
Adding Semantic Web Services Matching and
Discovery Support to the MoviLog Platform

Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

ISISTAN Research Institute - Also CONICET
Facultad de Cs. Exactas, Departamento de Computación y Sistemas, UNICEN
Campus Universitario - Paraje Arroyo Seco - (B7001BBO) - Bs. As., Argentina

email: azunino@exa.unicen.edu.ar

Summary. Semantic Web services are self describing programs that can be
searched, understood and used by other programs. Despite the advantages Se-
mantic Web services provide, specially for building agent based systems, there
is a need for mechanisms to enable agents to discover Semantic Web services.
This paper describes an extension of the MoviLog agent platform for search-
ing Web services taking into account their semantic descriptions. Preliminary
experiments showing encouraging results are also reported.

1 Introduction

Once a big repository of Web pages, images and others forms of static data, the Web
is evolving into a worldwide network of Web Services, paving the way to the so-called
Semantic Web [1]. A Web Service [2] is a distributed piece of functionality that can be
published, located and accessed through standard Web protocols. The goal of Web ser-
vices is to achieve automatic interoperability between Web applications by providing
them with an infrastructure to use Web-accessible resources.

Several researchers agree that mobile agents will have a fundamental role to ma-
terialize this vision [3, 4]. A mobile agent is a computer program which is able to
migrate between network sites to perform tasks and interact with resources. Mobile
agents have good properties that make them suitable for exploiting the potential of the
Web [5]: support for disconnected operations, robustness and scalability.

Despite the advantages mobile agents offer, many challenges remain to glue them
with Web services. Most of these challenges are a result of the nature of the Web. From
its beginnings the Web has been mainly designed for human use and interpretation.
Hence, mobile agents cannot autonomously take advantage of Web resources, thus
forcing developers to write hand-coded solutions that are difficult to extend, reuse and
maintain. Besides, the inherent complexity of mobile code programming with respect
to traditional non-mobile systems, has dwindled the massive adoption of mobile agent
technology, limiting its usage to small applications and prototypes.

In this sense, we believe there is a need for a mobile agent development infras-
tructure that addresses these problems and, at the same time, preserve the key benefits
of mobile agents for building distributed applications. To this end, we have devel-
oped MoviLog [6], a platform for building Prolog-based mobile agents on the WWW.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

MoviLog encourages the usage of mobile agents by supporting a novel mechanism
for handling mobility named RMF (Reactive Mobility by Failure). It allows program-
mers to easily build mobile agents on the Semantic Web without worrying about Web
services location or access details. Furthermore, to take into account the semantics of
services, we have extended MoviLog with support for semantic matching and discov-
ery of Web services. The extension, called Apollo, enables an automatic interoperation
between mobile agents and Web services with little development effort.

This paper is organized as follows. The next section introduces semantic Web ser-
vices. Sect. 3 presents the MoviLog platform. Sect. 4 describes Apollo. Sect. 5 ex-
plains an example. Sect. 6 reports experimental results. Sect. 7 discusses the most
relevant related work. Finally, Sect. 8 draws conclusions.

2 Semantic Web Services

Web services are a suitable model to allow systematic interactions of programs across
the WWW. To hide the diversity of resources hosted by the WWW, Web services
technologies mostly rely on XML, a structured language that extends and formalizes
HTML. In this sense, the W3C Consortium has developed SOAP 1, a communication
protocol based on XML. Besides, languages for describing Web services have been
developed. An example is WSDL2, an XML-based language for describing services as
a set of operations over SOAP messages. From a WSDL document, a program can find
out the specific services a Web site provides, and how to use and invoke these services.

UDDI 3 defines mechanisms for searching and

Fig. 1. Web services architecture

publishing Web services. By means of UDDI, Web
service providers register information about the ser-
vices they offer, thus making it available to potential
clients. The information managed by UDDI ranges
from WSDL files describing services to data for con-
tacting providers.

Fig. 1 shows the conceptual architecture of Web
services. A Web service is defined by a WSDL doc-

ument describing a set of operations. A provider creates WSDLs for its services and
publish them in an UDDI registry. A requester can browse registries to find services
matching his needs. Then, the requesters can bind to the provider by invoking any of
the operations defined by the WSDLs.

