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Abstract

In this paper, we propose a novel accelerated alternating optimization scheme to
solve block-biconvex nonsmooth problems whose objectives can be split into smooth
(separable) regularizers and simple coupling terms. The proposed method performs
a Bregman distance based generalization of the well-known forward-backward split-
ting for each block, along with an inertial strategy which aims at getting empirical
acceleration. We discuss the theoretical convergence of the proposed scheme and
provide numerical experiments on image colorization.

1 Introduction

1.1 Image Colorization

In the previous decade, the number of papers dealing with the challenging problem
of image colorization has literally exploded. This technique consists in transforming a
gray-scale image (also known as black-and-white image) into a color one by addition
of a chromatic information. This topic has many opportunities in the entertainment
industry with the success of the recolorized historical documentaries. The challenge
of this technique comes from the fact that turning a color into a gray level is not an
invertible operation. Indeed the color space has three dimensions whereas the gray level
space has only one. In this way, turning a gray-scale image into a color one requires
additional information.

In the literature, there are two ways to add color information to a gray scale image.
First, the manual approaches require some color strokes given by a user, which are
then propagated over the whole image with diffusion techniques guided by the gray-
scale channel (see, e.g., [29, 46, 26]). The major drawback of this approach is the huge
amount of work needed from the user, especially when the scene represented on the
image is complex or contains a lot of textured areas.

To tackle this issue, the exemplar-based methods use a color image as a reference and
transfer the color to the gray-scale one based on texture criterion (see, e.g., [44, 27, 28,
25, 24, 17, 16]), morphological mappings [33] or based on deep learning approach [47].
Obviously, the choice of the reference image is a first issue and influences the results.
To take into account the various aspects of the textures for a reliable comparison, it
is common in the literature to use many descriptors to transfer the colors between
images [44, 38]. The main difficulty is the choice of the descriptors for textures, as well
as the distance between the image patches in the case of patch-based approach. This
choice can been done experimentally [44] or with metric learning approach [36].
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The alternative consists in the computation of multiple candidates followed by a
method to select the final result. These candidates can be extracted from a patch-based
approach [11] or based on a learning approach [47]. Some state-of-the art methods
perform the choice among these candidates without taking into account the geometrical
information of the result. For instance, the authors of [11] use a median to choose one
candidate among the ones obtained by their patch based approach. As another example,
the authors of [47] use an annealing mean to compute the final result from the different
results given by a Convolutional Neural Network (CNN).

To choose a candidate and to enhance the regularity of the result, a first approach is
the method of [16] which is based on a graph-cut approach to select the final candidate.
The authors of [12] have proposed a variational method to choose one candidate among
given ones with a regularity hypothesis. This method has been improved then for image
colorization by the authors of [34]. The aim of these last two models is to choose, for
each pixel of the image, a candidate such that the total variation of the resulting image
is minimized.

This kind of approach based on a multiple criterion candidate extraction, followed
by a total variation regularized choice, can be applied to other problems. For instance,
it can be useful for optical flow estimation [20, 21] or for video colorization [35].

These problems are usually nonconvex and often nonsmooth. To solve them, au-
thors of [34] have proposed a primal-dual algorithm to make their problem numerically
tractable but without convergence proof. Indeed, the variational model used in [34] is
biconvex, that is, the functional depends on two block-variables, with convexity in each
block. This partial convexity feature allows to apply schemes encountered in convex op-
timization which alternate partial (block) optimizations, since each subproblem remains
convex. However, for nonconvex functionals, no convergence is guaranteed.

1.2 Biconvex Optimization

Despite some notable progress in the field of continuous nonconvex optimization, the
minimization of a biconvex functional under separable biconvex constraints

min
(x,y)∈CX×CY

J(x, y) with CX , CY convex, J biconvex

remains a difficult task. The partial convexity carried by the biconvex structure of the
functional yet allows applying convex optimization algorithm in a block-optimization
framework, but convergence may be hard to prove. Moreover, unlike in the convex case,
such schemes can usually be guaranteed to converge to a critical point, which may not
be a (even local) minimizer.

In 2013, [45] and [8] proposed an alternating proximal scheme (known as the PALM
method in [8]) which aims at solving nonsmooth and nonconvex optimization problems,
by alternating the well-known forward-backward splitting on each partial problem. They
provided a convergence analysis based on the Kurdyka- Lojasiewicz property [9, 7], and
the proposed scheme presents in practice similar numerical performance as when used for
convex optimization. However, the application hypotheses of this algorithm only allow
to consider simple regularizers4, in the sense that their Moreau proximity operator [30]

proxF (x0) := arg min
x∈X

{
F (x) +

1

2
‖x− x0‖2

}
must have a closed form for any x0 ∈ X , or be exactly computable in a reasonable time.
In practice, this limits the class of functionals which can be optimized by this scheme.
In the case where the regularizers are not simple but sufficiently smooth (or replaced

4In this paper, we will refer to functions which only depend on one variable x or y as regularizers, while
those which depends on both (x, y) are called coupling terms. Obviously, the additive decomposition of
a functional into regularizers and coupling terms is not unique, since one always may add regularizers
to a coupling term.
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by a smooth approximation), they can be incorporated in the coupling term, but may
lead to smaller stepsizes (hence, slower convergence). Thus, in 2017, the authors in [31]
proposed another alternating scheme, which is basically a mirror of PALM, in the sense
that the forward and the backward steps are not applied on the same part of the func-
tional. This led to the ASAP algorithm, whose convergence has been studied in details
in [31] for a large class of nonsmooth and nonconvex functional (among others biconvex
functionals). Like the PALM method, the ASAP algorithm yet presents two main draw-
backs: the simplicity hypothesis for the functional (to ensure that the backward step
is computable), and the convergence rate, which is empirically in O(1/K) (with K the
number of iterations).

A way to relax this assumption is to consider more general proximity operators,
typically by using the so-called Bregman distances [10, 14]. Indeed, some functions may
not be simple with respect to the usual Moreau proximity operator, but simple to a
more general one defined thanks to an adapted Bregman distance. We will show in
this paper that such a generalization can be carried out in the framework introduced in
[31]. Besides, the convergence speed issue has already been successfully tackled in the
convex optimization by using inertia [40, 23, 5, 15, 22] and for some nonconvex proximal
schemes [32, 39]. We will show in this paper that ASAP and its Bregman-distance based
generalization can also incorporate such a speed-up strategy, which leads to our proposed
method. Numerical experiments will prove that an acceleration can be observed.

Apart from the colorization problem studied in this paper, many other applications
can be concerned by the proposed accelerated scheme. Indeed, most of the joint esti-
mation problems (i.e. the estimation of two or more objects during the same process)
increasingly encountered in image processing result from the combination of the varia-
tional model of each variable, which may usually be chosen convex, so that the resulting
functional is nonconvex but still biconvex (or multiconvex), see e.g. [2, 43, 13].

The paper is organized as follows: in the next section, we present the colorization
method proposed in [34] and the associated variational model. In particular, we analyze
its regularity. Then, in Section 3, we recall some mathematical preliminaries, mainly
about subdifferential calculus and Bregman generalization of the forward-backward split-
ting. In Section 4, we introduce the general form of our proposed algorithm and discuss
its convergence properties for large classes of nonconvex nonsmooth functions. The
parameter choice is discussed in Section 5. Eventually, in Section 6, we present the
numerical application of our method for the image colorization problem, and compared
its performances with three other methods.

2 Variational Approach for Image Colorization

2.1 Variational Model

The model of [34], implemented in [37], settles on a multiple candidates selection strategy.
The model is written in the Y UV color-space, and the target image (the image to
colorize) is considered to be the luminance (Y ) channel of the expected color image.
Since they carry the color information, the aim is to compute the U and V channels of
this image from the reference (or source) image.

The method proposed in [34] estimates the U and V channels in a two-step procedure.
In the first step, for each pixel of the target image, C color candidates are selected from
the source image via a candidate extraction method (see Section 6). Then, a voting
process is run, to select one candidate among the C candidates extracted at the previous
step. Once the selection is done for each pixel, the resulting U and V channels are
combined with the luminance channel to get the expected color image.

