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Abstract. Sparse systems of equations are an essential part of real mod-
els, being decisive in simulation or optimization. By increasing the prob-
lems size or going closer to reality, these systems increase in complexity
and size. There are several proven methods to solve them efficiently, and
it is known that a structural reorganization can enhance efficiency. We
propose an improvement to the Extended Direct Method algorithm as a
preprocessor of the adjacency matrix associated with the system. This
method was originated in the Design of Chemical Plant Instrumentation,
expanding the functions of its predecessor, the Direct Method, which did
not take into account the degree of nonlinearity of model equations and
variables.
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1 Introduction

In various disciplines of science we often find large sparse systems of equations,
with different degrees of complexity [3, 4, 2, 12]. These may be linear systems,
which are evaluated by known methods of resolution, such as those implemented
in [6, 10], or systems of equations with varying degrees of nonlinearity. The lat-
ter can be computationally very expensive to be solved due to the presence of
nonlinear equations more or less complex [1, 13]. One way of optimizing this pro-
cess may be the structural reorganization of the system. This reorganization can
reduce dramatically the number of computational steps to solve such systems.

The Direct Method (DM) [9] and the Extended Direct Method (EDM) [5] are
tools emerged in the field of Instrumentation Design of Chemical Plants, which
perform the observability analysis of variables involved in the equations system
of the model that describes the corresponding plant. DM performs a structural
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rearrangement of the adjacency matrix associated with the aforementioned sys-
tem of equations, thus creating a partition that can be solved in stages and more
efficiently. Following the same idea, the EDM does this partitioning considering
the degree of nonlinearity of the equations, to achieve an even quicker resolu-
tion. Both techniques are based on the application of these algorithms on graphs,
which correspond to different representations of the adjacency matrix: I. Max-
imum Matching algorithm in Bigraphs [8], II. Strongly Connected Components
Detection Algorithm in digraphs [11].

The objective of this work is the implementation of an improvement in the
EDM, that we hope will provide greater efficiency in the determination of equa-
tions subsystems of easier resolution. This enhancement consists in including an
ordering of the equations according to their nonlinearity degree (NLD) prior to
the implementation of the Maximum Matching algorithm. Currently, the opera-
tion of EDM does not contemplate this possibility. Thus, the maximum matching
obtained with this algorithm can produce a more appropriate organization of the
adjacency matrix.

The following section details the operation of the above methods, the DM
and EDM. Next, we contrast the structures that arise naturally in simulation
and optimization models. Then, the proposed improvement is shown in detail
and its inclusion in the EDM algorithm is outlined. Subsequently, we explain how
we carried out the application of the enhanced algorithm on two case studies.
Finally, the conclusions and research prospects are stated.

2 About DM and EDM

The DM and EDM partitioning methods for the adjacency matrix perform two
steps to meet their objective: I. Coarse decomposition; II. Fine decomposition.
Each of these stages works on a different representation of the adjacency matrix
of the system, and performs alternative groupings on its equations and variables.
In the original DM and EDM implementations, these stages are carried out as
often as necessary, because forbidden blocks of equations and variables can arise
after the application of the implemented graph algorithms. These constraints on
block formation correspond to physical-chemical considerations on Instrumen-
tation Design of Chemical Plants. In this work they are not taken into account,
given that we want to evaluate only the algorithms performance in the formation
of blocks, regardless of the specific area of model provenance and only taking
into account the complexity of system variables and equations.

2.1 Coarse Decomposition

At this stage a representation of the adjacency matrix by a bipartite graph
or bigraph is used. This type of representation is a pairing of the rows with
the columns of a matrix, according to the existence of nonzero values in the
corresponding cells, i.e. there is an edge joining a row with a column when the
corresponding cell in the array has a 1. The rows of the matrix represent the
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equations and the columns represent the variables in the system. In Fig. 1 this
arrangement is shown.

Fig. 1. System of equations, associated bigraph and adjacency matrix.

