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Abstract. One of the key issues for an interface agent to succeed at assisting a 
user is learning when and when not to interrupt him to provide him assistance. 
Unwanted or irrelevant interruptions hinder the user’s work and make him 
dislike the agent because it is being intrusive and impolite. The IONWI 
algorithm enables interface  agents to learn a user’s preferences and priorities 
regarding interruptions. The resulting user profile is then used by the agent to 
personalize the modality of the assistance, that is, assisting the user with an 
interruption or without an interruption depending on the user’s context. 
Experiments were conducted in the calendar management domain, obtaining 
promising results.    
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1. Introduction 

As intelligent agents take on more complexity, higher degrees of autonomy and 
more “intelligence”, users start to expect them to play by the same rules of other 
complex, autonomous and intelligent entities in their experience, namely, other 
humans [16]. Our previous studies [19] demonstrated that the way in which an 
interface agent assists a user has an impact on the competence of this agent and it can 
make the interaction between user and agent a success or a failure. This is the 
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concern of a recent research area within Human-Computer Interaction (HCI) that 
studies the “etiquette” of human-computer relationships [3; 17; 18]. We agree with 
the researchers in this area on that the ability to adapt to the way in which a user 
wants to interact with the agent is almost as important as the ability to learn the user's 
preferences in a particular domain. 

As pointed out in [14], one of the problems with the interface agents developed 
thus far is their incorrect estimates of the user’s task priorities, which makes 
information to be introduced at inappropriate times and with unsuitable presentation 
choices. Although agents are well-intentioned, they do not consider the impact an 
interruption has on the user. Research has found that interruptions are harmful. They 
are disruptive to the primary computing task and they decrease users’ performance. 
However, interruptions are necessary in interface agent technology since agents need 
to communicate important and urgent information to users. 

To solve this problem, when the agent detects a (problem) situation relevant to 
the user it has to correctly decide if it will send him a notification without 
interrupting the user’s work, or if it will interrupt him. On the one hand, the user can 
choose between paying attention to a notification or not, and he can continue to work 
in the latter case. On the other hand, he is forced to pay attention to what the agent 
wants to tell him if it interrupts him abruptly. 

Not to disturb the user, the agent has to base its decision on various factors, such 
as: the relevance and the urgency the situation has for the user; the relationship 
between the situation to be notified or the assistance to be provided and the user's 
goals; the relevance the situation underlying the interruption has to the current user 
tasks; how tolerant the user is of interruptions; and when he does not want to be 
interrupted no matter how important the message is. In summary, the interface agent 
has to learn which situations are relevant and which are irrelevant so that no 
unwanted interruptions occur. 

In this work we present a user profiling algorithm named IONWI that learns 
when a user can or should be interrupted by his agent depending on the user’s 
context. In this way, the agent can provide personalized assistance to the user 
without hindering his work. 

This article is organized as follows. Section 2 presents our proposed profiling 
algorithm. Section 3 shows the results we have obtained when assisting users of a 
calendar management system. Section 4 describes some related works. Finally, 
Section 5 presents our conclusions and future work. 

2. The IONWI Algorithm 

In order to assist a user without hindering his work, an interface agent has to 
learn the user's interruption needs and preferences in different contexts. In this work 
we propose an algorithm, named IONWI (acronym for Interruption Or Notification 
Without Interruption), capable of learning when to interrupt a user and when not 
from the observation of the user's interaction with a computer application and with 
the agent.  
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The algorithm learns when a situation that may originate an interruption is 
relevant to the user's needs, preferences and goals, and when it is irrelevant. In 
addition, this algorithm also considers the relationship and relevance the situation 
originating the interaction has with the user's current task. 

2.1 Algorithm inputs and outputs 

The input for our learning algorithm is a set of user-agent interaction 
experiences. An interaction experience Ex is described by seven arguments <Sit, 
Mod, Task, Rel, UF, E, date>: a problem situation or situation of interest Sit is 
described by a set of features and the values these features take, 
Sit={(featurei,valuei)}; the modality Mod that indicates whether the agent interrupted 
the user or not to provide him assistance; the Task the user was executing when he 
was interrupted or notified, which is described by a set of features and the values 
these features take Task={(featurei,valuei)}; the relevance Rel the interruption has for 
the Task; the user feedback UF (regarding the assistance modality) obtained after 
assisting the user; an evaluation E of the assistance experience (success, failure or 
undefined); and the date when the interaction experience was recorded. 