The weakest point of the architecture shown above is that it does not consider
the semantics of services. To achieve an automatic interaction between agents and
Web services, each service must be described in a nonambiguous and computer-
understandable way. In this sense, some languages for Web services metadata anno-
tation have emerged, such as RDF 4 and OWL [7], whose goal is to provide a formal

1 SOAP (Simple Object Access Protocol): http://www.w3.org/TR/soap/
2 WSDL (Web Service Description Language): http://www.w3.org/TR/wsdl
3 UDDI (Universal Description, Discovery and Integration): http://www.uddi.org
4 RDF (Resource Description Framework): http://www.w3.org/RDF/



Title Suppressed Due to Excessive Length 3

model for describing the concepts involved in services. In this way, agents can under-
stand and reason about the functionality a Web service performs, thus enabling the
automatization of Web applications. Finally, a step towards the creation of a standard
ontology of services is OWL-S [8]. The next section introduces MoviLog.

3 MoviLog

MoviLog [6] is a platform for programming mobile agents. The execution units of
MoviLog are Prolog-based mobile agents named Brainlets. MoviLog uses strong mo-
bility, where Brainlets execution state is transferred transparently on migration. Be-
sides providing basic mobility primitives, the most interesting aspect of MoviLog is
the notion of Reactive Mobility by Failure (RMF), a novel mobility model that re-
duces the effort for developing mobile agents by automating decisions such as when
or where to migrate upon a failure. A failure is defined as the impossibility of an exe-
cuting agent to obtain some required resource at the current site.

Roughly, each Brainlet possess Prolog code that is organized in two sections: pred-
icates and protocols. The first section defines the agent behavior and data. The second
section declares rules that are used by RMF for managing mobility. RMF states that
when a predicate declared in the protocols section of an agent fails, MoviLog moves
the Brainlet along with its execution state to another site that contains definitions for
the predicate. Indeed, not all failures trigger mobility, but only failures caused by predi-
cates declared in the protocols section. The idea is that normal predicates are evaluated
with the regular Prolog semantics, but predicates for which a protocol exists are treated
by RMF so that their failure may cause migration. The next example presents a simple
Brainlet whose goal is to solve an SQL query given by a user on a certain database:

PROTOCOLS
pro toco l ( dataBase , [name(X) , user (U) , passwd (P ) ] ) .

CLAUSES
doQuery (DBName, Query , Res):−

dataBase ( [ name(DBName) , user ( ’ d e f a u l t ’ ) , passwd ( ’ ’ ) ] , Conn ) ,
doQuery (Conn , Query , Res ) , c loseConnect ion (Conn ) .

?−sqlQuery (DBName, Query , Res):− doQuery (DBName, Query , Res ) .

PROTOCOLS section declares a protocol stating that the evaluation of data-
base(...) predicate must be handled by RMF. In other words, the RMF mechanism will
act whenever an attempt of connecting to the given database with the supplied user-
name and password fails at the current site. As a result, RMF will transfer the agent
to a site containing a database named DBName. After connecting to the database, the
Brainlet will execute the query, and then return to its origin. Note that the protocol
does not specify any particular value of the properties of the requested connection,
which means that all unsuccessful attempts to access locally any database with any
username-password combination will trigger reactive mobility.

Despite the advantages RMF has shown, it is not adequate for developing Web-
enabled applications because it lacks support for interacting with Web resources. To
overcome this limitation, RMF and its runtime support have been adapted to provide



4 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

a tight integration with Web Services [9]. Also, to take advantage of services seman-
tics, an infrastructure for managing and reasoning about Web services metadata named
Apollo has been built. The rest of the paper focuses on Apollo.

4 Semantic Matching in MoviLog

Semantic matching allows agents to take advantage of ontologies by using inference
capabilities. An ontology represents the meaning of terms in vocabularies and the re-
lationships between these terms [1]. Reasoners are often used to infer knowledge from
ontologies. We have developed a Prolog-based reasoner as a set of rules and facts for
describing and manipulating ontologies. In addition, the reasoner includes matchmak-
ing rules to determine semantic similarity between any pair of concepts.

4.1 Representing ontologies in Prolog

We have developed a reasoner on top of the OWL-Lite language [7]. Unfortunately,
OWL-Lite only supports classification hierarchy and simple constraints, thus offer-
ing less expressiveness than other languages belonging to the OWL family. However,
OWL-Lite ensures inference completeness and decidability.

