (A), (C)
and comp.os.ms-windows.misc vs. talk.politics.misc (B), (D) for an increasing
number of documents in the train set.

better than the other algorithms for all train sizes. However, the difference
from the worst performer is not very large (about 2 or 3%).

Fig. 2 (B) shows that naive Bayes starts with an advantage when a small
number of documents are used in the train set, but then as the number of
documents increases, the difference diminishes. When 1800 documents are
used, the performance is virtually identical to the other classifiers. SVM is
however in a disadvantage, when we consider the processing times. These are
not only much higher than for the other algorithms, but also, the processing
time tends to grow quadratically with the number of documents in the train
set (see Fig. 2 (C), (D) and Fig. 4 (D)).

Fig. 3. Performance (A), (B) and processing time (C), (D) of kNN, SVM and
naive Bayes for two problems : rec.motorcycles vs. sci.med (A), (C) and comp.-

sys.ibm.pc.hardware vs.sci.electronics (B), (D) for an increasing number of
attribute in the feature space.

8 Fabrice Colas and Pavel Brazdil

Regards the number of features, all three classifiers tend to achieve better
performance on large feature set (see Fig. 3 (A) and (B)). However, the SVM
processing time can be particularly high if the number of features is small
(see Fig. 3 (D) and Fig. 4 (C)). Besides, regards performance of SVM an
interesting pattern can be observed on some tasks (see Fig. 3 (B) and Fig. 4
(A)). First, a maximum is reached for a relatively small feature set. Then, the
performance decreases until it reverses its tendency again.

On the problem involving alt.atheism and talk.religion.misc (Fig.
4), both three classifiers achieved relatively poor performance when compared
to other classification tasks. In fact, as the two newsgroups are closely related,
it is difficult to determine to which category the documents belong. In this
task, SVM outperforms naive Bayes and kNN for small feature spaces (see
Fig. 4 (A), 100-200) whereas it performs poorly on large feature spaces (500-
20000). Although this behavior is specific to this task, it is still a surprising
result. Indeed, it is often said that SVM deals well with large number of
features. It appears that naive Bayes and kNN do this better here. However,
it could be taken into consideration when constructing the learning curves.
For instance, the learning curve of SVM shown in Fig. 4 (B) which uses all

the possible features (21791), could be pushed up if a smaller feature set was
used (200).

Fig. 4. Performance (A), (B) and processing time (C), (D) of naive Bayes, kNN
and SVM on alt.atheism versus talk.religion.misc, given an increasing number
of features (A), (C) and an increasing number of documents in the train set (B),
(D). right.

On most of the classification tasks, the training time of SVM increases
linearly with the number of features (see Fig. 3 (C)). However, the search for
the optimal hyper plane of SVM may require very large training time. For

Comparison of SVM and some Older Algorithms in Text Classification 9

example, the largest training times among the 190 classification tasks occur
on the problem presented in Fig. 4. Indeed, correlating the above-mentioned
pattern, SVM training time is higher for small feature spaces than for large
ones (Fig. 4 (C) and Fig. 3 (D)). Therefore, training SVM on a extended
feature space tends to be faster on these particular tasks.

Discussion.

As explained earlier, comparing a single multi-class naive Bayes (or kNN) to
n SVM classifiers (n the number of categories) is definitively not fair for naive
Bayes (or kNN). However, this is the approach followed in some published
comparative studies [2, 12, 14].

In [2], the SVM SMO version of Platt was claimed to outperform naive
Bayes and other learning methods. However, the optimal number of features
was not investigated for each classifier. Indeed, 300 features were selected
for SVM which may not be far from the optimal setting. But only 50 were
used for naive Bayes. According to our results naive Bayes performs much
better with large number of features. Also, the Mutual Information (MI) was
used to select features which may not be the best option according to [13].
Finally, they studied the set of one-against-all classifiers for each type of
algorithm. However, this approach tends to obscur the particular behavior of
the classifiers on the various classification tasks.

