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Abstract. This article introduces an approach to anomaly intrusion detection 
based on a combination of supervised and unsupervised machine learning 
algorithms. The main objective of this work is an effective modeling of the 
TCP/IP network traffic of an organization that allows the detection of 
anomalies with an efficient percentage of false positives for a production 
environment. The architecture proposed uses a hierarchy of Self-Organizing 
Maps for traffic modeling combined with Learning Vector Quantization 
techniques to ultimately classify network packets. The architecture is 
developed using the known SNORT intrusion detection system to preprocess 
network traffic. In comparison to other techniques, results obtained in this 
work show that acceptable levels of compromise between attack detection and 
false positive rates can be achieved. 

1 Introduction 

Nowadays, Information Technology (IT) constitutes a necessity in most 
organizations. Actually, companies of all sizes have their vital infrastructure based 
on IT for all their activities. This strong dependence has its risks, e.g. an interruption 
of the IT services can cause severe problems, endangering the company's assets and 
image or even worse, its clients as well [1]. 

The stability of an IT platform may be affected in several ways. The main 
sources of instability are the following: problems related to hardware; application 
problems; inadequate personal training and Information Security [2]. 

In the last years we have seen a steep rise in the importance of the Information 
Security as a main issue for companies and consequently, the amount of resources 
invested in technological solutions to this problem has increased accordingly. Table 
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1, taken from CERT [3], shows the increasing risks associated to Information 
Security since 1990. 

Table 1. Number of security incidents reported to CERT annually. 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
#Incidents 252 406 773 1,334 2,340 2,412 2,573 2,134 3,734 9,859 

           
Year 2000 2001 2002 2003 2004 

#Incidents 21,756 52,658 82,094 137,529 204,625 
 
The growth showed in security incidents makes the development of efficient 

techniques for intrusion detection a necessity. Mainly, there are two ways to 
approach the development of an Intrusion Detection System (IDS): Misuse Detection 
(MD) and Anomaly Detection (AD) [4]. 

Techniques based on Misuse Detection work with patterns, usually called 
Signatures, which are configured to match attacks based on some known system 
vulnerability. Most IDS available today correspond to the MD type, since they are 
easier to implement. However, MD has some important drawbacks that affect its 
effectiveness: first, they are somewhat rigid, only able to detect those attacks for 
which a signature is available. Secondly, a signature database has to be available and 
maintained regularly and manually since signatures can only be created once a type 
of attack has been detected and therefore has compromised several systems already. 
Finally, an intruder with sufficient knowledge of signatures may modified the attacks 
slightly to avoid known signatures, cheating the IDS based on them.  

The Anomaly Detection approach uses Machine Learning (ML) algorithms [5] to 
model normal activity in an organization. In this way it may detect deviations that 
can be considered abnormal or suspicious. Most of the drawbacks attributed to MD 
systems can be overcome by the use of an anomaly detection IDS, which may be 
able to adapt dynamically and automatically to the relevant characteristics of an 
organization's activities. In this way, it would not be necessary to know the attacks 
beforehand to detect them, improving the response time to a security attack. 
Consequently, the majority of the recent research in the Intrusion Detection area is 
focused in this direction as can be seen in [6,7,8]. 

One of the main issues with AD systems is a high percentage of false positive 
detections (Normal cases classified as Attacks). This is a very important issue to 
resolve for practical purposes. In a typical system the percentage of normal traffic is 
considerably larger than abnormal traffic, therefore, an IDS with a high percentage 
of false positives could potentially generate an alert file with most of its records due 
to false positives instead of real anomalies. 

Several methods that use ML techniques such as Support Vector Machines 
(SVM) or K-Nearest Neighbor (KNN) to build an AD system. They have shown a 
high rate of detection but also a high percentage of false positives as well, making 
them very difficult to implement in a real system [8]. Recently, some other works 
have made use of Self Organizing Maps (SOM) [9] to address the issue of false 
positives. They show a comparable detection rate with a significant decrease in the 
number of false positive detections [10, 11]. In these works the SOMs are trained 
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using information at packet and connection levels obtained with the IDS called Bro 
[12]. Although the results are positive, the percentage of false positives is still large 
to use such a detection system in a real situation. There may be a better way to 
exploit the information acquired by the SOMs to classify the incoming traffic. 

In this work a new architecture aiming to solve the AD problem is presented. It is 
based on a hierarchy of SOMs combined with LVQ [9] to reduce the percentage of 
false positives. Only packet level information is used to analyze its contribution in 
the detection process. The system is implemented using the IDS Snort [13]. 