Table 1. OWL to Prolog correspondence

OWL-Lite Prolog Description
Class class(X) X is a class.
rdfs:subClassOf subClassOf(X,Y) X is a subclass of class Y.
rdf:Property property(X) X is a property.
rdfs:subPropertyOf subPropertyOf(X,Y) X is a subproperty of property Y.
Individual individualOf(X,Y). X is an instance of class Y.
inverseOf inverseOf(X,Y) X is inverse to property Y.
equivalentProperty equivalentProperty(X,Y) X is equivalent to property Y.
equivalentClass equivalentClass(X,Y) X is equivalent to class Y.
Properties triple(X,Y,Z). X is related to Z by property Y.

Interestingly, OWL-Lite can be translated to first order logic [10]. Table 1 shows
the Prolog counterpart for some of the OWL-Lite sentences supported by our rea-
soner. OWL-Lite classes and properties are represented as simple facts; relationships
are expressed as RDF triples. An RDF triple is a structure with the form triple(subject,
property, object) which indicates that subject is related by property to object value.
OWL-Lite features such as cardinality, range and domain constraints over properties
are represented as triples. For example, triple(author, range, person) states that prop-
erty author must be an instance of the class person. In addition, equality, inequality
and transitive sentences of OWL-Lite may indirectly relate a concept to another. Our
reasoner defines the following set of rules for dealing with these relationships:



Title Suppressed Due to Excessive Length 5

t r i p l e (X,E,Y):− equ iva len tProper t y (P,E) , t r i p l e (X, P,Y ) .
t r i p l e (Y,O,X):− inverseOf (P,O) , t r i p l e (X, P,Y ) .
t r i p l e (X, T , Z):− t r a n s i t i v e (T ) , t r i p l e (X, T ,Y) , t r i p l e (Y, T , Z ) .

The first rule states that X is related to Y by property E, if E is equivalent to P and X
is related to Y by P. For example, if author and writer were equivalent properties, then
triple(article, writer, person) holds. The second rule states that Y is related to X by
property O whenever inverseOf(P,O) is true and X is related to Y by P. For example, if
hasPublication and author were inverse properties, then triple(person, hasPublication,
article) holds. The last rule handles transitive relationships between concepts: if John
is Paul’s advisor, and Paul is George’s advisor, then John is George’s advisor.

Fig. 2 shows an ontology

Fig. 2. An ontology for generic documents

for documents. It defines that
a thesis and an article are doc-
uments, both having one or
more authors. A thesis has an
advisor. Both author and ad-
visor are properties with range
person. A document has a ti-
tle, a language and some sec-
tions. Finally, a section has a
content. In the rules two new concepts appear: Thing and owl:string. Thing is the par-
ent class of all OWL classes. Also, OWL includes some built-in datatypes.

4.2 Matching concepts

Ontologies can be used to describe data and services in a machine-understandable way.
Automated data migration systems use ontologies to semantically describe their data
structures. A process may then migrate a record from a source database to a suffi-
ciently similar record in a target database. In automated Web services discovery sys-
tems, agents usually try to locate a sufficiently similar service to accomplish their
current goal. Indeed, the problem to define what “sufficiently similar” means.

The degree of match between two concepts depends on their distance in a taxon-
omy tree. A taxonomy may refer to either a hierarchical classification of things or the
principles underlying the classification. Almost anything can be classified according
to some taxonomic scheme. Mathematically, a taxonomy is a tree-like structure that
categorizes a given set of objects. We have defined four degrees of matching according
to [11]. The rational to compute the similarity between two concepts X and Y is:

– exact if X and Y are individuals belonging to the same or equivalent classes, we
label similarity as exact.

– subsumes if X is a subclass of Y we label similarity as subsumes.
– plug-in if Y is a subclass of X we label similarity as plug-in.
– fail occurs when none of the previous labels could be stated.

We have enhanced this scheme by considering the distance between any pair of
concepts in a taxonomy tree (see Fig. 3). From the diagram, it can be clearly stated



6 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

that c2 is more similar to b1 than a1: their similarity has been labeled as plug-in, but
c2 is hierarchically closer to b1 than a1.

The matchmaking algorithm

Fig. 3. Enhanced degree of match

consists of a set of Prolog rules
for calculating the distance be-
tween concepts within a taxon-
omy. The rule match(C0, C1, La-
bel, Dist) returns the distance be-
tween C0 and C1 under Label.
For example, the rule for equiv-
alent classes is:
match (X,Y, exact ,0):− equ iva len tC lass (X,Y ) .

The distance between two concepts is defined recursively as:
isSubClassOf (X,Y,1):− subClassOf (X,Y ) .
isSubClassOf (X,Y,N):− subClassOf (X, Z ) , isSubClassOf (Z ,Y, T ) , N is T+1.

