

Ontology Support for Translating
Negotiation Primitives

Maricela Bravo1, Máximo López1, Azucena Montes1, René Santaolaya1,
Raúl Pinto1, and Joaquín Pérez1

1Centro Nacional de Investigación y Desarrollo Tecnológico
Interior Internado Palmira S/N, Cuernavaca, Mor. 62490, México

{mari_clau, maximo, amr, rene, rpinto, jperezo}@cenidet.edu.mx,
WWW home page: http://www.cenidet.edu.mx

Abstract. In this paper we present an ontology solution to solve the problem
of language heterogeneity among negotiating agents during the exchange of
messages over Internet. Traditional negotiation systems have been
implemented using different syntax and semantics. Our proposal offers a novel
solution incorporating an ontology, which serves as a shared vocabulary of
negotiation messages; and a translation module that is executed on the
occurrence of a misunderstanding. We implemented a service oriented
architecture for executing negotiations and conducted experiments
incorporating different negotiation messages. The results of the tests show that
the proposed solution improves the interoperability between heterogeneous
negotiation agents.

1 Introduction

Negotiation plays a fundamental role in electronic commerce activities, allowing
participants to interact and take decisions for mutual benefit. Recently there has been
a growing interest in conducting negotiations over Internet, and constructing large-
scale agent communities based on emergent Web service architectures. The
challenge of integrating and deploying negotiation agents in open and dynamic
environments is to achieve effective communications.

Traditional negotiation systems have been implemented in multi-agent systems
(MAS), where agents exchange messages using an agent communication language
(ACL) based on a specification like KQML [1] or FIPA [2]. These specifications
provide a set of negotiation primitives based on speech act theory, and provide
semantics for these primitives usage during communication. In order to facilitate
effective communication, agents must be designed to be compliant with one of these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Maricela Bravo, Máximo López, Azucena Montes, René Santaolaya, Raúl Pinto and
Joaquín Pérez

ACL specifications. But the implementations of these negotiation primitives in real
systems, differs in syntax and usage, because is based on proprietary program code
produced by developers.

The problem of communication between negotiation agents is that even if two

agents are following the same ACL, they may still suffer misunderstandings due to
the different syntax and semantics of their vocabularies. In table 1, we can see that
some of the reported communication languages in negotiation systems are based on
FIPA, and some use a different ACL not compliant with any particular specification.

Table 1. Negotiation primitives used in different systems

Authors ACL Negotiation Primitives

Jin Baek Kim, Arie

Segev [7]

FIPA

Initial_offer

RFQ

Accept

Reject

Offer

Counter-offer

Stanley Y. W. Su,

Chunbo Huang,

Joachim Hammer

[8]

FIPA CFP

Propose

Accept

Terminate

Reject

Acknowledge

Modify

Withdraw

Anthony Chavez,

Pattie Maes [10]

Uses a predefined

set of methods, not

compliant with any

ACL specification.

accept-offer?(agent, from-agent, offer)

what-is-price?(agent, from-agent)

what-is-item?(agent, from-agent)

add-sell-agent

add-buy-agent

add-potential-customers(sell-agent, potential-customers)

add-potential-sellers(buy-agent, potential-sellers)

agent-terminated(marketplace, agent)

deal-made(marketplace, sell-agent, buy-agent, item,

price)

Sonia V. Rueda,

Alejandro J. García,

Guillermo R. Simari

[11]

Based on speech

act theory, not

compliant with any

ACL specification.

Requests_Add(s, h, p)

Authorize_Add(s, h, p)

Require(s, h, p)

Demand(s, h, p)

Accept(s, h, p)

Reject(s, h, p)

Unable(s, h, p)

Require-for(s, h, p, q)

Insist_for(s, h, p, q)

Demand_for(s, h, p, q)

Ontology Support for Translating Negotiation Primitives 3

Haifei Li, Chunbo

Huang and Stanley

Y.W Su [12]

Superset of FIPA

Call for proposal

Propose proposal

Reject proposal

Withdraw proposal

Accept proposal

Modify proposal

Acknowledge message

Terminate negotiation

Jürgen Müller [6] Based on speech

act theory, not

compliant with any

ACL specification

Initiators:

Propose, Arrange,

Request, Inform,

Query, Command,

Inspect

Reactors:

Answer,

Refine,

Modify,

Change, Bid,

Send, Reply,

Refuse,

Explain

Completers:

Confirm,

Promise,

Commit,

Accept,

Reject, Grant,

Agree.

