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Abstract. A key problem in environmental monitoring is the spatial 
interpolation. The main current approach in spatial interpolation is 
geostatistical. Geostatistics is neither the only nor the best spatial interpolation 
method. Actually there is no “best” method, universally valid. Choosing a 
particular method implies to make assumptions. The understanding of initial 
assumption, of the methods used, and the correct interpretation of the 
interpolation results are key elements of the spatial interpolation process. A 
powerful alternative to geostatistics in spatial interpolation is the use of the 
soft computing methods. They offer the potential for a more flexible, less 
assumption dependent approach. Artificial Neural Networks are well suited for 
this kind of problems, due to their ability to handle non-linear, noisy, and 
inconsistent data. The present paper intends to prove the advantage of using 
Radial Basis Functions (RBF) instead of geostatistics in spatial interpolations, 
based on a detailed analyze and modeling of the SIC2004 (Spatial 
Interpolation Comparison) dataset. 

1 Introduction 

A key problem in many fields (including environmental monitoring) is spatial 
interpolation (sometimes referred as “surface modeling”). It consists of estimating 
the values of z variable at any location, based on set of (xi, yi, zi) samples, which 
usually have a non-uniform distribution. Input data represent z values samples at 
given (x, y) locations, usually called control points. The problem occurs in geology, 
geophysics, meteorology, environmental sciences, agriculture, engineering, 
economy, medicine, social sciences, etc. [9], [19], [22], [23].  
Two classes of methods are generally used in spatial interpolations: (1) triangulation, 
and (2) gridding. Triangulation requires a tessellation by an optimal network of 
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triangles, with control points at all apices. The triangles set represents an 
approximation of the surface. A regular array of data is generated by gridding, z 
parameter being estimated on the grid nodes, based on a set of control points. 
Gridding offers at least two major advantages over triangulation: (1) it is not 
necessary to sample the extreme points of the surface to be estimated, and (2) 
subsequent operations on grid data are facilitated. Usually gridding is not an aim by 
itself; it is a preliminary step for further processing. 

2 Geostatistics in Spatial Interpolations 
 
The main current approach in spatial interpolation nowadays is geostatistical. 
Geostatistics was originated by the application of statistical methods to the study of 
geological phenomenon. A complex theory was later developed, being applied not 
only to earth sciences, but also to many other areas: natural, economic, social 
phenomenon, among others. Geostatistics use regionalized variables, which values 
are not random; neither are exactly describable by a function. A regionalized variable 
may consist of a drift component and residual. A third error component has to be 
considered.   
Geostatistical interpolation estimates values by kriging. Kriging is an exact 
interpolator which uses geostatistical techniques to calculate the autocorrelation 
between data points, and produce a minimum variance unbiased estimate, taking in 
consideration the spatial configuration of the underlying phenomenon.  
Geostatistics is neither the only nor the best spatial interpolation method. Actually 
there is no “best” method, universally valid [3], [12], [19], [24]. The choice of 
interpolation method may vary, mainly according to the type and nature of data, and 
the aim of modeling. Choosing of a particular method implies to make assumptions. 
The understanding of initial assumptions, of the used methods, and the correct 
interpretation of the interpolation results are key elements of the spatial interpolation 
process. Comparison between methods can be made based on criteria as goodness of 
representation (errors in honoring control points), dependency on data distribution, 
number of control points that can be handled, ease of implementation, speed of 
computation. 

3 Soft Computing Methods in Spatial Interpolations 

3.1 Soft Computing Methods 

Soft computing methods offer the potential of a more flexible, less assumption 
dependent approach in spatial interpolations. Even if their validness as spatial 
interpolation methods was proved by many authors, their use in practice is still 
limited [2], [5], [8], [10], [20], [25]. Soft Computing differs from conventional (hard) 
computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, 
partial truth, and approximation [11].  
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3.2 Artificial Neural Networks in Spatial Interpolations 