Applying the previous rules with X=article produces: isSubClassOf(article,docu-
ment,1) and isSubClassOf(article,thing,2). Matching rules for subsumes and plug-in
labels use isSubClassOf(X,Y,Z) to compute distance as shown below:
match (X,Y, subsumes ,N):− isSubClassOf (X,Y,N ) .
match (X,Y, p lug in ,N):− isSubClassOf (Y, X,N ) .

For space reasons, matchmaking support for properties is omitted. Nevertheless,
the scheme previously discussed applies when computing distance between properties.

4.3 Semantic Web Services Discovery

In order to perform a semantic

Fig. 4. The Apollo System

search of a Web service instead of a
less effective keyword based search,
an agent needs computer processable
descriptions of services. Ontologies
can be used for representing such de-
scriptions. In this sense, OWL-S [8]
aims at creating a standard service
ontology. OWL-S consist of a set of
predefined classes and properties for
representing services. However, OWL-S is intended to describe services and how they
must be invoked, but not how to semantically locate them. We combined OWL-S de-
scriptions with UDDI registries to build a semantic Web services discovery system
called Apollo. Fig. 4 shows its architecture.

Apollo allows a Web service publisher to annotate services by using concepts from
a shared OWL-S ontology database. Apollo is based on an OWL-S subset named Ser-
vice Profile, which offers support for semantic description of services functionality,
arguments, preconditions and effects. In this way, a publisher can describe services
and its parameters in terms of concepts from the shared database. WSDL documents



Title Suppressed Due to Excessive Length 7

are stored in UDDI nodes by using UDDI4J5. Finally, each WSDL document and its
concepts are associated through the Semantic Descriptions Database.

A search request contains a concept describing the desired service functionality,
and two sets of concepts for in/out parameters. To perform a more effective search,
service requests are forwarded both to UDDI registries and to the Semantic Search
Engine. Data resulting from an UDDI search are transformed to concepts from the
Ontology Database by a component that extends the UDDI Inquiry API.

The main component of the Semantic Search Engine is the semantic reasoner. It
uses a matchmaking scheme and a simple algorithm for sorting the results of a service
search according to the degree of match. The algorithm first tries to contact a Web
service that semantically matches the requested conceptual output. If there are more
than one Web service with the same degree of match for their output, the algorithm
examines inputs to check that the requester is able to invoke the service. The pseudo
code for the Web service rating algorithm is:
exact = 2 ; subsumes = 1; p l u g i n = 0;
MatchResult compare ( MatchResult mr0 , MatchResult mr1 ) {

i f ( mr0 . output . label > mr1 . output . label ) return mr0 ;
else i f ( mr0 . output . label < mr1 . output . label ) return mr1 ;
else { i f ( mr0 . output . d is tance < mr1 . output . d is tance ) return mr0 ;

else i f ( mr0 . output . d is tance > mr1 . output . d is tance ) return mr1 ;
}
/∗ Outputs match . . . Now compare i npu t parameters . ∗ /

}

5 A sample scenario

Suppose we are deploying a network composed of sites that accepts Brainlets for exe-
cution. Some of these sites offers Web services for translating different types of docu-
ments (articles, forms, theses, etc.) to a target language. Every time a client wishes to
translate a document, an agent is asked to find the service that best adapts to the kind
of document being processed. In order to add semantics features to the model, all sites
publish and search for Web services by using Apollo, and services are annotated with
concepts from the ontology presented in Sect. 4.1 (see Fig. 2).

We assume the existence of

Fig. 5. A Brainlet for thesis translation

different instances of Web ser-
vices for handling the transla-
tion of a specific type of doc-
ument. For example, translat-
ing a plain document may dif-
fer from translating a thesis, be-
cause a smarter translation can
be done in this latter case: a ser-
vice can take advantage of a thesis’ keywords to perform a context-aware translation.
Nevertheless, note that a thesis could be also translated by a Web service which expects
a Document concept as an input argument, since Thesis concept specializes Document
according to our ontology.

When a Brainlet gets a new document for translation, it prepares a semantic query.
In this case, the agent needs to translate a thesis to English. Fig. 5 shows the activities

5 UDDI for JAVA: http://www-124.ibm.com/developerworks/oss/uddi4j/



8 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

performed by each actor involved in the translation process. Before sending the service
query, the Brainlet sets the service desired output as a Thesis. Also, the Brainlet sets
the target language as english and the source document kind as Thesis, and then the
semantic search process begins. Apollo uses semantic matching capabilities to find all
existing Translation services. Let us suppose two services are obtained: a service for
translating theses (s1) and a second service (s2) for translating any document.