DM and EDM perform an algorithm to obtain a Maximum Matching [8]
on the bigraph, identifying the major groups of variables and equations. These
groups identify the subsets of variables, which may or may not be determined by
solving the system. Fig. 2 describes an example showing the maximum matching
and assignment sets, and table 1 expresses the detail of these sets.

Fig. 2. Graphic example of a Maximum Matching and the equivalent partition in the
permuted adjacency matrix.

At this stage we find the fundamental difference between the DM and EDM.
Within the Maximum Matching algorithm of EDM, when selecting a node adja-
cent to another, there is a node list sorted in ascending order by the NLD of the
adjacent nodes. In this way we take into account the degree of complexity of each
variable and each equation for generating the system decomposition, so that the
blocks obtained in the fine decomposition will lead us to a more efficient overall
system solving process. With this improvement, the degree of nonlinearity of
the blocks obtained by the EDM manages to be lower than that of the blocks
of the DM. This is evidenced by the number of linear blocks obtained with the
DM versus the quantity obtained by the EDM, which will surely be greater.
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Table 1. Assignment sets for row and column nodes of a matching.

Assignment sets Features

SR1 First set of assigned equations

SR2 Second set of assigned equations

VR Redundant equations

HR Equations with indeterminate variables

SC1 First set of determinate variables

SC2 Second set of determinate variables

HC Indeterminate variables

Increased efficiency by means of this improvement can be justified considering
that solving a system of nonlinear equations has a much higher computational
cost than solving a linear one.

2.2 Fine Decomposition

Once the variable assignment sets were obtained, the next step is to determine
the blocks within the sets SR1-SC1 and SR2-SC2 that will determine the final
equations subsystems for the resulting observable variables. To carry out this
decomposition, a representation of the sets of rows and columns mentioned by
directed graphs or digraphs is used. The Strongly Connected Components De-
tection algorithm [11] is applied to the obtained digraphs, which yields the final
blocks that determine subsystems of equations assigned to groups of related
variables.

A strong component of a digraph is a subset of nodes, with the key feature
that any node can be reached from another node within the set, moving through
the edges of the digraph. The application of this algorithm in a graph is shown
in Fig. 3.

Fig. 3. At the left an example of the strongly connected components detection in a
digraph. At the right the structure of a lower triangular block matrix corresponding to
the subset SR1-SR2, SC1-SC2 of DM and EDM.

Each strong component determined by this algorithm identifies a subsystem
of equations, which can be solved as long as all the above steps were solved.
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The resolution of each subsystem depends only on the latter, since the new
arrangement results in a matrix in Lower Block Triangular Form (see Fig. 3);
Therefore, the only variables not yet determined will correspond to the columns
in this block and the subsequent ones to the right. The structure resulting from
the application of this algorithm to a digraph adjacency matrix is depicted in
Fig. 3.

The lower triangular block structure is achieved by applying the permutations
in the adjacency matrix, indicated by the algorithms performed to the graph
representations. Once this partitioning is done, the system of equations can be
easily solved in different stages.

2.3 Simple application example

In this section we show the application of the DM and EDM algorithms to a
system of equations. It is shown in Fig. 4. In its associated model, following the
given example, it could have been decided that variables x6, x7 and x8 are preset
with 10, 6 and 8, respectively.

Fig. 4. At the left a system of equations with linear and nonlinear equations. At the
right the associated permuted adjacency matrix, obtained by the application of DM
and EDM.

The equations that make up this system have different NLD. We can see
that equations 1 to 5 contain nonlinear terms, which complicates the resolution
of the complete system if it is solved as a unit. By implementing the EDM to
partition the main matrix, we obtain the equivalent system partition shown in
the adjacency matrix of Fig. 4. If we solve the system step by step according to
the blocks identified in Fig. 4, the resolution would involve sequentially process-
ing a nonlinear system of 2 equations for x1 and x4, a nonlinear system of an
equation for the variable x2, and a nonlinear system of 2 equations for x3 and
x5. After solving the subsystems, we can obtain the values of these variables.
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3 Convenient partitioning for PSE models

