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Abstract. In cases of extremely imbalanced dataset with high dimensions, 
standard machine learning techniques tend to be overwhelmed by the large 
classes. This paper rebalances skewed datasets by compressing the majority 
class.  This approach combines Vector Quantization and Support Vector 
Machine and constructs a new approach, VQ-SVM, to rebalance datasets 
without significant information loss. Some issues, e.g. distortion and support 
vectors, have been discussed to address the trade-off between the information 
loss and undersampling. Experiments compare VQ-SVM and standard SVM 
on some imbalanced datasets with varied imbalance ratios, and results show 
that the performance of VQ-SVM is superior to SVM, especially in case of 
extremely imbalanced large datasets. 

1 Introduction 

The class imbalance problem typically occurs when, in classification problem, 
there are many more instances of some classes than other. In cases of extremely 
imbalanced (skewed) dataset with high dimensions, standard classifier tends to be 
overwhelmed by the large classes and ignore the small ones. Therefore, machine 
learning becomes an extremely difficult task, and performances of normal machine 
learning techniques decline dramatically. In practical applications, the ratio of the 
small to the large classes can be drastic such as 1 to 100, or 1 to 1000 [1] .  

The recent Sigkdd explorations published a special issue on learning from 
imbalanced data sets [1], which summarized some well-known methods for dealing 
with problems with the imbalanced data: at the data level, undersampling and 
oversampling; at the algorithms level, one-class learning (cost-sensitive learning) 
and boasting etc.  
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Random undersampling can potentially remove certain important examples, and 
random oversampling can lead to overfitting. In addition, oversampling can 
introduce an additional computational task if the data set is already fairly large but 
imbalance.  

A few researches of combining data compression techniques and machine 
learning have been done: Jiaqi Wang el at [2] combines K-means clustering and 
SVM to speed up the real-time learning; Smola el at [3] discussed the combination 
between VQ and SVM in their book.  

At the algorithms level, for SVMs, cost-sensitive learning [5, 6, 7] aims to 
incorporate into the SVMs the prior knowledge of the risk factors of false positives 
and false negatives. Gang Wu el at [8] implemented KBA, Kernel Boundary 
Alignment to imbalanced datasets. Rehan Akbani el at [4] implemented SMOTE, a 
derivative of Support Vector Machine, to imbalanced datasets and discussed the 
drawbacks of random undersampling. Being different from the random 
undersampling, VQ compresses datasets by clustering them instead of simply 
eliminating instances.  

2. Support Vector Machine 

Support Vector Machine and other kernel methods were maturated and 
implemented broadly in 1990s, after Vapnik [9]. Support Vector Machine transforms 
(approximates) the nonlinear problem within a lower dimension space (input space) 
into a linear problem within a higher dimension space (feature space). Within this 
linear feature space, SVM could be treated as a linear learning machine, which finds 
a maximum margin hyper-plane to separate the given data with some tolerance 
(slack variables) to the noise. Vapnik-Chervonenkis (VC) dimension restricts the 
degree of approximations (generalization). 

Decision Function of support vector classification (pattern reorganization):  
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3. Vector Quantization 

Vector quantization (VQ) is a lossy data compression method based on the 
principle of block coding. According to Shannon’s theory of data compression, lossy 
data compression, better known as rate-distortion theory, the decompressed data does 
not have to be exactly the same as the original data. Instead, some amount of 



Combine Vector Quantization and Support Vector Machine for Imbalanced Datasets 3
 

distortion, D, is tolerated. Moreover the lossless compression is no distortion, i.e. 
D=0.  