After finding a proper list of translation Web services, Apollo sorts them according
to the degree of match computed between the semantic query and services descriptions,
and returns this new list back to the client. In the example, the degree of match for s1
is greater than for s2, because s1 outputs a Thesis (exact) while s2 was labeled as
subsumes with distance one.

PROTOCOLS
pro toco l ( webService , [ name( t r a n s l a t e ) , i np u t ( [ thes is , eng l i sh ] ) , ou tput ( t h e s i s ) ] ) .

CLAUSES
% The Prolog s t r u c t u r e represen t ing some t h e s i s
t h e s i s ( [ t i t l e ( ’A t i t l e ’ ) , author ( ’An author ’ ) , language ( spanish ) ,

adv isor ( ’An adv isor ’ ) , sec t ions ( [ . . . ] ) } ) .
?− t r a n s l a t e ( TargetLang , Res):−

webService ( [ name( t r a n s l a t e ) , i n pu t ( [ thes is , TargetLang ] ) ,
ou tput ( t h e s i s ) ] , WSProxy ) , t h e s i s ( Th ) , executeService (WSProxy ,
[ Th , TargetLang ] , Res ) .

The previous code shows the implementation of the Brainlet discussed so far. As
explained before, when the webService(...) predicate is executed, RMF contacts Apollo
to find candidate services that semantically match the Brainlet’s request. The evalua-
tion of the predicate returns a proxy to the resulting service, which is used to effectively
access it. The way the service is actually contacted (i.e. migrate to the service location
or remotely invoke it) depends on access policies based on current execution condi-
tions (network load, agent size, etc.) managed by the underlying platform.

6 Experimental results

In this section we report some experimental results. Particularly, we evaluated the per-
formance of Apollo with regard to the number of published Web services. We gener-
ated a Semantic Web services database in an automatic fashion and we published it
into Apollo. Both Apollo and all test applications were deployed on a Pentium 4 2.26
GHz with 512 MB of RAM, running Java 1.4.2 on Linux.

The Semantic Web services database was created by using two ontologies: a stock
management domain and a car selling domain. Each service description was composed
of five properties: input, output, category, preconditions and effects. Therefore, its in-
put would be instantiated as a cs:sportcar concept, its output as a cs:quote concept, and
finally its functionality as a cs:car quoting concept. Furthermore, another Web service
can do the same for a “Sedan” car. In this case, since both cs:sport car and cs:sedan
are cs:vehicles, service input would be instantiated as cs:sedan. Finally, searches have
been simulated by using randomly generated conditions and expected results.

The resulting average response time for 600 random searches were: 2.37 ms
(100 services), 12.65 ms (1000 services) and 149.33 ms. (10000 services). From this



Title Suppressed Due to Excessive Length 9

we can conclude that Apollo performance is good. Note that the overall response time
is less than 200 ms for 10000 Web services descriptions.

Fig. 6 shows the relationship between database size and the time for processing
200 different searches. It can be seen that the worst response time is less than 600 ms.
Note that the peaks of the curves are caused by the JAVA garbage collector.

7 Related work

Some related approaches are

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
se

c.

Search

100 Services
1.000 Services

10.000 Services

Fig. 6. # of searches vs. response time

[12, 13, 14]. Most of them de-
scribe services by means of on-
tologies and a discrete scale of se-
mantic similarity based on [11].
One limitation of these approaches
is that their matching scheme do
not consider the distance between
concepts within a taxonomy tree.
Hence, similarity related to dif-
ferent specializations of the same
concept are wrongfully computed
as being equal.

The OWL-S Matchmaker [8] is a semantic Web service discovery and publication
system. It includes a semantic matching algorithm based on service functionality and
data transformation descriptions written in OWL-S. Data transformation descriptions
are made in terms of service input and output arguments. Moreover, service search
requests are enriched with concepts for describing the list of services that match a
required data transformation. The OWL-S Matchmaker does not support taxonomic
distance between concepts either.

In [15], a Web service is described by an OWL-S Service Profile instance or an ex-
tension of an existing profile. Semantic similarity between two services is computed by
comparing their profiles’ metadata instead of input/output concepts. A service request
must contain the class associated to the ideal service profile (i.e. the one preferred
by the requester), which is matched against published profiles. The drawback of this
approach is its lack of support for finding available service profiles extensions.