In [34], the voting process is done in a variational framework. For any pixel x ∈ Ω,
given C chrominance candidates, denoted by ci(x), the choice of a specific candidate is
modelized thanks to a vector w(x) ∈ RC belonging to the simplex ΣC which represents
the distribution of the votes (or the likelihood) for each candidate. Thus, at the end of
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the selection process, one retains the candidate ci(x) which obtained most votes, namely
such as wi(x) is the largest coefficient of w(x). In [34], the vote vector (and thus, its
largest value) is chosen so that the resulting color image is feasible (i.e. within a given
range R := {u | u(x) = (U(x), V (x)) ∈ [Umin, Umax] × [Vmin, Vmax]}) and has a small
total variation. Thus, it has been proposed to minimize the following variational model:

J(u,w) = TVC(u) + χR(u) + χΣ(w) +
λ

2

∫
Ω

C∑
i=1

wi(x)‖u(x)− ci(x)‖2 dx. (1)

In this model, u = (U, V ) represents the chrominance channels of the sought-after color
image and x is the pixel position in the image domain Ω. λ > 0 is a scalar parameter
which controls the regularization of the results. The coupled total variation TVC(u) is
defined as follows:

TVC(u) =

∫
Ω

√
γ‖∇Y ‖2 + ‖∇u‖2 (2)

and can be seen as the smoothed by γ‖∇Y ‖2 total variation of the color image in the
Y UV space, with weight γ > 0 for the luminance channel. As shown is [34], this term
enforces the correlation between the (given) luminance variations and the (estimated)
chrominances variations. Thus, the optimization of the model in (1) yields the joint
estimation of both the weight (votes) w and the chrominance of the sought-after color
image.

As underlined in the introduction, the main difficulty of the selection process is the
optimization of (1). Indeed, it is obvious that the constraints are bounded, convex and
separable, the TVC regularizer is convex, but the coupling term is solely biconvex. Thus,
the whole functional J is biconvex, and in particular nonconvex.

2.2 Regularity of the Problem

Biconvex optimization can be handled by various algorithms. Among them, two methods
are noteworthy, namely the PALM method and the ASAP algorithm. The application
of these two methods requires simplicity and smoothness conditions of the functional
J . The critical conditions in the studied problem (1) are the smoothness of the coupled
total variation and the simplicity and/or smoothness of the coupling term.

A simple way to ensure the smoothness of the coupled total variation regularizer for
any grayscale image Y is to introduce a threshold α > 0 for the weighted gradient of
the luminance Y , namely to replace γ‖∇Y ‖2 by max{α, γ‖∇Y ‖2} in (2), so that the
resulting regularized function TVα

C has a Lipschitz continuous gradient given by

∇TVα
C(u) = − div(∇u)√

max {γ‖∇Y ‖2, α}+ ‖∇u‖2

with modulus L∇F ≤ |||∇|||2/
√
α.

In practice, given that, except in completely flat areas in the image (which is unlikely
for real noisy images), ∇Y is expected to be numerically nonnull, if α is chosen small
enough, one has the identity TVα

C(u) = TVC(u) for any u. Otherwise said, for proper
choices of α, this shows that for real images, the coupled total variation is smooth with
a Lipschitz gradient, with a modulus bounded thanks to α.

The remaining terms – the convex constraints and the coupling term – can be eas-
ily handled with standard implicit or explicit numerical schemes. Thus, both ASAP
and PALM are directly relevant for this problem. However, it is noteworthy that the
computation of the proximity operator which involves a simplex constraint may be time-
consuming, but can also be cleverly handled by generalized Bregman proximity opera-
tors.
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3 Mathematical Preliminaries

3.1 Notations

Let X and Y be real finite-dimensional spaces. The ith element of a vector or a matrix
x (seen as a vector) reads as xi. For an m× n real matrix w we denote

‖w‖ := ‖w‖F =

√∑
i,j

w2
i,j , (3)

noticing that if w is a vector (n = 1), the Frobenius norm ‖ · ‖F boils down to the `2
norm. Given a nonempty set S ⊂ X , the distance of any point x+ ∈ X to S is defined
by

dist(x+,S) := inf{‖x− x+‖ | x ∈ S},

χS(x) :=

{
0 if x ∈ S,
+∞ if x 6∈ S.

3.2 Subdifferential and Partial Subdifferentials

Let us first recall the definition of the subdifferential of a convex function.

Définition 1 Let f : Rm → R ∪ {+∞} be a proper5, convex, lower semicontinuous
(l.s.c.) function and x+ ∈ dom f . The subdifferential ∂f(x+) of f at x+ is the set of
all p ∈ Rm, called subgradients of f at x+, such that

∀ x ∈ Rm f(x) ≥ f(x+) + 〈p, x− x+〉

If x+ /∈ domh, then ∂f(x+) = ∅.

Its main interest is to characterize the minimizers x∗ (when they exist) of f , via
the well-known Fermat’s rule 0 ∈ ∂f(x∗) (which is the generalization of the first-order
optimality condition for smooth functions 0 = ∇f(x∗)). To extend this rule to noncon-
vex nonsmooth function (Proposition 1), we introduce the following extensions of the
subdifferential:

Définition 2 [41, Def. 8.3] Let f : Rm → R ∪ {+∞} be a proper function and let
x+ ∈ dom f .

1. The Fréchet subdifferential ∂̂f(x+) of f at x+ is the set of all p ∈ Rm such that

f(x) ≥ f(x+) + 〈p, x− x+〉+ o(‖x− x+‖).

2. The (limiting-)subdifferential ∂f(x+) of f at x+ is the set of all p ∈ Rm such
that there exist a sequence {xk}k∈N ∈ (Rm)N converging to x+ and a sequence
{pk}k∈N ∈ (Rm)N converging to p satisfying

∀ k ∈ N, pk ∈ ∂̂f(xk) and f(xk)→ f(x+).

If x+ /∈ dom f , then ∂̂f(x+) = ∂f(x+) = ∅.
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Remark 1 If f is convex, then the definitions of the subdifferential in Definitions 1 and
2 coincide, and ∂̂f(x) = ∂f(x) for any x ∈ dom f . If f is continuously differentiable at
x, one has ∂f(x) = {∇f(x)}.

As for smooth / convex functions, the subdifferential gives a necessary first-order
optimality condition, known as Fermat’s rule.

Proposition 1 [41, Theorem 10.1] Let f : Rm → R∪ {+∞} be a proper function. If
f has a local minimum at x∗, then 0 ∈ ∂f(x∗). Such points are called critical points,
and the set of the critical points of f is denoted by critf .

Given a proper function h : Rm × Rn → R ∪ {+∞} and (x+, y+) ∈ domh, we
define its partial subdifferentials ∂xh(x+, y+) and ∂yh(x+, y+) at (x+, y+) respectively
as the subdifferentials of the partial functions x 7→ h(x, y+) at x+ and y 7→ h(x+, y) at
y+. Unlike the differentiable case, the links between the partial subdifferentials and the
subdifferential may be quite complicated. In particular, in general, one has

∂h(x, y) 6= ∂xh(x, y)× ∂yh(x, y).

As explored in details in [31], this may make alternating schemes such as the proposed
method fail to find critical points. Another issue which may arise when dealing with
such schemes in the nonsmooth and nonconvex case is the following one. The notion of
limiting subdifferential is introduced because it brings more robustness than that of the
Fréchet subdifferential, in the sense that it satisfies the following closedness property: if
{xk}k∈N in dom f converges to x∗ ∈ dom f such that f(xk)→ f(x∗) and pk → p∗ with
pk ∈ ∂f(xk) for any k ∈ N, then one has p∗ ∈ ∂f(x∗). Such a closedness property is
usually necessary to preserve, at convergence, useful property for sequences generated
by first-order optimization schemes. However, as shown further in the convergence
analysis, the proposed scheme may need a stronger closedness property on the partial
subdifferentials.

Proposition 2 Let h : Rm ×Rn → R∪ {+∞} be a proper, biconvex function contin-
uous on its domain. Then both its x- and y-partial subdifferential are parametrically
closed at any point (x∗, y∗) ∈ domh, that is, for any sequence {(xk, yk)}k∈N which con-
verges to (x∗, y∗) such that h(xk, yk)→ h(x∗, y∗) and for any pkx → px (resp. pky → py)

with pkx ∈ ∂xh(xk, yk) (resp. pky ∈ ∂yh(xk, yk)) for any k ∈ N, one has px ∈ ∂xh(x∗, y∗)
(resp. py ∈ ∂yh(x∗, y∗)).