To solve the communication problem between heterogeneous agents, we selected

a translation approach based on the implementation of a shared ontology. In this
ontology we explicitly describe and classify negotiation primitives in a machine
interpretable form. Negotiation agents should not be forced to commit to a specific
syntax. Instead, the ontology provides a shared and public vocabulary that the
translator module uses to help agents to communicate during negotiation processes.
We have implemented a negotiation system based on Web services technologies,
into which we have incorporated the translator module and the shared ontology. Our
approach acknowledges that agents may use different negotiating languages.

The rest of the document is organized as follows. In section 2, we present the
translator architecture. In section 3, we describe the design of the ontology. In
section 4, the general architecture of the system for executing negotiation processes
is presented. In section 5, we describe the results of experiments. Finally in section 6,
we present conclusions.

2 Architecture of the Translator

The translator acts as an interpreter of different negotiation agents. In figure 1, we
present the architectural elements involved in translation. This architecture consists
of the following elements: multiple negotiation agents, the message transport, the
translator module, and the shared ontology. Each negotiation agent in turn consists of
a local ACL, decision making strategies to determine the preferences, and the
negotiation protocol.

For example, suppose that agents A and B initiate a negotiation process, using
their own local ACL, sending messages over the message transport. If happens that
agent A misunderstands a message from agent B, it invokes the semantic translator
module sending the message parameters (sender, receiver, message). The translator
interprets the message based on the definitions of the sender agent and converts the
message into an interlingua. Then the translator converts the interlingua

4 Maricela Bravo, Máximo López, Azucena Montes, René Santaolaya, Raúl Pinto and
Joaquín Pérez

representation to the target ACL based on the receiver agent definitions. Finally
sends the message back to the invoking agent A and they continue with execution of
negotiation. The translator is invoked only in the occurrence of a misunderstanding,
assuring interoperability at run time.

Fig. 1. Translator architecture

3 Shared Ontology

The principal objective in designing the ontology was to serve as an interlingua
between agents during exchange of negotiation messages. According to Müller [6],
negotiation messages are divided into three groups: initiators, if they initiate a
negotiation, reactors, if they react on a given statement and completers, whether they
complete a negotiation. We selected this classification to allow the incorporation of
new negotiation primitives from the local agent ACL. Figure 2 shows the general
structure of our ontology.

Based on the concepts and negotiation primitives we built our ontology. To code
the ontology we decided to use OWL as the ontological language, because it is the
most recent development in standard ontology languages from the World Wide Web
Consortium (W3C)1. An OWL ontology consists of classes, properties and
individuals. We developed the ontology using Protégé [14, 15], an open platform for
ontology modeling and knowledge acquisition. Protégé has an OWL Plugin, which
can be used to edit OWL ontologies, to access description logic reasoners, and to
acquire instances of semantic markup.

1 http://www.w3.org

Negotiation agent A:

Semantic
Translator

Shared
Ontology

Negotiation agent B:

Local ACL Local ACL

Protocol

Strategy

Protocol

Strategy

Message Transport

Ontology Support for Translating Negotiation Primitives 5

Fig. 2. General structure of the negotiation ontology

4 Implementation of the Negotiation System

The general architecture for the execution of negotiation processes is illustrated in
figure 4. In this section we briefly describe the functionality and implementation
techniques for each component.

a. The matchmaker is a Java module which is continuously browsing buyer

registries and seller descriptions, searching for coincidences.
b. The negotiation process module is a BPEL4WS-based engine that controls the

execution of negotiation processes between multiple agents according to the
predefined protocols. BPEL4WS provides a language for the formal
specification of business processes and business interaction protocols. The
interaction with each partner occurs through Web service interfaces, and the
structure of the relationship at the interface level is encapsulated in what is
called a partner link.

c. Seller and buyer agents are software entities used by their respective owners to
program their preferences and negotiation strategies. For example, a seller
agent will be programmed to maximize his profit, establishing the lowest
acceptable price and the desired price for selling. In contrast, a buyer agent is
seeking to minimize his payment. On designing the negotiation agents, we
identified three core elements, strategies, the set of messages and the protocol
for executing the negotiation process. The requirements for these elements
were specified as follows:

Shared Ontology

Participants Language

Parameters Primitives

Initiators Reactors Completers

Decision Protocols

- Propose
- Arrange
- Request
- Initiate
- Start
- …

- Answer
- Send
- Reply
- Counteroffer
- Refuse
- …

- Confirm
- Accept
- Reject
- End
- Agree
- …

6 Maricela Bravo, Máximo López, Azucena Montes, René Santaolaya, Raúl Pinto and
Joaquín Pérez

• Strategies should be private to each agent, because they are

competing and they should not show their intentions.
• Messages should be generated privately.
• The negotiation protocol should be public or shared by all agents

participating, in order to have the same set of rules for interaction.
The negotiation protocol establishes the rules that agents have to
follow for interaction.

d. The translator module is invoked whenever the agent misunderstands a

negotiation message from another agent. The translator module was
implemented using Jena2, a framework for building Semantic Web
applications. It provides a programmatic environment for OWL, including a
rule-based inference engine.