Recently, a study [1] showed that the architectural parameters often have a
more significant impact on performance than the choice of individual learning
technique. The work presented here also confirms this. This is why we have
decided not to do simple classifier comparisons and present tables with per-
formance results. We preferred to compare the general tendencies of different
classifiers when certain parameters are varied.

4 Conclusion

Firstly, we showed that kNN and naive Bayes are still worth considering. Both
classifiers achieved good overall performance and are much faster than SVM
to use. Indeed, the cost to train SVM for large train set is a clear drawback.

Secondly, compared to SVM, both kNN and naive Bayes are very simple
and well understood. SVM is however, more appealing theoretically and in
practice, its strength is its power to adress non-linear classification taskw.
Unfortunately, most of the tasks examined here were not like that. The sim-
plest SVM based on a linear kernel and a large error ǫ were found to be
sufficient.

We also observed that results highly depend of the adopted methodology.
We have focused here on simple binary classification tasks. Regards kNN, the
optimal number k of nearest neighbors is interestingly close to the ones used
in other comparative studies carried out on different problems.

10 Fabrice Colas and Pavel Brazdil

As our primary objective is to arrive at general conclusions, transferable
from one domain to another, we need to validate our results on other doc-
ument classification tasks. For this purpose, new experiments are actually
being carried out. Moreover, if we are interested to recommend a classifier
with suitable parameter settings, we should have a good way of characteriz-
ing the given documents and develop a good meta-learning strategy.

Acknowledgements. The first author wishes to thank P. Brazdil of the LIACC-NIAAD, and
also A.-M. Kempf and F. Poulet of the ESIEA Recherche Institute, for having him introduced
to his research. We wish to express our gratitude to K. R. Patil and C. Soares for their relecture
and to all colleagues from LIACC-NIAAD, University of Porto for their encouragement and help.
Finally, the Portuguese Pluri-annual support provided by FCT is gratefully acknowledged.

References

1. W. Daelemans, V. Hoste, F. D. Meulder, and B. Naudts. Combined optimization
of feature selection and algorithm parameters in machine learning of language.
In Proceedings of the European Conference of Machine Learning, pages 84–95,
2003.

2. S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algo-
rithms and representations for text categorization. In Proceedings of the 7th
International Conference on Information and Knowledge Management, pages
148–155, 1998.

3. J. Fürnkranz. Pairwise classification as an ensemble technique. In Proceedings
of the 13th European Conference on Machine Learning, pages 97–110, 2002.

4. T. Joachims. Making large-scale support vector machine learning practical. In
Advances in Kernel Methods: Support Vector Machines. 1998.

5. A. McCallum and K. Nigam. A comparison of event models for naive bayes text
classification. AAAI-98 Workshop on Learning for Text Categorization, 1998.

6. A. K. McCallum. Bow: A toolkit for statistical language modeling, text retrieval,
classification and clustering. http://www.cs.cmu.edu/˜mccallum/bow, 1996.

7. T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
8. J. Platt. Sequential minimal optimization: A fast algorithm for training support

vector machines. Technical Report 98-14, Microsoft Research, 1998.
9. M. Rogati and Y. Yang. High-performing feature selection for text classifica-

tion. In Proceedings of the 11th International Conference on Information and
Knowledge Management, pages 659–661, 2002.

10. Y. Yang. An evaluation of statistical approaches to text categorization. Infor-
mation Retrieval, pages 69–90, 1999.

11. Y. Yang. A scalability analysis of classifiers in text categorization. In Pro-
ceedings 26th ACM International Conference on Research and Development in
Information Retrieval, 2003.

12. Y. Yang and X. Liu. A re-examination of text categorization methods. In Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 42–49, 1999.

13. Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In Proceedings of the 14th International Conference on Machine
Learning, pages 412–420, 1997.

14. T. Zhang and F. J. Oles. Text categorization based on regularized linear clas-
sification methods. Information Retrieval, pages 5–31, 2001.