Proof . Let {(xk, yk)}k∈N be a sequence as in Proposition 2. Let k ∈ N. Since x 7→
h(x, yk) is a convex, l.s.c. and proper functions, the subgradient inequality (Definition 1)
leads to

∀x ∈ Rm, h(x, yk) ≥ h(xk, yk) + 〈pkx, x− xk〉,

If we let k → +∞ in the inequality above, we get by continuity

∀x ∈ Rm, h(x, y∗) ≥ h(x∗, y∗) + 〈px, x− x∗〉

which means that px is a subgradient of the convex function x 7→ h(x, y∗) at x∗. Similar
computations for the convex function y 7→ h(x, y) completes the proof. �

Note that, unlike the closedness of the subdifferential, the parametric closedness of
the partial subdifferentials may not hold for general nonconvex functions, even for quite
smooth functions (consider for instance h(x, y) =

√
xy + χR+(x) + χR+(y) at (0, 0)).
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3.3 Bregman Distances

Proximal methods have brought notable improvement in the field of continuous op-
timization, but the main issue is their applicability for general problems, due to the
noncomputability of many proximity operators. To deal with this problem, we consider
in this paper a generalization of the Moreau proximity operator, which aims at making
this operator computable in many cases, as shown in Section 6.

Définition 3 (Bregman distance6 [10]) Let b : Rm → R∪ {+∞} be a strictly con-
vex function and differentiable on int(dom b). The Bregman “distance” associated to b
is defined for any (x, y) ∈ Rm × Rm by

Db(x, y) :=

{
b(y)− b(x)− 〈∇b(x), y − x〉 if (x, y) ∈ int(dom b)× dom b

+∞ otherwise.

Remark 2 Although we refer to Db as a distance, it does not satisfy the definition of a
distance. Indeed, it does not fulfill the symmetry condition, since Db(x, y) 6= Db(y, x) in
general. However, the other properties hold. Since b is convex, Db(x, y) is nonnegative
for any (x, y) ∈ int(dom b) × dom b. The strict convexity of C also guarantees that
Db(x, y) > 0 for x 6= y.

Remark 3 For any x ∈ int(dom b), the function y 7→ Db(x, y) is convex and continuous
on dom b.

Example 1 Let us give some examples.

(a) Let M be a definite positive matrix, and let ‖x‖2M = 〈x,Mx〉. Then, D‖·‖M (x, y) =

‖x − y‖2M/2 is the Bregman distance associated to ‖ · ‖M . In particular, if M is
the identity, one recovers the Euclidean squared distance.

(b) For any m ∈ N∗, let Σm denotes the simplex of dimension m, defined by

Σm :=

{
x = (xi) ∈ Rm |

m∑
i=1

xi = 1 and xi ≥ 0

}
.

We also consider the entropy function, given by

be(x) :=


m∑
i=1

xi log xi if x ∈ Σm

+∞ otherwise,

where 0× log 0 = 0 by convention. Then, the Bregman distance associated to the
entropy function is explicitly given for (x, y) ∈ (intΣm)× Σm by

Dbe(x, y) =

m∑
i=1

yi (log yi − log xi) .

Proposition 3 Let b : Rm → R ∪ {+∞} be a strongly convex function of modulus L,
differentiable on int(dom b). Then for any (x, y) ∈ Rm × Rm, one has the following
lower bound:

Db(x, y) ≥ L

2
‖x− y‖2. (4)
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Proof . The proof is a direct consequence of the strong convexity. �
The following lemma will be further used in proofs.

Lemma 1 ([4]) Let b : Rm → R∪{+∞} be a strictly convex function and differentiable
on int(dom b). Then, one has the following identity for any three points x, y ∈ int(dom b)
and z ∈ dom b:

Db(x, z) +Db(y, x)−Db(y, z) = 〈z − x,∇b(y)−∇b(x)〉.

3.4 Bregman Proximal Gradient Descent

In this section, we will introduce a generalization of well-known Forward-Backward Split-
ting (FBS) based on a generalization of the Moreau proximity operator that uses the
Bregman distances introduced above. This generalization was initially introduced in
[14].

Définition 4 Let b : Rm → R ∪ {+∞} be a strictly convex function and differentiable
on int(dom b). Let h : Rm → R ∪ {+∞} be a proper function and let f : Rm → R be a
differentiable function. Then we define for any (u, v) ∈ int(dom b)× Rm

Pbh(u;∇f(v)) := arg min
x∈Rm

{
h(x) + 〈x− u,∇f(v)〉+Db(u, x)

}
. (5)

When b = ‖ · ‖ is the Frobenius norm, the optimization problem (5) when u = v is
equivalent to the FBS or proximal gradient descent applied to h+ f .

Remark 4 If h is a proper convex function and if b is strongly convex, Pbh(u;∇f(v))
is nonempty. Indeed, the function involved in (5) is convex and lowerbounded by a
strongly convex function. Hence, it is coercive and thus admits at least a minimizer on
its domain.

The following proposition is a descent-like property for the Bregman FBS.

Proposition 4 Let b : Rm → R∪{+∞} be a strictly convex function and differentiable
on int(dom b). Let h : Rm → R∪ {+∞} be a proper convex function and let f : Rm →
R be a continuously differentiable function, with L∇f -Lipschitz continuous gradient.
Then, for any u ∈ int(dom b) and any τ > 0, if x+ ∈ Pbτh(u; τ∇f(v)), one has for any
x ∈ Rm

h(x+) + f(x+) +
1

τ

(
Db(u, x

+) +Db(x
+, x)

)
≤ h(x) + f(x) +

1

τ
Db(u, x) +

L∇f + s

2
‖x− x+‖2 +

L2
∇f

2s
‖x− v‖2.

Before giving the proof of Proposition 4, let us recall two useful lemmas.

Lemma 2 (Descent lemma [6]) Let f : Rm → R be a differentiable function with
L∇f -Lipschitz continuous gradient. Then, for any (x, u) ∈ Rm × Rm, one has

f(x) ≥ f(u)− 〈u− x,∇f(x)〉 − L∇f
2
‖x− u‖2. (6)

Lemma 3 (Young inequality) For any s > 0,

〈x, y〉 ≤ s

2
‖x‖2 +

1

2s
‖y‖2.
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Proof of Proposition 4. Fermat’s rule for (5) yields

−∇f(v)− ∇b(x
+)−∇b(u)

τ
∈ ∂h(x+).

By definition of the subgradient of a convex function, one has for any x ∈ Rm

h(x+)−
〈
x− x+,∇f(v) +

∇b(x+)−∇b(u)

τ

〉
≤ h(x).

Applying Lemma 1 with (x, y, z) = (x+, u, x), we get

h(x+)− 〈x− x+,∇f(v)〉+
1

τ

(
Db(x

+, x) +Db(u, x
+)−Db(u, x)

)
≤ h(x).

Adding (6) with u = x+, using Lemma 3 with some s > 0 to bound the scalar product
and using the Lipschitz continuity of ∇f then yields the desired result. �

4 Proposed Algorithm

4.1 Optimization Problem

We consider the following two-block unconstrained optimization problem

min
(x,y)∈X×Y

J(x, y) := F (x) +G(y) +H(x, y). (7)

We assume that the objective function J satisfies some of the following assumptions:

Assumptions (H1)

(a) J : X × Y → R ∪ {+∞} is lower bounded;

(b) F : X → R and G : Y → R are continuously differentiable, and their gradients are
Lipschitz continuous, of modulus L∇F and L∇G, respectively;

(c) H : X × Y → R ∪ {+∞} is proper, l.s.c. and lower bounded.

Assumptions (H2)

(a) H is continuous on its closed domain;

(b) For any (x, y) ∈ domH, the partial subdifferentials satisfy ∂xH(x, y)×∂yH(x, y) ⊂
∂H(x, y);

(c) H is biconvex, i.e. x 7→ H(x, y) is convex for any y ∈ Y and y 7→ H(x, y) is convex
for any x ∈ X .

Remark 5 From Assumptions (H1) and (H2), J is continuous on its closed domain
dom J = domH, which means that for any convergent sequence {(xk, yk)}k∈N in dom J
with limit (x∗, y∗) ∈ dom J , one has J(xk, yk)→ J(x∗, y∗).