Fig. 3. Architecture of the negotiation system

5 Experimentation

In this section we describe the methodological steps that we followed for the
execution of experiments.

a. Identify and describe negotiation agent’s characteristics
Table 2 shows the characteristics of agents A and B, specifying their language
definitions: names of primitives and a description.

2 http://jena.sourceforge.net

Negotiation

Process

Module

Translator

Module

Matchmaker Seller

Registry

Buyer

Registry

Seller

Agent

Buyer

Agent

Negotiation

Process

Descriptions

Shared

Ontology

Ontology Support for Translating Negotiation Primitives 7

Table 2. Characteristics of agents A and B

Agent A Language definitions

(CFP, “Initiate a negotiation process by calling for proposals”),
(Propose, “Issue a proposal or a counterproposal”),
(Accept, “Accept the terms specified in a proposal without further
modifications”),
(Terminate, “Unilaterally terminate the current negotiation process”),
(Reject, “Reject the current proposal with or without an attached
explanation”),
(Acknowledge, “Acknowledge the receipt of a message”),
(Modify, “Modify the proposal that was sent last”),
(Withdraw, “Withdraw the last proposal”)

Agent B Language definitions

(Initial_offer, “Send initial offer”),
(RFQ, “Send request for quote”),
(Accept, “Accept offer”),
(Reject, “Reject offer”),
(Offer, “Send offer”),
(Counter-offer, “Send counter offer”)
(Withdraw, “Withdraw the last proposal”)

b. Classify negotiation primitives in the ontology classes
For each negotiation primitive we need to analyze its semantics and usage.
According to this description we can identify to which class it belongs. Table 3
shows the classification of the primitives provided by agents A and B.

Table 3. Classification of negotiation primitives

Agent Starter Reactor Completer
A (Buyer) CFP Propose

Modify
Withdraw
Acknowledge

Accept
Reject
Terminate
NotUnderstood

B (Seller) RFQ Initial_Offer
Offer
Counter_Offer

Accept
Reject
NotUnderstood

c. Align primitives in a finite state machine
Alignment is necessary to verify and clarify the intended usage of negotiation
primitives.

8 Maricela Bravo, Máximo López, Azucena Montes, René Santaolaya, Raúl Pinto and
Joaquín Pérez

Fig. 4. Finite state machine

d. Identify and establish the relations between different primitives
Based on the classification of primitives and their allocation in the finite state
machine, we can identify the relations between negotiation primitives.

A B
CFP isSynonymOf RFQ
Propose isSynonymOf Offer
Propose isSynonymOf Inicial_Offer
Modify isSynonymOf Counter_Offer
Withdraw isSynonymOf Counter_Offer
Terminate isSimilarOf Reject

e. Publish and code primitives in the ontology
This step consists of populating the ontology with the primitive’s definitions and
relations.

f. Execute negotiation
When primitives have been published, the process of negotiation between these
agents can be started. We executed 15 negotiation tests with these agents. The results
of these experiments were registered in a log file. Table 4 shows the results.