For example, consider that the user is scheduling a meeting with several 
participants and he is interrupted by his agent to remind him about a business 
meeting that will take place the next day. The user does not pay attention to the 
message being notified and presses a button to tell the agent not to interrupt him in 
these occasions. From this experience the agent learns that reminders of this kind of 
meetings are not relevant to the user, and it will send him a notification in the future 
without interrupting him. In this example, the different components of the assistance 
experience are:  

Sit ={(type, event reminder), (event-type, business meeting), (organizer, boss), 
(participants, [Johnson, Taylor ,Dean]), (topic, project A evolution), (date, Friday), 
(time, 5p.m.), (place, user's office)} 

Mod = interruption 
Task = {(application, calendar management system),(task, new event), (event 

type, meeting), (priority, high), ........} 
Rel = irrelevant, unrelated 
UF = {(type, explicit), (action, do not interrupt)}  
E = {(type, failure), (certainty, 1.00)} (interruption instead of notification) 
Date = {(day, 18), (month, December), (year, 2005)} 
The output of our algorithm is a set of facts representing the user's interruptions 

preferences. Each fact indicates whether the user needs an interruption or a 
notification when a given situation occurs in the system. Facts constitute part of the 
user profile. These facts may adopt one of the following forms: “in problem situation 
Sit the user should be interrupted”, “in situation Sit the user should not be 
interrupted”, “in situation Sit and if the user is performing the task T, he should not 
be interrupted”, “in situation Sit and if the user is performing the task T, the agent 
can interrupt him”. Each fact F is accompanied by a certainty degree Cer(F) that 
indicates how certain the agent is about this preference. Thus, when an interface 
agent has to decide whether to interrupt the user or not given a certain problem 
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situation, the agent uses the knowledge it has acquired about a user's interruption 
preferences to choose the assistance modality it supposes the user expects in that 
particular instance of a given situation. Once the assistance has been provided, the 
agent obtains explicit and/or implicit user feedback. This new interaction is recorded 
as an assistance experience, which will be used in the future to incrementally update 
the knowledge the agent has about the user. 

Association 
Rule Generator

Interest 
Filtering 

Redundant 
Filtering 

Contradictory 
Filtering 

Hypotheses  
Validation 

User Interaction 
Profile 

association  rules

interesting association  rules 

non redundant association  rules

non contradictory association  rules

   IONWI Algorithm 

User-Agent 
Interaction 

Experiences 

Meeting, Int, View Cal, Rel, ok, S, 2/1 
Party, Not, New Event,  Irrel, ?, U, 3/1 
Class, Int, New Event, Rel, Bad, F, 3/1
… 

Meeting, View Cal  Interruption 
(90%) 
Class, Prof, New Event  
Notification (75%) 

Fig. 1. IONWI Overview 

2.2 IONWI Overview 

The IONWI algorithm uses association rules to obtain the existing relationships 
between situations, current user tasks and assistance modalities. Classification 
techniques have been discarded since we cannot always label an interaction as a 
success or a failure, and we need a group of interactions to draw a conclusion about 
the user’s preferences. 

As shown in Figure 1, the first step of our algorithm is generating a set of 
association rules from the user-agent interaction experiences. Then, the association 
rules generated are automatically post-processed in order to derive the user profile 
from them. Post-processing steps include: detecting the most interesting rules 
according to our goals, eliminating redundant and insignificant rules, pruning out 
contradictory weak rules, and summarizing the information in order to formulate the 
hypotheses about a user’s preferences more easily. Once a hypothesis is formulated, 
the algorithm looks for positive evidence supporting the hypothesis and negative 
evidence rejecting it in order to validate it. The certainty degree of the hypothesis is 
computed taking into account both the positive and the negative evidence. This 
calculus is done by using metrics from association rule discovery. Finally, facts are 
generated from the set of highly supported hypotheses; facts compose the user 
interaction profile.  

The following subsections describe in detail each step of the algorithm.  
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2.3 Mining Association Rules from User-Agent Interaction Experiences 

An association rule is a rule that implies certain association relationship among a 
set of objects in a database, such as occur together or one implies the other. 
Association discovery finds rules about items that appear together in an event (called 
transactions), such as a purchase transaction or a user-agent interaction experience. 
Association rule mining is commonly stated as follows [1]: Let I={i1,...,in} be a set of 
items, and D be a set of data cases. Each data case consists of a subset of items in I. 
An association rule is an implication of the form X→Y, where X ⊂ I, Y ⊂ I and 
X∩Y=∅. X is the antecedent of the rule and Y is the consequent. The support of a 
rule X→Y is the probability of attribute sets X and Y occurring together in the same 
transaction. The rule has support s in D if s% of the data case in D contains X ∩ Y. 
If there are n total transactions in the database, and X and Y occur together in m of 
them, then the support of the rule X→Y is m/n. The rule X→Y holds in D with 
confidence c if c% of data cases in D that contain X also contain Y. The confidence 
of rule X→Y is defined as the probability of occurrence of X and Y together in all 
transactions in which X already occurs. If there are s transactions in which X occurs, 
and in exactly t of them X and Y occur together, the confidence of the rule is t/s. 

