
Developing a dynamic library loader for SODIUM, an
educational operating system

Nicanor Casas1, Graciela De Luca1, Sergio Martín1,
Gabriel Bonanno1, Mario Bondar1, Esteban Carnuccio 1, Elizabeth Guardia1,

Alfredo Portero1

1 Universidad Nacional de la Matanza

Departamento de Ingeniería e Investigaciones Tecnológicas
Dirección: Florencio Varela 1703 - Código Postal: 1754
{ncasas, gdeluca, smartin}@unlam.edu.ar

gab.peekaboo@gmail.com, mariobondar@yahoo.com.ar,
esteban_c23@yahoo.com.ar, eguardia@gmail.com,

acportero@yahoo.com.ar

Abstract. The development of a dynamic program loader allows the processes to
execute shared library functions across different memory segments. This research
incorporates the use of shared memory, and the ability to link and invoke dynamic
libraries into SODIUM, and educational operating system. Through the analysis of the
Executable and Linking Format (ELF) generated by the GCC compiler, we were able to
perform a runtime exchange of memory administrators, while showing the way that the
shared memory is assigned, even with data segments, such as re-entering code. To this
end, we made amendments to the implementation of a dynamic library for segmentation
mode, also defining the changes for paging mode. These changes were made through
adaptations to the memory loader of SODIUM, to allow it to recognize the ELF format
in order to use for memory address assignment.

Keywords: ELF, Dynamic Library, Reconfigurable Memory Administrator,
Dynamic Loader, STUB , Shared Memory.

1 Introduction

Originally, SODIUM executed on IA-32 architectures, and the user programs were
only linked statically, i. e., that all its components were placed along in a single file.
One of the main limitations of this approach is that it doesn’t allow the usage of
dynamic link libraries, thus rending code sharing impossible. In order to implement
these libraries, we have studied the existing executable metadata standards, and
decided to use ELF [1] due to the availability of documentation and the GCC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

compatibility. For this, we analyzed the diverse sections of the ELF files as a way to
guarantee the correct implementation of the dynamic link libraries [2].

2 Dynamic Loader

2.1 Load-time reference resolution

All the references to dynamic libraries are resolved by a module linker that allows
deferring the linking of their routines with the user programs after the compilation.
The linking module of a program contains non-yet-resolved references to other
programs or libraries. These references can be resolved in two different moments:
while resolving links on the program load-time, or even while the program is being
executed [3].

As the operating system created the image of a process, it copies the logical
segments of the file to real memory segments. Illustrated in the Figure 1.a., there is an
example of a metadata file in ELF format, while the contents of its heading members
are depicted in Figure 1.b.

 Figure 1.a. ELF metadata file

 Figure 1.b ELF file header contents

The end of a data segment requires a special handling for non-initialized data,
which are defined initially with zero-values by the operating system.

The loading of an executable file differs from the loading of a shared object in the
way that the first ones contain generally only absolute references. The segments must
reside in the virtual address that is used to build the executable, whereby the operating
system must use the dep_vaddr value as the virtual address [4], and, as opposite, the
segments of a shared object contain position-independent code (PIC) [5]. This allows
the virtual address of a segment to vary from a process to another without modifying
its behavior, keeping its relative positions unaltered.

By utilizing this approach, we are able to perform implicit linking [8] that differs
from the runtime reference resolution in that no stub [6] is created to aid the operating
system to resolve the references in a later moment. When a call to a dynamic link
library function is found, the linker adds metadata to the executable file to indicate the
operating system where the corresponding code can be found.

When the program is loaded into memory, the operating system looks for all the
calls to dynamic link libraries that the program will use [5], within the ELF metadata
file. If the library is not yet present in memory, it is then loaded and a code segment
descriptor (CS) is assigned to it in the global descriptor table (GDT) [7]. In order to
perform this, the operating system must maintain a table with all the libraries’
addresses loaded at that moment.

When a call or branch referencing a dynamic link library function is found within
the loaded code, the ELF table must be checked in order to verify that there is an
entry for it. If that is the case, its CS descriptor is retrieved and a lookup search is
performed for the invoked routine’s relative address offset. Then, the unresolved
reference is replaced by the code segment descriptor plus the obtained offset. When
all the unresolved references are replaced, the program is ready to be executed.

2.2 Runtime reference resolution

When compiling a program with the ELF format, the compiler replaces all the
external routines calls within the code by non-resolved symbolic references.
Afterwards, when the binary image of the process is created, a little fragment of code
called stub is injected. All the added stubs are organized within the file by a structure
called procedure linkage table (PLT) that contains a jump to a global offset table
(GOT) [9]. Through the GOT, the linker allows the dynamic link libraries to be
shared among several processes. This is possible because the libraries are built with
process-independent code (PIC).

The GOT table contains the absolute addresses for all the static data being
referenced within the program; but also possesses the real direction of the extern
routines, although this one is not known until the application actually executes. The
role of the runtime linker is to fill the entries of the GOT table with the actual process
addresses, allowing the GOT to keep direct references to all of a library’s symbols
[4]. The GOT address is usually kept in the EBX register that relatively references it.
Each shared library and executable object that use shared libraries have their
corresponding PLT and GOT tables (see Figure 2).