Artificial Neural Networks (ANNs) are information processors, trained to represent 
the implicit relationship and processes that are inherent within a data set [1], [6], [7], 
[15], [16]. Sometimes spatial relationship between inputs has to be found (like in 
geology, for instance). Other areas require the identification of both spatial and 
temporal relationships (meteorology, environmental sciences, etc.).  
The original inspiration for ANN was biological; so much of the terminology of 
ANN reflects this biological heritage. The basic structure of an ANN consists of a 
number of simple processing units, also known as neurons (nodes). The basic role of 
each node is to take the weighted sum of the inputs and process this through an 
activation function. A connection joins the output of one node to the input of 
another. Each link has a weight, which represents the strength of the connection. The 
values of all the weights in a network represent the current state of learning of the 
network, in a distributed manner. These weights are altered during the training 
process to ensure that the inputs produce an output that is close to the desired value.  
A learning function or algorithm is used to adjust the weights of the network during 
the training phase. Training can be supervised or unsupervised. Hybrid training 
techniques and reinforcement learning are also used. During the learning period both 
the input and output vector are supplied to the network. The network then generates 
an error signal based on the difference between the actual output and the target 
vector. The error is used to adjust the weights of the network adequately. Following 
training, input data are then passed through the trained network in its non-training 
(recall) mode, where they are transformed within the hidden layers to provide the 
modeling output values. 
ANNs have emerged as an option for spatial data analysis approximately a decade 
ago. Training data are the observation samples used to derive the predictive model. 
The independent (predictor) variables are known as the input variables, and the 
dependent variables (response) are known as the output variables. In supervised 
learning, an ANN makes use of the input variables and their corresponding output 
variables to learn the relationship between them. Once found, the trained ANN is 
then used to predict values for the output variables given some new input data set. 
For unsupervised learning, an ANN will only make use of the input variables and 
attempts to arrange them based on their properties, hopefully in a way that is 
meaningful to the analyst.  

3.3 Radial Basis Functions in Spatial Interpolations 

Radial Basis Functions (RBF) have various applications in practice, due to their 
simplicity, generality and fast learning stage [11], [13], [14]. RBF are unidirectional 
ANNs, of hybrid learning (incorporating both supervised and unsupervised learning).  
Usually RBF have a three layers’ architecture: (1) input layer – sends the input 
information to the hidden layer, (2) hidden layer – composed by non-linear neurons 
(usually gaussian), and (3) output layer – composed by linear neurons. 
The hidden layer’s neurons work based on the distance between the input vector and 
the synaptic vector of each neurons (centroid). Therefore they offer a localized 
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response, which will have a significant intensity only if the input vector will be 
located near the centroid. Thus, a radial basis neuron acts as a detector that produces 
1 whenever the input is identical to its weight vector, meaning that the input pattern 
was recognized. The output layer’s neurons only compute the weighted sum of the 
output of the hidden layer. 
The radial functions are usually symmetric, but asymmetric (ellipsoidal) functions 
may also be used. They will then have preferential search directions of the control 
points used in the interpolation, for a specific grid node. The gaussian functions are 
not the only type of radial functions that can be used. The type of the radial functions 
and their parameters are chosen based on the specific problem to solve and the 
characteristics of the input data. 
Some of the reasons to use RBF in spatial interpolations are the following: 
• depending on the radial functions type, the RBF model may offer a localized 

response (therefore is able to identify the local characteristics of the surface to be 
modeled), or a global response (identifying this way the global characteristics of 
the surface to be modeled), 

• RBF are exact interpolators, honoring the control points when the point coincides 
with the grid node being interpolated,  

• smoothing factors can be employed in order to reduces the effects of small-scale 
variability between neighboring data points. 

4 RBF Versus Geostatistics 
 
The progress made in spatial interpolation is usually presented only in journals or 
scientific meetings dedicated to statistics, mining, environmental etc. Users who 
have a different technical background often do not have in-depth knowledge of 
spatial interpolation methods. That is why the use of new techniques is often 
discouraging for newcomers. When spatial interpolation methods are integrated in 
software tools, they are often implemented in such a rigid way that users have no real 
choice in selecting the best possible method, according to the true nature of data to 
process, and the aim of modeling. Moreover, many required parameters are fixed, 
without any possible way to modify them.  
The following is a comparison between RBF and geostatistics, at theoretical, 
correctness and efficiency levels, with special emphasis on method’s usability.   

4.1 Common Characteristics 

The basis kernel of RBF is somehow analogous to variogram in geostatistics. The 
basis kernel functions define the optimal set of weights to apply to the data points 
when interpolating a grid node.  
Both RBF and geostatistics (kriging) can be used as exact interpolators or smoothing 
interpolators. RBF will act like a smoothing interpolator when a smoothing factor 
will be incorporated to the basis function. Kriging will be a smoothing interpolator 
when an error nugget effect will be specified. 
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Both RBF and geostatistics are powerful and flexible methods, and are useful for 
gridding almost any type of data set. They generate quite similar results for most data 
sets. Computing time increases significantly when using large data sets. Precision of 
estimation is quite similar, excepting for small data sets, when a proper variographic 
study is difficult or impossible to perform, and therefore RBF give better results. 