Example 2 Assumption (H2)(b) is satisfied as soon as H is differentiable, or additively
separable, or a sum of such functions. Otherwise said, Assumption (H2)(b) holds true if

H(x, y) = h(x, y) + f(x) + g(y),

with h differentiable, f and g proper l.s.c. functions.
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Assumptions (H3) H : X × Y → R ∪ {+∞} can be split into H(x, y) = h(x, y) +
f(x) + g(y), where

(a) f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} are continuous on their domain;

(b) h : X × Y → R is continuous;

(c) x 7→ h(x, y) is continuously differentiable for any y ∈ dom g. Moreover, y 7→
∇xh(x, y) locally Lipschitz continuous on dom f , in the sense that for each bounded
subset BX×BY ⊂ dom f×dom g, there is a constant ξ > 0 such that for any x ∈ BX
and (y, y′) ∈ B2

Y , one has

‖∇xh(x, y)−∇xh(x, y′)‖ ≤ ξ ‖y − y′‖.

Obviously, (H3)(c) holds for Lipschitz continuously differentiable functions h. In this
case, (H2) holds as soon as (H3) is satisfied (according to Example 2).

Assumption (H4) The function J satisfies the Kurdyka- Lojasiewicz (K L) property
on every point (x+, y+) of its domain, namely there exist η ∈ (0,+∞], a neighborhood
O(x+, y+) of (x+, y+) and κ > 0 such that for any (x, y) ∈ O(x+, y+) ∩Nη(J(x+, y+))

κ dist(0, ∂J(x, y)) ≥
∣∣J(x, y)− J(x+, y+)

∣∣θ , (8)

where θ ∈ [0, 1) and Nη(t) := J−1
(
(t, t+ η)

)
.

Remark 6 Assumption (H4) is crucial to prove strong convergence for nonconvex and
nonsmooth optimization schemes such as [8]. The main apparent difficulty is to verify
that the functional J fulfills (8). In practice, it is sufficient to show that they are
subanalytic [9, Theorem 3.1], e.g., sums of lower-bounded semi-algebraic or real-analytic
functions [42, Chapter II.1] and/or compositions [19, Prop. 2.46] of such functions
provided they preserve boundedness.

As shown in the analysis below, adding hypotheses on the optimization problem (7)
leads to stronger convergence results for the proposed method. For the sake of simplicity,
we will mainly focus on the case where H is biconvex7. However, the hypotheses (H2)
and (H3) given in this paper can be relaxed while yielding same convergence results.
The interested reader may see [31] for more details.

4.2 Inertial Bregman Alternating Structure-Adapted Proximal
Gradient Descent

We can now introduce the general form of the proposed algorithm in Algorithm 1.
It basically consists in alternating partial (block) minimization steps, each step being
decomposed into two overrelaxation (inertial) steps (in the spirit of the strategy proposed
by Nesterov for projected gradient descent), followed by a Bregman FBS.

When bX and bY are Frobenius norm, αk1 = αk2 = βk1 = βk2 = 0 (no relaxation) and
(τk, σk) = (τ, σ) (constant stepsizes), one recovers the ASAP (Alternating Structure-
Adapted Proximal gradient descent) algorithm introduced in [31]. Thus, the proposed
scheme can be seen as an inertial Bregman generalization of ASAP with varying stepsizes.

Remark 7 Let us make some preliminary remarks about Algorithm 1.

(a) If x̂k ∈ int(dom bX ), then xk+1 ∈ dom bX , and if ŷk ∈ int(dom bY), then yk+1 ∈
dom bY .

7Note that the biconvexity of the whole objective J is not required in our analysis, and that for some
weak convergence results, it is even not needed for the coupling term H.
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Algorithm 1 Inertial Bregman ASAP

Input: bX : X → R ∪ {+∞} and bY : Y → R ∪ {+∞} strictly convex, differentiable on
int(dom bX ) and int(dom bY) respectively. Choose (x0, y0) ∈ (int(dom bX )×Y)∩dom J .
Let x−1 = x0 and y−1 = y0.

for all k ≥ 0, do

x̄k = xk + αk1 (xk − xk−1), (9)

x̂k = xk + αk2 (xk − xk−1), (10)

xk+1 ∈ PbX
τkH(·,yk)

(x̂k; τk∇F (x̄k)); (11)

ȳk = yk + βk1 (yk − yk−1), (12)

ŷk = yk + βk2 (yk − yk−1), (13)

yk+1 ∈ PbY
σkH(xk+1,·)(ŷ

k;σk∇G(ȳk)). (14)

end for

(b) If bX and bY are strongly convex and H lower bounded, then (11) and (14) admit
at most one solution. The solution is uniquely defined iff the function minimized
in the cited problems are not identically equal to +∞, that is, iff there exists
(x, y) ∈ X × Y such that (x, yk), (xk+1, y) ∈ domH.

In order to ensure that the iterations in Algorithm 1 are well-defined and to prove
convergence results, we need to make some assumptions on the algorithm parameters,
i.e. on the choice of the Bregman distances (bX , bY) (Assumptions (A1)–(A2)), the
inertial parameters {(αk1 , αk2 , βk1 , βk2 )}k∈N (Assumptions (A2)–(A3)), and the stepsizes
{(τk, σk)}k∈N (Assumptions (A3)).

Assumptions (A1)

(a) bX : X → R ∪ {+∞} and bY : Y → R ∪ {+∞} are continuously differentiable on
int(dom bX ) and int(dom bY), respectively;

(b) bX and bY are strongly convex of respective modulus LX and LY .

Note that all Assumptions (A1) hold when bX and bY are defined thanks to a norm
‖ · ‖M .

Assumptions (A2)

(a) If dom bX 6= X (resp. dom bY 6= Y), then αk2 = 0 (resp. βk2 = 0) for any k ∈ N.

(b) If αk2 > 0 (resp. βk2 > 0), then ∇bX (resp. ∇bY) is Lipschitz continuous of modulus
L∇bX (resp. L∇bY ).

Assumption (A2)(a) guarantees that the overrelaxed sequences {x̂k}k∈N and {ŷk}k∈N
stay in int(dom bX ) and int(dom bY) respectively, so that the iterates {(xk, yk)}k∈N are
well-defined (see Remark 4).

Assumptions (A3) Let {sk}k∈N and {tk}k∈N be two sequences of positive numbers.
Set for any k ≥ 1

BkX :=
L2
∇F (αk1)2

2 sk
+

L2
∇bXα

k
2

2 τk
≥ 0 and BkY :=

L2
∇G (βk1 )2

2 tk
+

L2
∇bYβ

k
2

2σk
≥ 0
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(if ∇bX is not Lipschitz continuous and αk2 = 0, then we set L2
∇bXα

k
2 = 0 by convention;

same for L2
∇bYβ

k
2 ) and

AkX :=
2LX − αk−1

2

2 τk
− L∇F + sk−1

2
and AkY :=

2LY − βk−1
2

2σk
− L∇G + tk−1

2
.

Assume that τk, σk, sk, tk > 0 and αk1 , α
k
2 , β

k
1 , β

k
2 ≥ 0 are chosen such that

ρX := inf
k

{
AkX −BkX

}
> 0, ρY := inf

k

{
AkY −BkY

}
> 0

and let ρ := min{ρX , ρY}.
Remark 8 For any αk1 , α

k
2 , β

k
1 , β

k
2 ≥ 0 and sk, tk > 0, the quantities BkX and BkY are

nonnegative. Moreover, they cancel iff αk1 = αk2 = 0 and βk1 = βk2 = 0 respectively.
Hence, when Assumptions (A3) hold, AkX and AkY are necessarily positive and upper
bounded.

Eventually, we introduce the following assumption:

Assumption (A4) Assume that τk, σk, sk, tk > 0 and αk1 , α
k
2 , β

k
1 , β

k
2 ≥ 0 are chosen

such that
inf
k
AkX > sup

k
BkX and inf

k
AkY > sup

k
BkY

with AkX , AkY , BkX and BkY defined in Assumption (A4).
It is obvious that Assumption (A4) is a particular case of Assumptions (A3). When

all the sequences involved in Assumption (A4) are chosen constant, (A3) and (A4) are
equivalent.