Some interesting advances towards the integration of agents and Web services are
ConGolog [16] and IG-JADE-PKSLib [17]. However, these approaches present the
following problems: bad performance/scalability (IG-JADE-PKSLib), no/limited mo-
bility (IG-JADE-PKSLib, ConGolog). In addition, none of the previous platforms pro-
vide support for semantic matching and discovery of Web services.
8 Conclusion and future work

This paper introduced Apollo, an infrastructure for semantic matching and discovery of
Web services. Unlike previous work, Apollo defines a more precise semantic matching
algorithm, implemented on top of a Prolog reasoner which offers inference capabilities



10 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

over OWL-Lite to a semantic Web services search engine. In addition, the integration
of MoviLog with Apollo enables the development of mobile agents that interact with
Web-accessible functionality. This leads to the creation of an environment where sites
can publish their capabilities as Semantic Web services, so that agents can use them.

In the context of Apollo, some issues remain to be solved. First, OWL-Lite needs
to be replaced by a more powerful and expressive language, such as OWL DL or OWL
Full. Second, the Ontologies Database content must be enhanced in order to provide
a framework to describe, publish and discover other types of semantically-annotated
Web resources (pages, blogs or agents), and not just Web services. Thereby an agent
would be able to autonomously interact with Web services or Web content.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic Web,” Scientific American,
vol. 284, pp. 34–43, May 2001.

2. S. J. Vaughan-Nichols, “Web services: Beyond the hype,” Computer, vol. 35, Feb. 2002.
3. J. Hendler, “Agents and the semantic web,” IEEE Intelligent Systems, vol. 16, Mar. 2001.
4. M. N. Huhns, “Software agents: The future of Web services,” in Agent Technology Work-

shops 2002, vol. 2592 of Lecture Notes in Artificial Intelligence, pp. 1–18, 2003.
5. D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,” Communications of

the ACM, vol. 42, pp. 88–89, Mar. 1999.
6. A. Zunino, C. Mateos, and M. Campo, “Reactive mobility by failure: When fail means

move,” Information Systems Frontiers, vol. 7, no. 2, pp. 141–154, 2005. ISSN 1387-3326.
7. G. Antoniou and F. van Harmelen, “Web Ontology Language: OWL,” in Handbook on

Ontologies in Information Systems (S. Staab and R. Studer, eds.), Springer-Verlag, 2003.
8. M. Paolucci and K. Sycara, “Autonomous semantic Web services,” IEEE Internet Comput-

ing, vol. 7, no. 5, pp. 34–41, 2003.
9. C. Mateos, A. Zunino, and M. Campo, “Integrating intelligent mobile agents with Web

services,” International Journal of Web Services Research, vol. 2, no. 2, pp. 85–103, 2005.
10. J. de Bruijn, A. Polleres, and D. Fensel, “Deliverable D20v0.1 OWL Lite, WSML Working

Draft.” http://www.wsmo.org/2004/d20/v0.1/, June 2004.
11. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic matching of Web services

capabilities,” in First International Semantic Web Conference, vol. 2342, Springer, 2002.
12. K. Sivashanmugam, K. Verma, A. P. Sheth, and J. A. Miller, “Adding semantics to Web

services standards,” in IEEE International Conference on Web Services, June 2003.
13. I. Horrocks and P. F. Patel-Schneider, “A proposal for an owl rules language,” in The 13th

international conference on World Wide Web, pp. 723–731, ACM Press, Jan. 01 2004.
14. L. C. Chiat, L. Huang, and J. Xie, “Matchmaking for semantic Web services,” in IEEE

International Conference on Services Computing (SCC’04), pp. 455–458, IEEE, 2004.
15. L. Li and I. Horrocks, “A software framework for matchmaking based on semantic Web

technology,” International Journal of Electronic Commerce, vol. 8, no. 4, pp. 39–60, 2004.
16. S. A. McIlraith and T. C. Son, “Adapting golog for programming the semantic Web,” in Fifth

Symposium on Logical Formalizations of Commonsense Reasoning), May 20–22 2001.
17. E. Martı́nez and Y. Lespérance, “IG-JADE-PKSlib: An Agent-Based Framework for Ad-

vanced Web Service Composition and Provisioning,” in Workshop on Web Services and
Agent-Based Engineering, pp. 2–10, July 19–23 2004.