Efficiently solving systems of equations is a topic of interest in various areas of
Scientific Computing, because there is a great diversity of models defined by a
wide range of systems of varying complexity. The state of the art in numerical
optimization shows a revolution in the techniques used to solve a growing range
of application problems. There are algorithms with a large theoretical support
that make them strong and reliable for its implementation. However, in prac-
tice, it is well known that in process-system engineering (PSE) models tend to
increase their size and complexity when the formulations evolve towards more
realistic designs. Thus, currently it is a great challenge to develop knowledge
and refinement of existing software on the design of new algorithms that sup-
port higher levels of complexity with minimal computational costs. Therefore,
an interesting goal is to develop a module to solve large mixed systems, where
a prior matrix reordering is required. Regarding execution times, this tool will
efficiently solve complex simulation and optimization problems.

Fig. 5. At the left a decomposition for simulation. At the right a decomposition for
optimization.

The EDM obtains a decomposition of the subsystems and an order of prece-
dence for the efficient system resolution. It gives excellent results when applied
to solving real process monitoring problems. This technique seems to be ex-
tremely efficient in terms of execution times, as well as applicable on any kind
of matrices, regardless of their structural pattern, increasing its effectiveness as
the problems grow in size and complexity. The decomposition technique carried
out by the EDM provides a solid basis for developing a methodology that solves
large systems of equations.

The EDM identifies two different types of variables, depending on the fea-
sibility of calculating them: I. Observable: unmeasured variables that can be
obtained from the measured variables by using the model equations. II. Un-
observable: unmeasured variables that cannot be calculated from the measured
variables or from the model equations. Translating this classification from the ob-
servability analysis towards the solving of mathematical models, we can say that
the observable variables are those calculated from the square blocks detected by
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the algorithm (simulation), while the unobservable variables are in rectangular
blocks with more variables than equations (optimization) (see Fig. 5).

4 EDM Algorithm enhancement

The outstanding advantage of EDM with respect to DM is the determination
of the NLD of system variables and equations in order to obtain less complex
blocks of observable model variables. In its implementation, NLD is included in
the maximum matching algorithm, so that when selecting a node to be paired,
an adjacent node with the lowest NLD is selected among the feasible ones. The
purpose of this paper is to add a step before the determination of the first
matching, that conducts a preliminary ascending order of the equations by NLD.

The algorithm to obtain a maximum matching used in the above methods
including the proposed improvement can be described with the following steps:

1.Sort the adjacent nodes to each node in ascending order by NLD.

2.(Enhancement)Sort the equations set by NLD in ascending order.

3.Build an initial matching with the ordered lists of equations

and adjacent nodes.

4.Find augmenting paths until there are no more paths.

With the first step we ensure that every time we perform a matching, we do
this with the least possible NLD in the adjacent node. This principle has already
been included in the EDM. The second step is the improvement incorporated in
this work. It consists in sorting the system equations based on the NLD of each
one. Thus, we also ensure a better sorting because at the time of assembling
an initial matching, the first equations that are matched are those with a lower
NLD. The first matching obtained is called “Cheap Assignment” [9], and is the
basis for the augmenting paths finding process. This process aims at finding an
unexplored edge towards an unpaired node that may increase the total amount
of nodes in the matching.

4.1 The C language: High Efficiency on Sorting

When implementing this improvement, an important issue to consider was the
problem of sorting elements on an array. It is known that this is one of the most
expensive resource-consuming tasks in a computing system. All the methods
mentioned in this paper were implemented in C. To avoid a large impact on the
overall efficiency of the algorithm, a native function of the C language was used
in order to avoid compromising the overall program performance. This function
performs data sorting by using the quicksort algorithm [7], which has proven
to have very high efficiency. Programs compiled in this language are also very
efficient compared to other platforms.
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5 Applications

To verify the performance of the new proposed algorithm, we applied it to two
systems of equations with different characteristics: the first is smaller, and is
described in Fig. 4, while the second is larger, and comes from a model of a
classical distillation column of a chemical plant.