1.1 Self Organizing Maps 

A SOM [9] is a type of neural network with a competitive unsupervised learning 
algorithm that performs a transformation of the input space. In general, it consists of 
a 2D dimensional map of neuron-like units. Each unit has an n-by-1 weight vector mi 
associated, with n the dimension of the input space. That structure also determines a 
neighborhood relationship between the units. The basic SOM has a fix structure and 
number of units. The number of units determines the granularity of the 
transformation affecting the overall sensitivity and generalization ability of the map. 

During the iterative training process, the unit weights will be adjusted to find 
common features, correlations and categories within the input data. Because of this, 
it is usually said that the neurons self organize themselves. Actually, the map tends 
to approximate the probability density of the input data. Weight vectors tend to zones 
where there is more input data and few units will cover zones of the input space 
where there is less information. 

During a training step an input vector x is randomly chosen and the unit weight 
vector closer to x is found. That defines a winner unit c, such that 

 
          (1) 
 

where the symbol ||.|| refers to a norm, usually the Euclidean. The weight vectors of 
the unit c and its neighboring units are adjusted to get closer to the input data vector. 
A common update rule is given by 

    
 (2) 

 
with k denoting the training step, x(k) is the input vector chosen from the input data, 
Nc(k) is the neighborhood set of unit c and α(k) is the learning rate at step k. The 
learning rate α(k) goes between 0 and 1 and decreases with k. Training evolves in 
two phases. During the first phase “big” values of α are used (from 0.3 to 0.99) 
while the second phase sees smaller values of α (below 0.1). Nc(k) is usually fixed. 
Bigger neighborhoods are sometimes used in the first training phase. 

1.2 Learning Vector Quantization 

Learning Vector Quantization (LVQ) may also be considered a type of neural 
network like the SOM architecture [9]. An LVQ network has a set of units and 
weight vectors mi associated to them. There are several training algorithms for LVQ. 
The algorithm used in this paper, LVQ1, is a supervised learning algorithm for 

)()),(()()()1( kNikmxkkmkm ciii ∈−+=+ α

ii
mxc −= minarg



4 Alberto Carrascal, Jorge Couchet, Enrique Ferreira and Daniel Manrique 
 

classification, i.e. each input vector has a class assigned to them that the network 
would like to learn. Initially, each unit is assigned to a class. At step k, given a vector 
x randomly chosen from the input data, we find the weight vector closer to it mc, with 
c given by (1). The vector mc is updated in the following way: 

 
(3) 

 
 

where α(k), the learning rate, is bound between 0 and 1 and can be constant or 
decrease monotonically with each time step. 

1.3 Fundamentals of TCP/IP 

Transmission Control Protocol (TCP) and Internet Protocol (IP) refers to the 
most widely used protocols to send and receive data through a network system. 
Because they work together at different levels of the system (transport and network 
layers respectively), they are usually named together as TCP/IP. 

TCP/IP specifies how to establish and close a connection between processes in 
different parts of the network and how to send and receive messages between them. 
A TCP entity accepts messages from a process and breaks them up in pieces up to 
64K bytes to send as datagrams by the corresponding IP entity. It is up to TCP to 
guarantee that all datagrams are received and the original message reassembled 
correctly. TCP datagrams have header and data sections. The minimum TCP header 
is 20 bytes long. It mainly contains source and destination addresses, packet 
sequence number for reassembly, several flags for connection purposes (URG, ACK, 
EOM, RST, SYN and FIN), a header checksum, some optional parameters and its 
own length. 

An IP entity takes TCP datagrams, add its own IP header to generate what is 
called network packets and sends them to its destination. The IP header, which is 
also 20 bytes minimum, contains source and destination addresses, header and total 
length, protocol, type of service, flags, checksum and other attributes. In particular, 
type of service (1 byte) allows the user to select the quality of service it wants, from 
speed for voice connections to reliability for file transfer uses. 

This is a very brief overview of TCP/IP, interested readers should refer to [14] 
for a complete explanation of computer networks and protocols. In this paper the 
information contained in the TCP and IP headers of the network packets is used to 
detect anomalies in network traffic. 

2 Anomaly Detection based on SOM/LVQ 

The three-layer architecture proposed is shown in Figure 1. The input to the 
classifier proposed is a vector comprising the main attributes of a window of 
predefined length of network packets. The output gives the class to which the input is 
classified: Normal or Attack. 