4.2 Problems with RBF 

RBF architecture is actually imposed by the input data set itself. It is natural to use a 
number of RBF neurons equal to the number of the available control points, and to 
center the basis functions on the control point’s locations. So a challenging problem 
when using ANN, the choose of the right architecture, is implicitly solved when 
using RBF in spatial interpolations. 
Another problem to solve is the adequate choose of the type of the radial function to 
be used, as gaussian function is not always the best choice in spatial interpolation. 
Some alternative function may be multiquadric, multilog, inverse multiquadric, or 
natural cubic spline, among others. All these options where tested for real data sets 
(as the section 5 shows). 
Once the radial function was chosen, setting the working parameters is by far less 
challenging then using geostatistics. Basically only smoothing factors have to be 
specified.    

4.3 Problems with Geostatistics 

Before actually performing the kriging, a variographic study has to be done. This 
may be quite a challenge, especially for inexperienced users. Based on the 
experimental variogram (obtained from the input data set), appropriate variogram 
model and adequate parameters have to be chosen. Moreover, many times different 
theoretical models have to be mixed in a complex all-in-one model.  
The variogram is a measure of how quickly things change on the average. The 
underlying principle is that, on the average, two observations closer together are 
more similar than two observations farther apart. Because the underlying processes 
of the data often have preferred orientations, values may change more quickly in one 
direction than another. As such, the variogram is a function of direction. The 
variogram is a three dimensional function. There are two independent variables (the 
direction q, the separation distance h) and one dependent variable (the variogram 
value g(q,h)). The experimental variogram is a curve that displays the groups of 
variogram pairs on a plot of separation distance versus the estimated variogram. 
Variogram modeling is not an easy or straightforward task. The development of an 
appropriate variogram model for a data set requires the understanding and 
application of advanced statistical concepts and tools. In addition, the development 
of an appropriate variogram model for a data set requires knowledge of the tricks, 
traps, pitfalls, and approximations inherent in fitting a theoretical model to real world 
data. An inappropriate variogram model can lead to completely false gridding 
results.  
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The development of an appropriate variogram model requires numerous decisions. 
These decisions can only be properly addressed with an intimate knowledge of the 
data at hand, and a competent understanding of the data genesis (i.e. the underlying 
processes from which the data are drawn).  
The variogram model mathematically specifies the spatial variability of the data set 
and the resulting grid file. The interpolation weights, which are applied to data points 
during the grid node calculations, are direct functions of the variogram model. When 
the variogram is specified for kriging, the following parameters have to be set: sill, 
range, and nugget, but also the anisotropy information. 

5 Study Case: SIC 2004 
 
The Radioactivity Environmental Monitoring (REM) Group of the Institute for 
Environment and Sustainability at the Joint Research Center (JRC) of the European 
Commission has organized Spatial Interpolation Comparison Exercises (SIC97 and 
SIC2004). Participants were invited to estimate values of a variable observed at N 
locations with the help of a subset of n observed measurements. Once the 
participants have made their estimates, REM disclosed the true values observed at 
the N-n locations, so that the participants may assess the accuracy of their approach. 
The main objective of SIC97 and SIC2004 was to present the diversity of approaches 
taken by participants facing a problem that is identical for everyone, and to present 
the latest developments in the field of spatial statistics [3], [4], [17]. They offered an 
excellent occasion to test methods, compare results, and further orient research in the 
field of spatial interpolations.   
The data used in SIC2004 were daily mean values of gamma dose rates measured in 
South West Germany, in an area of approximately 400 x 700 km, which includes 
1008 monitoring stations. Participants were invited to estimate values of gamma 
dose rates variable at 808 locations, with the help of a subset of 200 observed 
measurements. Later on, the true 808 values where published. Additionally, 10 
smaller data sets (of 200 observed measurements each one) where published, in order 
to allow the calibration of the methods and parameters [4]. The location of the 200 
input data and the output 808 estimations are shown in fig. 1. All available SIC 2004 
data sets where processed by the authors of the present paper, using various gridding 
methods [18], [21]. Only the results obtained by RBF and geostatistics will be shown 
and discussed here. 
The interpolation results where compared with the real 808 values. The following 
statistics where used: Mean Error - ME, Mean Absolute Error - MAE, Percentage 
Mean Error - PMAE, Minimum Error - MIN, Maximum Error - MAX, Percentage 
Minimum Error - PMIN, Percentage Maximum Error - PMAX, Pearson’s 
Coefficient of Correlation between the estimated and true values - PEAR.  
The modeling results obtained by RBF are presented in a 3D view in fig. 1. The 
modeling results obtained by kriging are presented in a 3D view in fig. 2. Examining 
the two drawings, one could think that kriging brings more details, but the small 
differences are due, in fact, only to a different level of smoothness.  
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Fig. 1. Modeling results obtained by RBF 