5.1 Application to a small system of equations

The system of equations shown in Fig. 4 exhibits a particular characteristic.
Although the equations e1 and e4, taking into account the proposed values for
the variables x6, x7 and x8, form a subsystem of equations that can give us the
values for x1 and x4, we see the same situation in the equations e7 and e8. Since
the last two equations above are linear, solving the subsystem that they form is
computationally much less expensive than solving the nonlinear one composed
of e1 and e4. This issue is not taken into account by the EDM, because of the
way it manages the NLD in the equations. When applying this method with
the proposed improvement on the arrangement of equations, the result is seen
in Fig. 6. Thus, it would be necessary first to solve a linear system, instead of a
nonlinear one, in order to determine x1 and x4 by using equations e7 and e8.

Fig. 6. Partitioning achieved by applying Enhanced EDM on the example.

This result is an example where an equivalent partition of a system of equa-
tions is found, and the resolution may be carried out in a less complex way.

5.2 Application to a system of equations from an equipment model

For this application example, we use a system of equations from the model of
a classical distillation column [5]. This system consists of 102 equations and
85 variables. The three algorithms (DM, EDM and EDM improved) reach a
partition with a block of 44 subsystems of equations, whose solution allows
determining the value of 63 variables. This means that all three methods identify
63 observable variables in the model system. The most important differences are
derived from the linear block number obtained by each method. This analysis
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is performed only for the EDM and the EDM improved, since the basic MD
makes no distinction for NLD. The amounts for each type of assignment block
are shown in table 2.

Table 2. EDM and Enhanced EDM results for the distillation column example.

EDM Enhanced EDM

Linear blocks of size 1 23 27

Linear blocks of size 3 2 3

Total of linear blocks 25 30

Observable variables 29 36

Nonlinear blocks of size 1 15 11

Nonlinear blocks of size 4 3 2

Nonlinear blocks of size 7 1 0

Nonlinear blocks of size 8 0 1

Total of nonlinear blocks 19 14

Observable variables 34 27

Total of blocks 44 44

Total of observable variables 63 63

From the detail of linear and nonlinear blocks obtained by each algorithm, we
can see that with the enhanced EDM more linear blocks are found than with the
basic EDM, for this example. EDM identifies 25 linear blocks, while the improved
EDM finds 30 and also identifies an additional linear block of size 3. If we
calculate the number of variables that are determined in either algorithm based
on linear block sizes and quantities, we have that EDM determines 29 variables
by linear systems, while the enhanced EDM achieves 36 variables. Following the
same reasoning, considering that nonlinear blocks are much more complex to
solve, the improved EDM also decreases the total amount of nonlinear blocks
from 19 to 14, and the number of nonlinear blocks of size 4 from 3 to 2.

6 Conclusions

We have described the operation of three methods for partitioning adjacency
matrices associated with systems of equations from various mathematical mod-
els. These methods are based on graph theory to optimize the distribution of
equations and variables, so as to facilitate the resolution of such systems. The
EDM is based on the DM, and adds the feature of special treatment of variables
and equations according to their level of complexity, as measured by NLD. With
this method adaptation to the inherent complexity of the system, remarkable
progress in optimizing its resolution is made, giving priority to solving simpler
subsystems of equations.

In this work for two varied case-studies we have determined that the com-
plexity of the subsystems generated with the proposed improvement to the EDM
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algorithm significantly decreases. In the first case a variant in the organization
of the adjacency matrix is identified, which consists in the replacement of a sub-
system of nonlinear equations by a linear one, with the reduction of processing
requirements that it generates. In the second case, we have analyzed the applica-
tion of the method to a matrix of a system that is associated with an engineering
model of considerable size. The results obtained by the new method overcome
those of its predecessor since, among other features, it both increases the amount
of linear blocks and at the same time reduces the quantity of nonlinear concomi-
tant blocks. This behavior is indicative of a substantial improvement that the
proposed EDM amendment actually offers.
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