Given a transaction database D, the problem of mining association rules is to find 
all association rules that satisfy: minimum support (called minsup) and minimum 
confidence (called minconf). There has been a lot of research in the area of 
association rules and, as a result, there are various algorithms to discover association 
rules in a database. The most popular is the Apriori algorithm [1], which is the one 
we use to find our association rules. 

2.4 Filtering Out Uninteresting and Redundant Rules 

In this work, we are interested in those association rules of the form “situation, 
modality, task  user feedback, evaluation”; “situation, modality  user feedback, 
evaluation”; “situation, modality, relevance  user feedback, evaluation” and 
“situation, modality, task, relevance  user feedback, evaluation”, having 
appropriate support and confidence values. We are interested in these rules since 
they provide us information about the relationships between a situation or problem 
description and the modality of assistance the user prefers, which have received a 
positive (negative) evaluation. They also relate a situation and the current user task 
with an assistance modality, as well as a situation, the current user task and the 
relevance of the situation to the task with a certain assistance modality. To select 
these types of rules, we define templates [10] and we insert these templates as 
restrictions in the association mining algorithm. Thus, only interesting rules are 
generated (steps 1 and 2 in Figure 1 are then merged). 

Once we have filtered out those rules that are not interesting for us, we will still 
have many rules to process, some of them redundant or insignificant. Many 
discovered associations are redundant or minor variations of others. Thus, those 
spurious and insignificant rules should be removed. We can then use a technique that 
removes those redundant and insignificant associations [13]. For example, consider 
the following rules:  
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R1: Sit{(Type, Event Reminder)(Event-Type = doctor))} (Task=View Calendar), 
(Mod =interruption)  (UF = do not interrupt), (Ev = failure) [sup: 0.4, conf: 0.82] 

R2: Sit{(Type, Event Reminder)(Event-Type = doctor)}, (Task=View Calendar), 
(Event-Priority = high)), (Mod =interruption)  (UF= do not interrupt), (Ev = 
failure) [sup:0.4, conf: 0.77] 

If we know R1, then R2 is insignificant because it gives little extra information. 
Its slightly higher confidence is more likely due to chance than to true correlation. It 
thus should be pruned. R1 is more general and simple.  

In addition, we have to analyze certain combinations of attributes in order to 
determine if two rules are telling us the same thing. For example, a rule containing 
the pair "interruption, failure" and another containing the pair "notification, success" 
are redundant provided that they refer to the same problem situation and they have 
similar confidence values. As well as analyzing redundant rules, we have to check if 
there are any contradictory rules. We define that two rules are contradictory if for the 
same situation and, eventually for the same user task, they express that the user 
wants both an interruption and a notification without interruption. 

2.5 Building Facts from Hypotheses 

The association rules that have survived the pruning processes described above 
are those the IONWI algorithm uses to build hypotheses about a user's interruption 
preferences. A hypothesis is obtained from a set of association rules that are related 
because they refer to the same problem situation but are somewhat different: a 
“main” association rule; some redundant association rules with regards to the main 
rule, which could not be pruned out because they did not fulfill the similar 
confidence restriction; and some contradictory rules with regards to the main rule, 
which could be not pruned away because they did not meet the different confidence 
requirement. The main rule is chosen by selecting from the rule set the rule that has 
the greatest support value, whose antecedent is the most general, and whose 
consequent is the most specific.  
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Equation 1 

Once the IONWI algorithm has formulated a set of hypotheses it has to validate 
them. The certainty degree of a hypothesis H is computed as a function of the 
supports of the rule originating the hypothesis and the rules considered as positive 
and negative evidence of H. The function we use to compute certainty degrees is 
shown in Equation 1, where: α, β and γ are the weights of the terms in the equation 
(we use α=0.8, β=0.1 and γ=0.1), Sup(AR) is the support of the rule originating H, 
Sup(E+) is the support of the rules being positive evidence, Sup(E-) is the support of 
the rules being negative evidence, Sup(E) is the support value of an association rule 
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taken as evidence (positive or negative), r is the amount of positive evidence and t is 
the amount of negative evidence. 

2.6 Incremental Learning 

The database containing interaction experiences is not static, because updates are 
constantly being applied to it. On the one hand, new interaction experiences are 
added since the agent keeps observing a user's behaviour. On the other hand, old 
experiences are deleted because they become obsolete. In consequence, new 
hypotheses about a user's interruption preferences may appear and some of the 
learned hypotheses may become invalid.  