In 1980, Linde, Buzo, and Gray (LBG) [10] proposed a VQ design algorithm 
based on a training sequence. The use of a training sequence bypasses the need for 
multi-dimensional integration required by previous VQ methods. A VQ that is 
designed using this algorithm are referred to in the literature as an LBG-VQ, which 
can be stated as follows. Given a vector source with its statistical properties known, 
given a distortion measure, and given the number of codevectors, find a codebook 
(the set of all red stars) and a partition (the set of blue lines) which result in the 
smallest average distortion [11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. A simple example of two-dimensional LBG-VQ [11] 

Suppose a training sequence consisting of M vectors: },...,,{ 21 MxxxT = , and N 
codevectors },...,,{ 21 NcccC = , then the whole region is partitioned by the 
codevectors into a set of sub-regions, so-called “Voronoi Region”, 

},...,,{ 21 NSSSP = . Vectors within a region nS  are represented by their codevector 
nm cxQ =)(  if nm Sx ∈ , and the average distortion can be given by:  
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which measures the information loss. Thus, the design problem can be stated as: 

to find C and P such that D is minimized.  
If C ad P are a solution to the above minimization problem, then is must satisfy 

two criteria: Nearest Neighbour Condition, 
},..2,1'||||||||:{ 2

'
2 NncxcxxS nnn =∀−≤−= , and Centroid Condition:  
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The LBG VQ design algorithm is an iterative algorithm, which alternatively 

solves the above two optimality criteria. The algorithm requires an initial codebook. 
This initial codebook is obtained by the splitting method. In this method, an initial 
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codevector is set as the average of the entire training sequence. This codevector is 
then split into two. The iterative algorithm is run with these two vectors as the initial 
codebook. The final two codevectors are splitted into four and the process is repeated 
until the desired number of codevectors is obtained [11].  

4. VQ-SVM to Rebalance Dataset 

VQ-SVM combines Vector Quantization and Support Vector Machine for 
dealing with extreme imbalance datasets, in which standard Support Vector Machine 
losses its accuracy dramatically. Here Vector Quantization could be treated as 
another way for incorporating domain knowledge into Support Vector Machine. In 
this case, the domain knowledge is the imbalance ratio and distribution of the 
majority group. Similar research can be found at authors’ other papers [12, 13].  

 
Pseudo-code of the algorithm VQ-SVM: 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
Under-sampling the frequency of the majority class, e.g. random undersampling, 

has its drawbacks and results in information loss. Support Vector Machine selects a 
subset of instances along the hyper-plane, so-called support vectors, and used them 
as the set of ix  within the decision function (1). These support vectors lie within the 
margin, and their iα s are non-zero, Ci << α0 . That is: as the hyperplane is 
completely determined by the instances closest to it, the solution should no depend 
on the other examples [3]. 

The random undersampling inevitably reduces the number of support vectors, 
and thus potentially losses information with these removed support vectors. 
According to the theory of data compression, vector quantization is superior to 
random undersampling in term of the information loss, but both of them suffer from 
another risk of information loss within the majority group:  Vector Quantization 
replaces some original SVs by their corresponding codevectors, which become new 
SVs and push the optimal hyperplane away from the original one trained by 
imbalanced data (cf. figure 2). Rehan Akbani el at [4] and Gang Wu el at [8] found 
that in case of imbalanced dataset, SVM always pushes the hyperplane towards 

/* Step 1: Set parameters of VQ-SVM */ 
Float g;  //the kernel parameter g  
Int number_of_undersampling;  // the number of code-vectors 
 
/* LBG-VQ compresses the majority group and reduces the number of instances

down to the given number, and then the new group and the minority group are
combined to construct a balanced training dataset */ 

Balanced_Majority = LBGvq(Majority, number_of_undersampling);  
New_training_data = combine(Balanced_Majority, Minority); 
 
/* SVM based on the new balanced data*/ 
Model = SVM (New_training_data, g); 
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minority group, which causes that the learning machine is overwhelmed by the 
majority group and minority group losses its information completely.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. VQ replaces the observations (yellow points) of majority group by codevectors (red 
points), the number of which is more equal to the number of observations (grey points) of the 
minority group. However, the imbalanced maximum margin hyperplane (dashed line) is 
pushed towards a new position (solid line), which is much closer to the majority group.  

Throughout reducing the number of SVs of the majority group, VQ-SVM pulls 
the biased hyperplane away from the minority group. That is more close to the 
underlying “real” boundary.  

VQ-SVM sacrifices the information held by the majority group to retrieval the 
information contained by the minority group. This is very important in many real life 
practices, which focus on the minority group. On the other hand, the compression 
ratio is tuned by the VQ-SVM to minimize the information loss of majority group. 
Therefore the optimal model is a trade-off between the compression rate and 
improved data balance, classification accuracy (i.e. g-means).  