4.3 Convergence Analysis

Proposition 5 (Objective convergence) Let Assumptions (H1), (A1)–(A3) hold.
Let {(xk, yk)}k∈N be a sequence generated by Algorithm 1. Then the following assertions
hold:

(a) For every k ≥ 1, one has

J(xk+1, yk+1) +AkX ‖xk+1− xk‖2 +AkY‖yk+1− yk‖2

≤ J(xk, yk) +BkX ‖xk− xk−1‖2 +BkY‖yk− yk−1‖2

(b) lim
k→∞

‖xk−1 − xk‖ = 0 and lim
k→∞

‖yk+1 − yk‖ = 0.

(c) The sequence {J(xk, yk)}k∈N is convergent.

Proof . (a) Let k ≥ 1. Applying Proposition 4 with b = bX , h = H(·, yk), f = F ,
x+ = xk+1, x = xk, u = x̂k, v = x̄k, and s = sk > 0 yields

J(xk+1, yk) +
1

τk

(
DbX(x̂k, xk+1) +DbX(xk+1, xk)

)
≤ J(xk, yk) +

1

τk
DbX(x̂k, xk) +

L∇F + sk
2

‖xk − xk+1‖2 +
L2
∇F

2sk
‖xk − x̄k‖2

By definition of x̂k and x̄k, one has xk − x̄k = αk1(xk − xk−1). Hence, the inequality
above also reads

J(xk+1, yk) +
1

τk

(
DbX(x̂k, xk+1) +DbX(xk+1, xk)

)
− L∇F + sk

2
‖xk − xk+1‖2 (15)

≤ J(xk, yk) +
1

τk
DbX(x̂k, xk) +

L2
∇F (αk1)2

2sk
‖xk − xk−1‖2.

12



Using Proposition 1 with x = xk, y = x̂k, and z = xk+1, we then get

J(xk+1, yk) +
1

τk

(
DbX(xk, xk+1) +DbX(xk+1, xk)

)
− L∇F + sk

2
‖xk − xk+1‖2

≤ J(xk, yk) +
L2
∇F (αk1)2

2sk
‖xk − xk−1‖2 +

1

τk
〈∇b(x̂k)−∇b(xk), xk+1 − xk〉.

First assume that αk2 > 0. Then, Lemma 3 along with the Lipschitz continuity of ∇bX
yield

J(xk+1, yk) +
1

τk

(
DbX(xk, xk+1) +DbX(xk+1, xk)

)
− L∇F + sk

2
‖xk − xk+1‖2

≤ J(xk, yk) +
L2
∇F (αk1)2

2sk
‖xk − xk−1‖2 +

1

τk

(
L2
∇bX

2αk2
‖x̂k − xk‖2 +

αk2
2
‖xk+1 − xk‖2

)
.

Then, noticing that x̂k−xk = αk2(xk−1−xk) and rearranging the terms in the inequality
above lead to

J(xk+1, yk) +
1

τk

(
DbX(xk, xk+1) +DbX(xk+1, xk)

)
−
(

L∇F + sk
2

+
αk2
2τk

)
‖xk+1 − xk‖2

≤ J(xk, yk) +

(
L2
∇F (αk1)2

2sk
+

L2
∇bXα

k
2

2τk

)
‖xk − xk−1‖2. (16)

If αk2 = 0, (15) and (16) are the same, so (16) holds whenever αk2 ≥ 0. Now, since bX is
LX -convex, one can lowerbound the previous inequality using (4), which gives:

J(xk+1, yk) +

(
2LX − αk2

2τk
− L∇F + sk

2

)
‖xk+1 − xk‖2

≤ J(xk, yk) +

(
L2
∇F (αk1)2

2sk
+

L2
∇bXα

k
2

2τk

)
‖xk − xk−1‖2.

Using the notations introduced in Assumptions (A2), one finally gets

J(xk+1, yk) +AkX ‖xk+1 − xk‖2 ≤ J(xk, yk) +BkX ‖xk − xk−1‖2. (17)

Similar computations yield

J(xk+1, yk+1) +AkY ‖yk+1 − yk‖2 ≤ J(xk+1, yk) +BkX ‖yk − yk−1‖2. (18)

Summing (17) and (18) then yields (a).
(b) Since AkX > BKX ≥ 0 and AkY > BKX ≥ 0, summing the inequality (a) for k = 0 to
k = K − 1 yields

J(xK , yK) +

K−1∑
k=0

(
AkX ‖xk+1 − xk‖2 +AkY‖yk+1 − yk‖2

)
≤ J(x0, y0).

Using that J(xK , yK) is lower bounded by inf J ∈ R and that AkX , A
k
Y ≥ ρ > 0 yields

that the series
∑
‖xk+1 − xk‖2 and

∑
‖yk+1 − yk‖2 converge. Thus, the sequences

{‖xk+1 − xk‖}k∈N and {‖yk+1 − yk‖}k∈N converge to zero.
(c) Since AkX > BKX ≥ 0 and AkY > BKY ≥ 0, the inequality (a) implies that the sequence

{J(xk, yk) +BkX ‖xk − xk−1‖2 +BkY ‖yk − yk−1‖2}k∈N is nonincreasing. Moreover, it is

lower bounded, as J is. Thus it converges. According to the previous point, {‖xk+1 −
xk‖}k∈N and {‖yk+1 − yk‖}k∈N converge to zero. Thus, {J(xk, yk)}k∈N converges as
well. �
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Remark 9 Unlike the ASAP method, Algorithm 1 may generate objective-convergent
sequences which are not monotone.

The set of all limit points of a sequence {(xk, yk)}k∈N generated by Algorithm 1
starting from a point (x0, y0) is denoted by L(x0, y0).

Proposition 6 (Subsequential convergence to critical points) Let Assump-
tions (H1), (H2) and (A1)–(A3) hold and let {(xk, yk)}k∈N be a sequence generated
by Algorithm 1 which is assumed to be bounded. Let (x∗, y∗) ∈ L(x0, y0).

(a) there is a subsequence (xkj , ykj )j∈N converging to (x∗, y∗) as j →∞;

(b) lim
k→∞

J(xk, yk) = J(x∗, y∗);

(c) (0, 0) ∈ ∂J(x∗, y∗) and thus (x∗, y∗) is a critical point of J .

(d) lim
k→∞

dist((xk, yk), critJ) = 0.

Proof . (a) is a consequence of the boundedness assumption.
(b) Since J is continuous on its closed domain, and (xk, yk) ∈ domH = dom J (since
there are defined as minimizers), one has that (xkj , ykj )→ (x∗, y∗) ∈ dom J and

lim
j→∞

J(xkj , ykj ) = J(x∗, y∗).

(c) Using Fermat’s rule on the definition of xk+1 and yk+1 yields after rearrangement

qk+1
x := ∇F (xk+1)−∇F (x̄k)− ∇bX (xk+1)−∇bX (x̂k)

τk

∈ ∇F (xk+1) + ∂xH(xk+1, yk) = ∂xJ(xk+1, yk)

pk+1
y := ∇G(yk+1)−∇G(ȳk)− ∇bY(yk+1)−∇bY(ŷk)

σk

∈ ∇G(yk+1) + ∂yH(xk+1, yk+1) = ∂yJ(xk+1, yk+1).

Note that, according to Proposition 5(b), one has

xk+1 − x̄k = xk+1 − xk − αk1(xk − xk−1)→ 0

xk+1 − x̂k = xk+1 − xk − αk2(xk − xk−1)→ 0

yk+1 − ȳk = yk+1 − yk − βk1 (yk − yk−1)→ 0

yk+1 − ŷk = yk+1 − yk − βk2 (yk − yk−1)→ 0

Then, the Lipschitz continuity of ∇F , ∇G, ∇bX , and ∇bY implies that qkx → 0 and pky →
0. One eventually gets the desired result by applying Proposition 2 with the subsequences
{qkjx }j and {pkjy }j , and using that, by hypothesis, ∂xJ(x∗, y∗)×∂yJ(x∗, y∗) ⊂ ∂J(x∗, y∗).