 
Fig. 2. Modeling results obtained by kriging 
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Table 1 shows the values of the above-mentioned indicators for RBF and kriging 
(KRG). RBF and kriging have got similar results, with a slight advantage for RBF 
over kriging, considering the most significant indicators (MAE, PMAE, PEAR).  

Table 1. Statistics of RBF and kriging interpolation results 

 ME MAE PMAE MIN MAX PMIN PMAX PEAR 
RBF -1,41 9,15 9,20 -61,14 44,53 0,00 53,91 0,78 
KRG -1,31 9,28 9,34 -58,39 47,28 0,06 55,82 0,77 
 
Various type of RBF where tested. Table 2 compares the results of applying the 
following functions: multiquadric - MQ, multilog - MLOG, inverse multiquadric - 
INVMQ, natural cubic spline - SPLINE. 

Table 2. Statistics of interpolation results using various RBF types 

 ME MAE PMAE MIN MAX PMIN PMAX PEAR 
MQ -1,41 9,15 9,20 -61,14 44,53 0,00 53,91 0,78 
MLOG -1,19 9,82 9,94 -71,82 34,15 0,00 45,30 0,77 
INVMQ -12,18 199,40 190,78 -2017 1446 0,42 2004 -0,01 
SPLINE -2,94 53,23 54,59 -635,54 704,15 0,03 706,15 0,17 
 
MQ and MLOG functions give the best results, but INVMQ and SPLINE should not 
be used in this particular case. The importance of choosing the right type of function 
is now obvious. Multiquadric-type radial functions offer a more global response than 
the gaussian-like type, so their use is particularly justified for rather sparse data, like 
SIC2004 data sets. 
The results and the execution time are quite similar for RBF and kriging, but the easy 
of use of RBF is overwhelming, comparing to the use of kriging. When using RBF, 
user has to choose only the radial functions type and the smoothing parameter. When 
using kriging, a complex variogram modeling has to be done. 

6 Conclusions 

As we saw, spatial interpolation is a key problem in many fields, including 
environmental monitoring. Even if the main current approach is geostatistical, it is 
neither the only nor the best spatial interpolation method. There is no “best” method, 
universally valid. Choosing a particular method implies to make assumptions. The 
understanding of initial assumption, of the methods used, and the correct 
interpretation of the interpolation results are key elements of the spatial interpolation 
process. 
A powerful alternative to geostatistics in spatial interpolation is the use of the soft 
computing methods. They offer the potential for a more flexible, less assumption 
dependent approach. ANNs are well suited for this kind of problems, due to their 
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ability to handle non-linear, noisy, and inconsistent data. Particularly useful prove to 
be RBF.  
Both RBF and geostatistics are powerful and flexible methods, and are useful for 
gridding almost any type of data set. They generate quite similar results for most data 
sets. Precision of estimation is quite similar, excepting for small data sets, when a 
proper variographic study is difficult or impossible to perform, and RBF give better 
results. RBF and geostatistics (kriging) can be used both as exact interpolators and 
smoothing interpolators. 
Using RBF is easier than using geostatistics, even for inexperienced users. As 
section 4 shows, the geostatistics problems in spatial interpolations are far more 
complicated than the RBF problems. The development of an appropriate variogram 
model for a data set requires the understanding and application of advanced 
statistical concepts and tools. In addition, the development of an appropriate 
variogram model for a data set requires knowledge of the tricks, traps, pitfalls, and 
approximations inherent in fitting a theoretical model to real world data. An 
inappropriate variogram model can lead to completely false gridding results. 
Variogram modeling is especially difficult for relatively small data sets. 
The above-mentioned conclusions where proved based on a detailed analyze and 
modeling of the SIC2004 (Spatial Interpolation Comparison) dataset, as the 6th 
section shows. That is way we strongly recommend the use of RBF in spatial 
interpolations. 
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