The first layer examines the variation of each attribute over the time window 
separately. The second layer correlates the information from the first layer between 
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attributes and makes a three-class decision: Normal, Attack or Indefinite. The class 
Indefinite introduced refers to the vectors that are close to the Normal class but have 
some Attack elements. The third layer decides whether the vectors in class Indefinite 
should be in Normal or Attack using a larger SOM network. 

Fig. 1. Main architecture proposed. 

2.1 First Level - Feature Clustering 

The first level is composed of eleven SOMs, one per attribute selected to 
characterize TCP traffic. Each SOM takes an input vector of dimension twenty, 
given by a time window of length twenty of the selected attribute as shown in Figure 
2. The goal at this level is to identify the main features of each attribute to obtain a 
model of the traffic analyzed. Once these SOMs are trained, six units per SOM are 
selected to reduce the dimensionality of the information to be passed to the second 
layer. The criteria used to select which units to select are two: the use of a Potential 
Function [10], or the selection of three units associated to normal traffic and three 
units associated to attack traffic. 

2.2 Second Level - Aggregation and Classification 

The second level of the architecture, shown in Figure 3, consists in a 6-by-6 
SOM and a set of LVQs, one per SOM unit. The input vector to this SOM is 
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composed of the distances of the input vector to the first layer, to all the units 
selected in the first level SOMs. Therefore, the dimension of the input vector to the 
second level is 6 times 11. The objective of this SOM is to capture the correlations 
between the features found by the SOMs of the first level, in order to make a better 
characterization of the traffic being studied. 

 

Fig. 2. Attributes extracted and information flow at the first level. 

Once the SOM is trained, each LVQ associated to each unit is tuned in a 
supervised manner using the subset of inputs to the SOM that makes the unit 
associated to the LVQ the winner in the SOM sense. The label used to train the 
LVQs for each input is defined as: 

 
          (4)  
 

where the number is computed over the time window of the input vector. 
 It is possible to train the LVQ network in two ways: using the values of 

MyLabel as defined or discretizing the values of MyLabel in Normal, Attack and 
Indefinite, where: 0 < MyLabel(Indefinite) < Attack_threshold. In tests, the value of 
Attack_threshold  used was 30 %. In the last case, the system is making a 3-class 
decision at this level, leaving the final classification of the packets labeled in the 
Indefinite class to the next level. 
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Fig 3. Second level processing. 

2.3 Third Level - Indefinite Class Processing 

At this level the architecture proposed analyses those input windows that have a 
relatively low percentage of attack packets, i.e. lower than Attack_threshold. Each 
LVQ from the second layer is associated to a 10-by-10 SOM that is trained with the 
packets linked to the windows classified as Indefinite by that particular LVQ. A 
LVQ network is assigned to each SOM to make the final classification using as input 
the distances of each packet to all the units in the associated SOM. The overall 
processing is shown in Figure 4. 

Fig. 4. Third level processing. 

 

O1=<d11,..,d16,..,di1,..,di6,..,d111,..,d116> 

LVQi        <Normal>   <Attack>   <Indefinite>

MyLabel 

1 i 36

... ...

LVQi      <Normal>     <Attack> 

<Attr1-Samplej,..,Attri-Samplej,..,Attr11-Samplej> 

 <d1, d2, ..., di, ..., d100> 

           O O O O O O O O O 
        O O O O O O O O O 
      O O O O O O O O O 
    O O O O O O O O O 



8 Alberto Carrascal, Jorge Couchet, Enrique Ferreira and Daniel Manrique 
 

3 Experimental Results 

The main objective in this work is to find an acceptable compromise between the 
Detection Rate (DR) and False Positive Rate (FPR) defined by: 

AttacksofNumber  Total
Detected Attacks#    DR = ,   

 Normals ofNumber Total
Positives False of #  FPR =  

Data for experiments is taken from the DARPA 1998 Intrusion Detection 
Problem [15]. Two sets were built: the training set contains 1:514,848 records while 
the test set has 765,029 records. Results shown are computed over the test sets for 
networks trained using the training set. Training and test sets were generated from 
DARPA data using SNORT to extract the TCP/IP attributes selected. Only 
information at the packet level is used. The preprocessor developed works as a 
plugin to SNORT. It is also able to extract attributes at other levels (e.g. TCP 
connection) and protocols (e.g. UDP and ICMP). The implementation of SOM and 
LVQ is based on the package SOM_PAK [16]. Some modifications to this package 
were necessary to handle large data files as required for this application.  