(d) Suppose that {dist((xk, yk), critJ)}k∈N does not go to zero as k → ∞. Then there
exist M > 0 and (kj)j∈N such that for any j ∈ N, dist

(
(xkj , ykj ), critJ

)
> M . However,

since {(xkj , ykj )}j∈N is a subsequence of the bounded sequence {(xk, yk)}k∈N, it has
convergent subsequence {(xkjn , ykjn )}n of limit (x∗, y∗) ∈ critJ (according to (c)). Thus,

M < dist
(
(xkjn , ykjn ), critJ

)
≤ ‖(xkjn , ykjn )− (x∗, y∗)‖ −→

n→∞
0

which leads to a contradiction. �
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Remark 10 If dom J is bounded, then all the sequences generated by Algorithm 1 are
bounded.

To prove the strong convergence of the iterates generated by Algorithm 1, we need to
make additional assumptions and to prove some preliminaries lemmas. First introduce
the following notations for εx, εy ≥ 0 and X = (x1, x2) ∈ U2 and Y = (y1, y2) ∈ V 2:

Ψ(εx,εy)(X,Y ) := J(x1, y1) + εx ‖x1 − x2‖2 + εy ‖y1 − y2‖2.

Assume that Assumption (A4) holds. Then, one can assume that

inf
k
AkX > εx > sup

k
BkX and inf

k
AkY > εy > inf

k
BkY (19)

Corollaire 1 Let Assumptions (H1) and (A1)–(A4) hold. Let {(xk, yk}k∈N be a
sequence generated by Algorithm 1. For any k ≥ 0, set Xk = (xk, xk−1) and Y k =
(yk, yk−1). Then, there exists a > 0 such that

Ψ(εx,εy)(X
k+1, Y k+1) + a

∥∥(Xk+1 −Xk, Y k+1 − Y k)
∥∥2 ≤ Ψ(εx,εy)(X

k, Y k)

where (εx, εy) satisfies (19).

Proof . According to Proposition 5(a), one has

J(xk+1, yk+1) + εx ‖xk+1 − xk‖2 + εy ‖yk+1 − yk‖2 + (AkX − εx) ‖xk+1 − xk‖2

+(εx −BkX ) ‖xk − xk−1‖2 + (AkY − εy) ‖yk+1 − yk‖2 + (εy −BkX ) ‖yk − yk−1‖2

≤ J(xk, yk) + εx ‖xk − xk−1‖2 + εy ‖yk − yk−1‖2

Thus, one can choose a := inf
k
{AkX − εx, εx − BkX , AkY − εy, εy − BkY}, which is positive

according to (19). �

Corollaire 2 Let Assumptions (H1)–(H3) and (A1)–(A3) hold. Let {(xk, yk)}k∈N be
a sequence generated by Algorithm 1 which is assumed to be bounded. Then for any
k ≥ 0 one has (pk+1

x , pk+1
y ) ∈ ∂J(xk+1, yk+1) and ξ > 0 such that

‖pk+1
x ‖ ≤

(
L∇F +

L∇bX
τk

)
‖xk+1 − xk‖

+

(
L∇F α

k
1 +

L∇bX
τk

αk2

)
‖xk − xk−1‖+ ξ ‖yk − yk+1‖

‖pk+1
y ‖ ≤

(
L∇G +

L∇bY
σk

)
‖yk+1 − yk‖

+

(
L∇G β

k
1 +

L∇bY
σk

βk2

)
‖yk − yk−1‖.

Proof . Since J(x, yk) = F (x)+h(x, yk)+f(x)+constant, with x 7→ h(x, yk) continuously
differentiable, simple subdifferential calculus shows that

∂xJ(xk+1, yk) = ∇F (xk+1) +∇xh(xk+1, yk) + ∂f(xk+1)

= ∇F (xk+1) +∇xh(xk+1, yk+1) + ∂f(xk+1)

+∇xh(xk+1, yk)−∇xh(xk+1, yk+1).
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Hence, using the notations introduced in the proof of Proposition 6(c), one has (pk+1
x , pk+1

y ) ∈
∂J(xk+1, yk+1) with

pk+1
x := qk+1

x −∇xh(xk+1, yk) +∇xh(xk+1, yk+1)

which satisfies the following bounds

‖pk+1
x ‖ ≤

∥∥∇F (xk+1)−∇F (x̄k)
∥∥+

1

τk

∥∥∇bX (xk+1)−∇bX (x̂k)
∥∥

+
∥∥∇xh(xk+1, yk)−∇xh(xk+1, yk+1)

∥∥
‖pk+1
y ‖ ≤

∥∥∇G(yk+1)−∇G(ȳk)
∥∥+

1

σk

∥∥∇bY(yk+1)−∇bY(ŷk)
∥∥ .

Using the Lipschitz continuity of ∇F , ∇G, ∇bX , ∇bY , and the local Lipschitz continuity
of ∇xh ({(xk, yk)}k∈N being bounded by assumption), one shows that there exists ξ > 0
such that

‖pk+1
x ‖ ≤ L∇F ‖xk+1 − x̄k‖+

L∇bX
τk
‖xk+1 − x̂k‖

+ξ ‖yk − yk+1‖

‖pk+1
y ‖ ≤ L∇G ‖yk+1 − ȳk‖+

L∇bY
σk
‖yk+1 − ŷk‖

and one completes the proof using the definition of the relaxed sequences. �
The following corollary shows that Algorithm 1 generates a sequence of subgradient

which can be bounded.

Corollaire 3 Let Assumptions (H1)–(H3) and (A1)–(A3) hold. Let {(xk, yk}k∈N be
a sequence generated by Algorithm 1 which is assumed to be bounded. For any k ≥ 0,
set Xk = (xk, xk−1) and Y k = (yk, yk−1). Then there exists ξ > 0 such that for any
k ≥ 0 one has P k+1 ∈ ∂Ψεx,εy (Xk+1, Y k+1) such that

‖P k+1‖ ≤ ξ
∥∥(Xk+1 −Xk, Y k+1 − Y k)

∥∥
where (εx, εy) satisfies (19).

Proof . First note that, for anyX = (x1, x2) ∈ X 2 and Y = (y1, y2) ∈ Y2, ∂XΨεx,εy (X,Y )

is the set of all PX = (pX,1, pX,2) ∈ X 2 such that{
pX,1 ∈ ∂xJ(x1, y1) + 2 εx (x1 − x2)

pX,2 = −2 εx (x1 − x2)

while ∂Y Ψεx,εy (X,Y ) is the set of all PY = (pY,1, pY,2) ∈ Y2 such that{
pY,1 ∈ ∂yJ(x1, y1) + 2 εy (y1 − y2)

pY,2 = −2 εy (y1 − y2)

Moreover, Ψεx,εy (X,Y ) can be split into

Ψεx,εy (X,Y ) = S(X,Y ) +N(X,Y )

with S(X,Y ) = F (x1) +G(y1) +h(x1, y1) + εx ‖x1−x2‖2 + εy ‖y1− y2‖2 a continuously
differentiable function and N(X,Y ) = f(x1) + g(y1) which is separable. Thus, one can
check that

∂XΨεx,εy (X,Y )× ∂Y Ψεx,εy (X,Y ) = ∂Ψεx,εy (X,Y )
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Hence, one has P k+1 ∈ ∂Ψεx,εy (Xk+1, Y k+1) when setting

P k+1 :=
(
pk+1
x ,−2 εx (xk+1 − xk), pk+1

y ,−2 εy (yk+1 − yk)
)
.

Let us bound P k+1. Pythagora’s theorem yields

‖P k+1‖2 = ‖pk+1
x ‖2 + 4 ε2

x ‖xk+1 − xk‖2 + ‖pk+1
y ‖2 + 4 ε2

y ‖yk+1 − yk‖2.

Using that (a + b)2 ≤ a2/2 + b2/2 (Lemma 3 with s = 2), together with the bounds in
Corollary 2 yields

‖P k+1‖2 ≤

(
1

4

(
L∇F +

L∇bX
τk

)2

+ 4 ε2
x

)
‖xk+1 − xk‖2

+
1

4

(
L∇F α

k
1 +

L∇bX
τk

αk2

)2

‖xk − xk−1‖2

+

(
1

2

(
L∇G +

L∇bY
σk

)2

+
1

2
ξ2 + 4 ε2

y

)
‖yk+1 − yk‖2

+
1

2

(
L∇G β

k
1 +

L∇bY
σk

βk2

)2

‖yk − yk−1‖2.