5. Experiments 

For this evaluation, we used four UCI datasets. Those UCI datasets we 
experimented with are abalone (abalone19), yeast (yeast5) glass (g7), and letter 
(letter26). The number in the parentheses indicates the target class we chose. Table 1 
shows the characteristics of these six datasets organized according to their negative-
positive training-instance ratios. The top dataset  (abalone 19) is the most imbalanced 
(the ratio is about 1:130). The four datasets mostly consist of continuous data instead 
of categorical data. 

Table 1. Four UCI datasets with different compression rates: in the letter (26) 
dataset, the results of two compression rates demonstrate the effect of  “over-

compression”. Through the initial exploration, the minority class is not linearly 

Original 
Hyperplane 

New Hyperplane 

Minority class 
Majority class 

Original SVs 
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separated, and that is said, the minority class randomly scatters within the majority 
class. 

Dataset Positive 
Insts 

Negative Insts Imbalance 
Ratio 

Insts after under-
sampling 

Abalone (19) 32 4145 1:129.54 32 
Yeast (5) 47 1437 1:30.5 64 
Letter (26) 734 19266 1:26.28 299 (1024) 

    550(2048) 
Glass (7)  29 185 1:6.3 32 

Because it is expected that undersampling at high rates generate a trade-off 
between improved data balance and loss of important information, we examined 
whether different compression rate could lead to a further enhancement of results. 

The machine learning community use two metrics the sensitivity and the 
specificity, when evaluating the performance of various tests. Sensitivity can be 
defined as the accuracy on the positive instances: True Positives /(True Positives + 
False Positives), while specificity can be defined as the accuracy on the negative 
instances: True Negatives / (True Negatives + False Positives) [4].  Kubat et al [14] 
suggest the g-means, −+= accaccg   , which combines specificity and sensitivity. 
In our experiments, the g-means replaces the standard accuracy rate, which losses its 
functions in imbalanced datasets.  

Table 2. Test Result 
SVM VQ-SVM Dataset 

Se Sp G-means Se Sp G-means 
Abalone (19) 0 1 0 1 0.88356 0.93998 
Yeast (5) 0 1 0 0.9 0.7561 0.8249 
Letter (26) 0.3537 1 0.5948 1 0.1871 0.4326 

    0.7007 0.9995 0.8368 
Glass (7) 0.6667 1 0.8165 0.6667 1 0.8165 

These experiments use LibSVM C code [15] to test the performance of c-SVM 
with RBF of the gamma values from 0.5 to 2. VQ-SVM consists of the Support 
Vector Classification by the Spider Machine Learning toolbox [16] and the Vector 
Quantization by the DCPR Matlab toolbox [17].   

The results of experiments show that the g-means of VQ-SVM are rather better 
or equal to ones of standard SVM. In detail, the specificities of SVM are better than 
VQ-SVM, but SVM predicts all of instances as negative. Thus the specificities of 
standard SVM do not make any sense. In the dataset, Letter (26), while VQ-SVM 
compresses the number of negative instances to an extremely low level, a new 
imbalanced dataset is produced, and the predictive results of this dataset show that 
the positive group overwhelms the learning machine.  

In case that the imbalance ratio is not high and rather small dataset (e.g. Glass (7) 
1:6.3 and 185 instances), the impact of VQ is not significant, e.g. almost equal value 
of g-means between SVM and VQ-SVM. 
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6. Conclusion 

The results of experiments have proved the theoretic part: SVM is highly 
sensitive to the balance ratio between the numbers of the vectors of classes, and 
majority group often overwhelms the learning machine. In case of the large amount 
of training data with imbalance classes, oversampling increases the number of 
minority class, but at the same time introduces more computation costs, especially 
with respect to SVM. Instead of a step of the data pre-process, within the VQ-SVM, 
VQ optimises directly the predictor performance in case of imbalanced datasets. The 
previous results show the significant improvement in case of binary classification.  

In the further works, more precious controls and methods are necessary to be 
investigated. Especially the compression to only support vectors instead of all of 
vectors may enhance the controllability of the algorithm of VQ-SVM and manage 
the information loss caused by compression.  
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