The packet attributes used, shown in Figure 2, were selected by its relevance in 
the TCP/IP protocol and hence its importance to model network traffic. The 
attributes that may have several values in the same packet, such as the TCP flags, 
were coded to reduce the dimensionality of the problem. 

Tables 2, 3 and 4 summarize the results obtained with the most relevant 
experiments run on the architecture proposed. They use the following notation: 

Classification: Refers to the amount of classifications performed by the system. 
Correct: Represent the number of correct classifications per class made. 
Deviations: Show the number of incorrect classifications of each type made. 
The initials N, I and A are used for Normal, Indefinite and Attack respectively. In 

the case of deviations we use, for example, N-I to indicate the packets belonging to 
the Normal class but classified as Indefinite. 

It should be noted that, at the third level the Indefinite class is sorted between 
Normal and Attack. At this level the SOM is not trained with a time window but with 
each of the twenty individual packets that composed each window. Due to this, each 
pattern at the second level is transformed into twenty patterns at the third level. 

Table 2. Use of Potential function and My Label for training. 

 Classification Correct Deviations 
 N I A N I A N-I N-A I-N I-A A-N A-I 

Level 2 396674 132355 236000 227250 7657 208396 41845 14382 28584 13222 140840 82853 
Level 3 522269 0 71111 481170 0 50926 0 20185 0 0 41099 0 

Table 3. Use of Potential function and My Label discretized for training. 

 Classification Correct Deviations 
 N I A N I A N-I N-A I-N I-A A-N A-I 

Level 2 648290 66580 50159 239197 11238 33256 36754 7526 28848 9377 380245 18588 
Level 3 859386 0 429934 701701 0 112103 0 317831 0 0 157685 0 
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Table 4. Use of 3 centers associated to Normal and 3 to Attack, and My Label discretized. 

 Classification Correct Deviations 
 N I A N I A N-I N-A I-N I-A A-N A-I 

Level 2 413132 44929 306968 272431 3922 301335 6591 4455 44363 1178 96338 34416 
Level 3 637367 0 261213 246029 0 233798 0 27415 0 0 391338 0 
 

It can be observed that the best results are achieved when the selection of units to 
represent level one information is based on the classes to discriminate, in this case 
three for each class. The performance of this option is then: 

72%   
3441696338301335

233798/20301335  DR =
++

+
=   %2

44556591272431
20/274154455  FPR =

++
+

=  

With respect to the results achieved in [10], the value of FPR is improved by 
73% while DR decreased by only 19 %. In general, Table 5 resumes some results 
obtained in previous works where ML techniques were used for AD [8, 10]. 

Table 5.  Results of other works using AD methods 

Method Detection Rate False Positive Rate 
Clustering 93% 10% 
K-NN 91% 8% 
SVM 98% 10% 
SOM Hierarchy 89% 7.6% 

 
It can be noted that the DR achieved here is below the ones obtained in the works 

presented in Table 5. A better inspection of the experiments also show that: 
• An important percentage of the attacks presented in the data sets used 

corresponds to the user to root type. This type of attacks are quite difficult to 
model using TCP/IP protocol characteristics only. 

• The prototype implemented is classifying TCP/IP packets up to now. Since a 
connection usually consists of hundreds of packets, it is expected that the DR 
may improve once the connection information is added to the system. 

4 Conclusions 

The AD method developed in this work introduces an efficient mechanism to 
reduce the false positives getting closer to generate sufficiently reliable alerts to be 
able to use an AD based IDS in a production environment. 

It can also be observed that packet information is an important component in the 
detection of attacks. This work serves as a guide as to which packet information to 
use to model traffic for this purpose. However, the need to use connection level 
information is pointed out as well to reach an efficient DR with low FPR.  

This investigation is based on a priori knowledge of traffic packets combined 
with ML techniques to set up the model and pattern recognition techniques for traffic 
classification. However, many steps are developed in an empirical manner which 
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limits the conclusions that can be made. Therefore, there is the need to develop 
formal ways to obtain bounds on rates and efficiency of the AD methods. 

From the results of this work we are following this research in two directions. 
First, we are exploring more efficient ML techniques for the intrusion detection 
problem. Besides, we are developing a theoretical framework to obtain a deeper 
understanding of the problem which may allow us to get robust models that are 
feasible to implement in the real world. 
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