Choosing

ξ2 = max

{
1

4

(
L∇F +

L∇bX
τk

)2

+ 4 ε2
x,

1

4

(
L∇F α

k
1 +

L∇bX
τk

αk2

)2

,

1

2

(
L∇G +

L∇bY
σk

)2

+
1

2
ξ2 + 4 ε2

y,
1

2

(
L∇G β

k
1 +

L∇bY
σk

βk2

)2
}

completes the proof. �

Proposition 7 (Strong convergence) Let Assumptions (H1)–(H4) and (A1)–(A4)
hold. Let {(xk, yk}k∈N be a sequence generated by Algorithm 1 which is assumed to be
bounded. Then {(xk, yk}k∈N is a convergent Cauchy sequence.

Proof . For any k ≥ 0, set Xk = (xk, xk−1) and Y k = (yk, yk−1). Then the sequence
{Ψεx,εy (Xk, Y k)}k∈N satisfies the three conditions needed in [1, Theorem 2.9], namely

(a) sufficient decrease condition (Corollary 1);

(b) relative error condition (Corollary 3);

(c) continuity condition ({(Xk, Y k)}k∈N is bounded).

Eventually, one may check that Ψεx,εy is K L whenever the objective function J is. �

5 Inertial Parameter Choice

In this section, we detail some feasible choices for the algorithm parameters so that
Assumptions (A1)–(A4) are satisfied. We focus here on the constant case and also give
some trick to allow large inertial parameters along with large stepsizes.
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5.1 Constant Case

Consider the case when all the parameters are constant. Then, set

B0
X :=

L2
∇F (α1)2

2 s
+

L2
∇bXα2

2 τ
≥ 0 and B0

Y :=
L2
∇G (β1)2

2 t
+

L2
∇bYβ2

2σ
≥ 0

(we recall that if ∇bX is not Lipschitz continuous and α2 = 0, then L2
∇bXα2 = 0 by

convention; same for L2
∇bYβ2) and

A0
X :=

2LX − α2

2 τ
− L∇F + s

2
and A0

Y :=
2LY − β2

2σ
− L∇G + t

2

In this case, Assumption (A3) reduces to find τ, σ, α1, α2, β1, β2 > 0 and s, t > 0 such
that

ρX := A0
X −B0

X > 0 and ρY := A0
Y −B0

Y > 0

According to [39], we may first choose (s, t) and the best choice is that which maxi-
mizes the upperbound for J(xk+1, yk+1)−J(xk, yk), namely that which maximizes both

L∇F + s

2
‖xk+1 − xk‖2 +

L2
∇F (α1)2

2 s
‖xk − xk−1‖2

and
L∇G + t

2
‖yk+1 − yk‖2 +

L2
∇G (β1)2

2 t
‖yk − yk−1‖2

Thus, the best choice for (s, t) is given by(
L∇F α1

‖xk − xk−1‖
‖xk+1 − xk‖

,L∇G β1
‖yk − yk−1‖
‖yk+1 − yk‖

)
According to [39], we may choose

s = L∇F α1 and t = L∇G β1

Thus, one has to find α1, α2, β1, β2 > 0 such that

2− α2

τ
−L∇F (1+α1) >

α2

τ
+L∇F α1 and

2− β2

σ
−L∇G (1+β1) >

β2

σ
+L∇G β1

i.e.

2

τ
> L∇F + 2

(α2

τ
+ L∇F α1

)
and

2

σ
> L∇G + 2

(
β2

σ
+ L∇G β1

)
Note that, since the left-hand side terms are nonnegative, this implies that τ and σ
should be chosen so that τ < 2/L∇F and σ < 2/L∇G. One has

ρkx =
2

τ
− L∇F − 2

(α2

τ
+ L∇F α1

)
and ρky =

2

σ
− L∇G − 2

(
β2

σ
+ L∇G β1

)
Let us consider two simple cases, namely the case where α1 = α2 =: α (resp. β1 =

β2 =: β) and the the case where α1 = 0 and α2 =: α (resp. β1 = 0 and β2 =: β). In the
first case, the feasibility conditions are

ρX =
2

τ
−L∇F −2α

(
1

τ
+ L∇F

)
> 0 and ρY =

2

σ
−L∇G −2β

(
1

σ
+ L∇G

)
> 0

which means that, for given stepsizes,

1 ≥ 2/τ − L∇F
2/τ + 2 L∇F

> α ≥ 0 and 1 ≥ 2/σ − L∇G
2/σ + 2 L∇G

> β ≥ 0
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Given the idea that the inertial parameters should be as large as possible (within a
reasonable range) to have a visible effect on the algorithm convergence, one can choose
for instance

α∗(τ) = 0.999× 2/τ − L∇F
2/τ + 2 L∇F

and β∗(σ) = 0.999× 2/σ − L∇G
2/σ + 2 L∇G

Then, we see that, the larger the stepsizes, the smaller the inertial parameters, since

α∗(τ) ≈ 0.999× 2/τ − L∇F
3 L∇F

and β∗(σ) ≈ 0.999× 2/σ − L∇G
3 L∇G

In the second case, the feasibility conditions become

1− τL∇F
2

> α and 1− σL∇G
2

> β

One can see that, once again, these upperbounds decrease to zero as the stepsizes increase
to their maximum values.

5.2 Adaptive Choice for Larger Inertial Parameters

For some problems, the feasible sets for inertial parameters leads to either small stepsizes
(τ, σ) or small inertial parameters (α, β) (in the constant parameter cases). In both cases,
the convergence is ensured by the results in the previous section, but the overrelaxation
does not enhance the observed convergence rate.

However, it may happen that larger inertial parameters than those allowed by the
feasibility set lead in practice to empirical convergence. In particular, some none-null
large inertial parameters (e.g. α = 1) can be chosen along with large stepsizes (i.e.
close to their upperbound), which is theoretically not permitted by the analysis in the
previous subsection. In order to guarantee convergence in such cases, the following trick
may be applied.

In what follows, we consider the case when (αk1 , β
k
1 ) = (0, 0) and (αk2 , β

k
2 ) = (αk, βk).

Suppose that empirical convergence is observed for (α, β) = (1, 0). The idea is to adopt
the following update rule for the inertial parameters: for any k, one set βk = 0 and

αk =

1 while ‖(xk+1, yk+1)− (xk, yk)‖ ≤M (1− ε)k

0.999×
(

1− τ L∇F
2

)
otherwise

(20)

for given M > 0 and ε ∈ (0, 1). Then, two cases can occur:

(a) for any k, αk = 1. This means that ‖(xk+1, yk+1) − (xk, yk)‖ ≤ M (1 − ε)k, that
is, (xk, yk)k∈N is a Cauchy sequence, thus it converges.

(b) there exists a k0 such that

‖(xk0+1, yk0+1)− (xk0 , yk0)‖ ≤M (1− ε)k0

In this case, the choice for αk is feasible for k ≥ k0. Since the convergence results
are asymptotic, this implies that all the convergence results stated in the previous
section hold. In particular, under the proper hypotheses, (xk, yk)k∈N converges.

Note that if the quantities M and ε are chosen so that M is large enough and 1 − ε is
close enough to 1, the condition ‖(xk+1, yk+1) − (xk, yk)‖ ≤ M (1 − ε)k may hold for
a sufficient number of iterations. This means that, in practice, one can always choose
αk = 1 at least for the first iterations, without compromising the asymptotic convergence
properties of the algorithm.
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6 Numerical experiments

We recall that the studied colorization method consists in two steps: the candidate
extraction step, which aims at extracting from the source image C color candidates
for each pixel, and the candidate selection step via a vote process, which selects the
best candidate under regularity assumptions, in the variational approach described in
Section 2.

6.1 Candidate Extraction

As described in [11], for each pixel of the target image, a patch-based method is used to
extract color candidates. Basically, the algorithm searches in the Y channel of the source
image the closest patch with respect to a given criterion. The U and V chrominance
channels corresponding to the pixel center of this retained patch is considered as a
possible candidate. To speed-up the search of candidates, PatchMatch algorithm [3]
has been implemented in [37]. The criterion used for the comparisons of the patches
have been chosen experimentally, inspired from [11]. The number and the variety of the
criterion have been reduced from the original version, because it has been experimentally
observed in the work of [37] that some criterion were especially low to compute and do
not increase significantly the quality of the results. In the experiments, we have focused
on four criterion:

• SSD (Euclidean norm) between patches with size 5×5;

• absolute difference between standard-deviation of patches with size 3×3 and 5×5;

• L1-norm between cumulative histograms (15 bins) of patches with size 11×11.