We address this problem from the association rule point of view, that is, as the 
database changes new association rules may appear and at the same time, some 
existing association rules may become invalid. The incremental version of IONWI 
uses the FUP2 algorithm [5] to update the association rules and the DELI algorithm 
[12] to determine when it is necessary to update the rules. The DELI algorithm uses 
a sampling technique to estimate the difference between the old and new association 
rules. This estimate is used as an indicator for whether the FUP2 algorithm should be 
applied to the database to accurately find out the new association rules. If the 
estimated difference is large enough (with respect to some user specified threshold), 
the algorithm signals the need of an update operation, which can be accomplished by 
using the FUP2 algorithm. If the estimated difference is small, then we do not run 
FUP2 immediately and we can take the old rules as an approximation of the new 
rules. Hence, we wait until more changes are made to the database and then re-apply 
the DELI algorithm. 

3. Experimental Results 

We tested our algorithm with a set of 26 datasets1 containing user-agent 
interactions in the calendar management domain. Each database is composed of the 
attributes that describe the problem situation or situation of interest originating the 
interaction, the primary user task, the modality of the assistance, the relationship 
between the situation and the user task, the user feedback, and the evaluation of the 
interaction experience. The sizes of the datasets vary from 30 to 120 interactions. 

To evaluate the performance of an agent using our learning algorithm we used 
one of the metrics defined in [4]. The precision metric measures an interface agent’s 
ability to accurately provide assistance to a user. As shown in Equation 2, we can 
define our precision metric as the ratio of the number of correct interruption 
preferences to the total number of interruption preferences generated by IONWI. 
Similarly, as shown in Equation 3, we can define the recall metric (i.e. what the 
agent could not learn) as the ratio of the number of correct interruption preferences 
to the number of preferences indicated by the user. 

 
1 The datasets can be found at http://www.exa.unicen.edu.ar/~sschia 
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Figure 2 presents the results we have obtained. The graph in Figure 2(a) plots the 
percentage of interruption preferences correctly identified by the IONWI algorithm 
(with respect to the total number of preferences obtained); the number of incorrect 
interruption preferences; and the number of “hidden” preferences, that is those 
preferences that were not explicitly stated by the user but are correct. Each figure 
shows the percentage values obtained when averaging the results we got with the 
different users. The graph in Figure 2(b) shows the percentage of correct interruption 
preferences (with respect to the number of preferences specified by the user) and the 
percentage of missing interruption preferences, that is those that the algorithm could 
not detect. Each graphic shows the average percentage values of the results obtained 
with the different datasets. 

 
 

spreferenceofnumber
spreferencecorrectofnumberIONWI precision =  

 

Equation 2 

 

userforspreferenceofnumber
spreferencecorrectofnumberIONWIrecall =  

 

Equation 3 
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Fig. 2. IONWI Precision (a) and Recall (b) 

We can observe in the figures that the percentage of incorrect interruption 
preferences is small (9% in average), and that the percentage of correct preferences 
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plus the percentage of hidden preferences is considerably high. The percentage of 
correct interruption preferences plus the percentage of hidden preferences can be 
considered as the precision of the algorithm. This value is approximately 91%. Thus, 
we can state that the learning capability of the IONWI algorithm is good.  

Regarding the algorithm recall, 25% of the interruption preferences specified by 
the user were not discovered by our algorithm. Although not observable in the 
graphic, this value was smaller for those datasets containing more than 50 records.  

4. Related Work 

Interruptions have been widely studied in the HCI area2, but they have not been 
considered in personal agent development. These studies revealed that the 
disruptiveness of an interruption is related to several factors, including complexity of 
the primary task and/or interrupting task, similarity of the two tasks [8], whether the 
interruption is relevant to the primary task [6], stage of the primary task when the 
interruption occurs [7], management strategies for handling interruptions [15], and 
modalities of the primary task and the interruption [2, 11].  

People at Microsoft Research have deeply studied the effects of instant 
messaging (IM) in users, mainly on ongoing computing tasks [6, 7, 9]. These authors 
found that IM that were relevant to ongoing tasks were less disruptive than those that 
were irrelevant. This influence of relevance was found to hold for both notifications 
viewing and task resumption times, suggesting that notifications that were unrelated 
to ongoing tasks took longer to process. 

As we have already said, related studies on interruptions come from different 
research areas in which interface agents are not included. Nevertheless, the results of 
these studies can be taken into account by interface agents to provide assistance to 
users without affecting users' performance in a negative way and, thus, diminishing 
the disruptiveness of interruptions. None of the related works we have discussed has 
considered the relevance of interruptions to users, or the relevance the situation 
originating the interruption has for the user. This issue and the relevance of 
interruptions to user tasks are two aspects of interruptions that our learning algorithm 
considers.  

5. Conclusions and Future Work 

We have presented a profiling algorithm that learns when and when not to 
interrupt a user, in order to provide him assistance. We have evaluated our proposal 
in the calendar management domain and the results we have obtained are quite 
promising. Experiments with personal agents assisting users with our approach in 
other domains are currently being carried out.  

As a future work, we are planning to enhance the representation  of a user’s 
context in order to take other aspects into account.  

 
2 Bibliography on this topic: http://www.interruptions.net/literature.htm 
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