Table 4. Experimental results

Test LastPrice MaxPay Iterations Quantity FinalPrice Result

1 $ 1,750.00 $ 1,000.00 12 1500 $ - Reject

2 $ 774.00 $ 1,760.00 3 887 $ 1,674.00 Accept

3 $ 1,788.00 $ 128.00 12 1660 $ - Reject

4 $ 1,058.00 $ 110.00 12 1270 $ - Reject

5 $ 761.00 $ 77.00 2 1475 $ - NotUnderstood

6 $ 621.00 $ 446.00 12 56 $ - Reject

7 $ 114.00 $ 704.00 7 8 $ 614.00 Accept

A B

A

A

A

CFP/RFQ

Offer/
Propose

Counter_Offer/

Modify

Accept

Reject

Ontology Support for Translating Negotiation Primitives 9

Test LastPrice MaxPay Iterations Quantity FinalPrice Result

8 $ 1,837.00 $ 2,199.00 9 53 $ 2,137.00 Accept

9 $ 1,665.00 $ 2,047.00 9 56 $ 1,965.00 Accept

10 $ 1,920.00 $ 286.00 12 81 $ - Reject

11 $ 172.00 $ 1,553.00 2 41 $ 1,172.00 Accept

12 $ 980.00 $ 1,541.00 2 67 $ - NotUnderstood

13 $ 1,276.00 $ 500.00 2 43 $ - Reject

14 $ 1,500.00 $ 1,108.00 2 110 $ - NotUnderstood

15 $ 1,400.00 $ 1,520.00 3 4 $ 1,452.00 Accept

The results of experiments showed that there were some negotiations that ended

the process with a NotUnderstood message. This was due to the emission of an
Acknowledge message form agent A, which agent B does not recognize. Although,
the experiment results show good evidence that the two agents are communicating
efficiently even when their language definitions are quite different.

6 Conclusions

In this paper we have presented how an ontology approach can improve
interoperability between heterogeneous negotiation agents. In particular we
incorporated a translator solution for the problem of lack of understanding among
seller and buyer agents during the exchange of messages at run time. We evaluated
the ontology in the target application, and described the system architecture into
which the negotiation processes are executed. We believe that semantic
interoperability of ACL is an important issue that can be solved by incorporating a
shared ontology. The experimental tests showed that the proposed architecture
improves the continuity of the execution of negotiation processes, resulting in more
agreements.

References

1. T. Finning, R. Fritzon, and R. McEntire: KQML as an agent communication language, in
Proceedings of the 3rd International Conference on Information and Knowledge
Management, November 1994.

2. FIPA – Foundation for Intelligent Physical Agents. FIPA Specifications, 2003; available
at http://www.fipa.org/specifications/index.html.

3. Uschold, M. and King M., Towards a Methodology for Building Ontologies, Workshop
on Basic Ontological Issues in Knowledge Sharing, 1995.

4. Grüninger, M. and Fox, M., The Role of Competency Questions in Enterprise
Engineering, IFIP WG 5.7 Workshop on Benchmarking. Theory and Practice, Trondheim,
Norway, 1994.

5. Fernández, M., Gómez-Pérez, A., and Juristo, N., METHONTOLOGY: From
Onthological Art towards Ontological Engineering, Proceedings of AAAI Spring
Symposium Series, AAAI Press, Menlo Park, Calif., pp. 33-40, 1997.

10 Maricela Bravo, Máximo López, Azucena Montes, René Santaolaya, Raúl Pinto and
Joaquín Pérez

6. Müller, H. J., Negotiation Principles, Foundations of Distributed Artificial Intelligence,

in G.M.P. O´Hare, and N.R. Jennings, New York: John Wiley & Sons.
7. Jin Baek Kim, Arie Segev, A Framework for Dynamic eBusiness Negotiation Processes,

Proceedings of IEEE Conference on E-Commerce, New Port Beach, USA, 2003.
8. Stanley Y. W. Su, Chunbo Huang, Joachim Hammer, Yihua Huang, Haifei Li, Liu Wang,

Youzhong Liu, Charnyote Pluempitiwiriyawej, Minsoo Lee and Herman Lam, An
Internet-Based Negotiation Server For E-Commerce, the VLDB Journal, Vol. 10, No. 1,
pp. 72-90, 2001.

9. Patrick C. K. Hung, WS-Negotiation: An Overview of Research Issues, IEEE Thirty-
Seventh Hawaii International Conference on System Sciences (HICSS-37), Big Island,
Hawaii, USA, January 5-8, 2004.

10. Anthony Chavez, Pattie Maes, Kasbah: An Agent Marketplace for Buying and Selling
Goods, Proceedings of the First International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology, London, UK, April 1996.

11. Sonia V. Rueda, Alejandro J. García, Guillermo R. Simari, Argument-based Negotiation
among BDI Agents, Computer Science & Technology, 2(7), 2002.

12. Haifei Li, Chunbo Huang and Stanley Y.W Su, Design and Implementation of Business
Objects for Automated Business Negotiations, Group Decision and Negotiation, Vol. 11;
Part 1, pp. 23-44, 2002.

13. Dignum, Jan Dietz, Communication Modeling – The language/Action Perspective,
Proceedings of the Second International Workshop on Communication Modeling,
Computer Science Reports, Eindhoven University of Technology, 1997.

14. J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson, N. Noy, and
S. Tu: The evolution of Protégé-2000: An environment for knowledge-based systems
development, International Journal of Human-Computer Studies, 58(1): 89-123, 2003.

15. H. Knublauch: An AI tool for the real world: Knowledge modeling with Protégé,
JavaWorld, June 20, 2003.