Applying these criterion provide four (C = 4) candidates. Let us remark that this
candidate number is not restricted by the model of [34] but by computational time
considerations.

6.2 Candidate Selection

As discussed in Section 2, Model (1) fits with Model (7) with the following identifications:

F (u) = TVα
C(u), G(w) = 0

and

H(u,w) =
λ

2

∫
Ω

C∑
i=1

wi(x)‖u(x)− ci(x)‖22 dx+ χR(u) + χΣ(w)

In our implementation, the discrete version of ∇u = (∂xU, ∂yU, ∂xV, ∂yV ) used in the
coupled total variation is defined thanks to horizontal (resp. vertical) forward finite
differences, with symmetric boundary conditions. If Y is a noisy image, there exists
α > 0 so that TVα

C(u) = TVC(u) for any u. In practical case, when choosing α = 1,
max

{
γ‖∇Y ‖2, α

}
= γ‖∇Y ‖2 in a large part of pixels (for instance about 92% for

Figure 1(b)). Thus this regularization of the coupled total variation has few influence
on the result.

Hence, J satisfies Assumptions (H1). Moreover, one can check that, according to
Example 2, Assumptions (H2) are fulfilled, while Assumptions (H3) hold when setting
f = χR and g = χΣ. Eventually, Assumption (H4) is satisfied according to Remark 6. As
a consequence, the constraints Σ andR being bounded, one can apply Algorithm 1 with a
guaranteed strong convergence, as soon as the algorithm parameters satisfy Assumptions
(A1)–(A4).

In order to compute the update of w, we use the Bregman distance associated to
the entropy function to avoid an optimization on the simplex. The explicit solution
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is then obtained thanks to the KKT conditions. For the u-update, we consider the
usual Moreau proximity operator (meaning that the associated Bregman distance is the
Euclidean squared distance). With this setting, the inertial parameters associated to
w are set to be null, and we choose a constant stepsize, which can be set arbitrarily
large; we chose σ = 100. For the u-sequence, the inertial parameter sequence is chosen
according to Subsection 5.2, namely equal to (αk1 , α

k
2) = (1, 1). The stepsize is then

chosen to be large, e.g. τ = 1.999/L∇F . Hence, the updates for u and w are explicitly
given in Algorithm 2.

Algorithm 2 Inertial Bregman-based proximal gradient descent for image colorization

Input: Choose w0
i (x) = 1/C for any x ∈ Ω and i = 1, · · · , C, u0(x) =

C∑
i=1

w0
i (x)ci(x).

Let u−1 = u0.

for all k ≥ 0, do

ūk = 2uk − uk−1,

ûk = 2uk − uk−1,

uk+1 = projR


ûk − τ∇TVα

C(ūk) + τ λ

C∑
i=1

wki ci

1 + τ λ

 ;

wk+1
i (x) =

wki (x) exp

−σ λ C∑
j=1

‖uk+1(x)− cj(x)‖2


C∑
i=1

wki (x) exp

−σ λ C∑
j=1

‖uk+1(x)− cj(x)‖2


end for

6.3 Experimental Results and Discussion

In this section, some experimental results are proposed and an alternative optimization
strategy is considered.

The implementation is done in Matlab. In practical experiments, λ = 10−3 and
γ = 25 are reliable parameters for all images. The values of the limits of R are chosen
as follows: Umax = −Umin = 111, and Vmax = −Vmin = 157.

From a visually qualitative point of view, let us remark that the results performed
with Algorithm 2 are the same as with the primal-dual algorithm developed in [34]. For
instance, in Figure 1, we can see a source image, a target image and the results provided
by Algorithm 2 and by [34]. Visually, there is no difference and numerically, in average,
the difference is pixel-wise less than 1/256 of the image range. Thus we can conclude
that the local minimum computed by our proposed method is as reliable as the result
computed by the method of [34].

In Figure 2 the curves show the value of the functional with respect to the iteration
of the algorithm. To see the benefit of using inertial scheme and Bregman distance, we
also run the ASAP algorithm [31], which is a particular instance of the proposed method
without inertia (i.e. null inertial parameters) and with usual proximity operator (i.e.
the Bregman distances are the Euclidean distances). We also compared our method with
the PALM method [8, 45], which reduces for this problem to an alternating projected
gradient scheme. In our experiments, the projection onto the simplex is done using the
KKT conditions. As expected, the proposed method (in purple) performs better that
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the ASAP algorithm (in yellow) in terms of energy convergence. The observed gain is
entirely due to the use of inertia. Using Bregman distance to compute the update of
the weights w has a notable incidence on the computational time: despite the addition
of the overrelaxation steps for u, 300 iterations take 71.07s to compute for the proposed
algorithm, while they take 81.32s for ASAP for the image tested in Figure 2. The
PALM algorithm (in red) shows the slowest convergence of the bench, along with larger
computational time (130.35s for the same image).

(a) Source image. (b) Target image.

(c) Result of [34]. (d) Result of Algorithm 2.

Figure 1: The result provided by the primal-dual approach of [34] is as reliable as the one
computed by our Algorithm 2. In addition, with our proposed method, the convergence
is guaranteed.

When comparing the energy evolution for the primal-dual approach of [34] (in blue)
and the proposed method (in yellow), one can see that Algorithm 2 makes the energy
to decrease fast whereas the primal-dual algorithm may increase and oscillates in the
first 100 iterations. Nevertheless, it loses this advantage in comparison of the primal-
dual approach after 330 iterations (see Figure 2(b)). The comparison of the histograms
after 500 iterations (Figure 2(c) and (d)) shows that the local minimum is not reached by
Algorithm 2 but more likely approached by the primal-dual algorithm, since it has been
shown in [34] that, at convergence, the minimizer w∗ contains only 0 and 1. Nevertheless,
without any convergence guaranties, the primal-dual algorithm may have not converged.
A way to benefit from the empirical convergence speed of the primal-dual algorithm while
keeping the convergence guarantee provided by our proposed method is to consider the
following strategy: first we use the primal-dual algorithm for 500 iterations and then we
start Algorithm 2 from the values computed by the 500 first iterations of the primal-
dual algorithm. The final result is visually the same as the one of the two previous
approaches (Algorithm 2, and primal-dual) and numerically, the difference between the
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two algorithms and our strategy is pixel-wise less than 1/256 of the image range in
average.

(a) Evolution of the functionnal for the different
alorithms.

(b) Zoom on (a).
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(c) Weights histogram of ASAP.
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(d) Weights histogram of [34].

Figure 2: Value of the functional with respect to the number of iterations of the different
algorithms (above) and the histograms of the weights after 500 iterations (bottom). In
yellow, the energy of ASAP, in red, the one of [34] and in blue, the one of our strategy.

In Figure 3, some additional results are available. One can see the source images (left
column) the target ones (middle column) and the results computed with our strategy
(right column). Visually, there is no difference with the results of [34] but the convergence
is guaranteed.

Some additional results can be found on http://www.fabienpierre.fr/colorisation/.

7 Conclusion

In this paper, we proposed a variant of an accelerated alternating proximal descent
scheme introduced in [31] based on the Bregman distances. We provided a convergence
analysis in the case when the coupling term is biconvex, along with a guide for the
inertial parameter choice. This algorithm was applied to the image colorization prob-
lem. The numerical experiments confirm the empirical acceleration of the proposed
scheme compared with the original one, as well as the benefit of the use of the Breg-
man distance in terms of computation times. Comparisons with two other optimization
schemes, namely a Chambolle-Pock inspired primal-dual algorithm and the PALM algo-
rithm prove that the proposed method gives comparable results as those obtained in the
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primal-dual framework with a guaranteed convergence (unlike the algorithm proposed
in [34]), while outperforming the PALM scheme, which is known as the state-of-the-art
optimization scheme for nonconvex and nonsmooth problems. In future works, one could
extend our algorithm to others biconvex problems such as joint image restoration and
motion estimation [18].
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Source image. Target image Result

Figure 3: Results with our strategy. The result is first computed with the method of [34]
and refined with Algorithm 2. With this strategy, the speed of convergence is roughly
the same as in [34] and the convergence is theoretically guaranteed.
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