Each entry on a PLT corresponds to an external routine, and consists of an indirect
branch to the GOT table. Then, if a dynamic link library routine must be acceded by a
process in runtime, its real memory address can be obtained simply by an indirect
branch to the corresponding GOT entry through the PLT. [6]

Figure 2. Executable file and shared memory scheme.

This approach implies the usage lazy procedure linkage, that is, the explicit
invocation of external libraries through the usage of the instrumentation of the
program’s code in order to let the linker decide whether and when they should be
loaded [7].

3 Design

3.1 Memory management

We decided to work with the simple segmentation memory scheme due to its
relative ease of analysis and coding, and to the fact that, currently, SODIUM shows
more stability while executing with segmentation mode. The paging mode needs just
little adjustments [10] that should be easy to carry on over the current SODIUM’s
implementation of dynamic link libraries.

When using segmentation, each process –whether dynamic or statically linked– is
loaded into a single memory segment, and the library is loaded into another, making
sure that both are present within the same user memory space.

3.2 Dynamic library loading

The different approaches of implementing dynamic library loading change
according to the time that they are carried on –whether in runtime, or while loading
the process into memory–.

Due to the SODIUM’s particular architecture, we opted for a runtime reference
resolution implementation. These are resolved on demand, determining the undefined
functions’ virtual addresses just-in-time, that is, exactly before they are executed. In
order to achieve this implementation, special instructions are created to load the
dynamic link libraries in memory, obtain their functions’ virtual addresses, execute
them, and then free the utilized memory segment. These special instructions must be
used within the code of the semi-dynamic processes. The names used for these
directives are similar to those generally used in Linux [12].

3.3 Libc library dependencies

The compilation of all the SODIUM core files is done within a LINUX
environment, where the compiler implicitly adds the the libc.so library (C language
standard library for LINUX) [11] to all of the dynamic ones. To be able to generate an
executable over SOIDUM, the libc.so library was changed in all its makefiles,
generating the necessity of linking the _start.o and libsodium.o libraries statically, in
order to compensate for the original libc.so absence. These libraries main
responsibilities include, but are not limited to:

- Initialize the process’ heap and stack
- Call the program’s main procedure
- Receive the main’s return code

Therefore, we had to modify the way that those files were compiled in the way that

no association exists, using a similar library for the programs and libraries handling,
generating the implementation of the _start routine, that is the very first one to be
invoked when executing a semi-dynamic process. This routine is in charge of
executing tasks such as initialize the process’ heap and stack, and also to point to the
program’s start procedure. This last task is carried on by invoking the main symbol of
the dynamic program.

3.4 Compilation and loading from SODIUM virtual drive

In order to carry the corresponding tests, a new dynamic link library named
libiblio.bin had to be created and placed within the /usr/lib folder. This library
currently counts with two simple functions: cycle and sleep. Also, two semi-dynamic
processes invoking those functions were generated using two code files, named
program1.bin and program2.bin. These files were placed within the /usr folder.

Manually created PLTs had to be created instead of the GCC’s automatically
generated PLTs [11], in order to be able to correctly implement the runtime reference
resolution. All programs and libraries files are statically linked to the manually
created PLTs.

Multiple SODIUM makefiles also had to be modified. The necessary changes
included:

• /usr/lib: the libiblio.bin library compilation was added and linked statically to the
pltInput.o file.

• /usr: The compilation of the semi-dynamic executable files program1.bin,and
program2.bin was added. Those are dynamically linked to libiblio.bin and
statically linked to _start.o, libsodium.o, and, pltOutput.o

• /solo and /build: The makefiles for both folders were modified to allow the semi-
dynamic processes and the dynamic link library within the root folder of
SODIUM’s virtual drive in memory.

The execution of the ls command from SODIUM’s command line allows the
display of a list with all the stored filed within the root folder of SODIUM’s virtual
drive. All of the three files created are included there:

 Program1.bin: semi-dynamic object file.
 Program2.bin: semi-dynamic object file.
 Libiblio.bin: Dynamic link library.

3.5 Dynamic Loader

In order to avoid breaching the SODIUM security levels, the dynamic loader is
implemented as part of the operating system’s kernel. By doing this, we allow the
direct invocation of functions that are placed within the gdt.c file, as they are placed
within the same file, forming part of SODIUM’s kernel.

3.5.1 Dynamic program object files loading into memory

Both program1.bin and program2.bin semi-dynamic object files are loaded into

memory is performed when any of them is executed from the command prompt.
If program1.bin is executed, the iFnExecuteBinary function of sodshell.c is

invoked. This function executes a fork syscall (to duplicate the parent process, thus
creating a child process), and then the execve syscall is invoked to instantiate the child
process with the code image from the program2.bin. Whenever SODIUM receives the
fork and execve syscalls, it executes the iFnDuplicateProcess and iFnReplaceProcess
functions present in the kernel’s gdt.c code file, respectively.

We had to make a modification to the normal loading of each executable to skip
reading the address representing the actual object file start, in order to avoid including
the ELF metadata header as executable code. This modification worked correctly
with just statically compiled programs, and it took a simple adaptation for
dynamically linked programs with a generalized load procedure for both types of
executables.

Finally, we opted for implementing the loading retrieving the LOAD segments
from the program header section from the ELF headers. The statically compiled
programs count with just one LOAD segment, while the dynamically linked programs
count with at least two. We determined that the best way to perform the loading was
unifying both LOAD segments into one, and loading it into a single segment. To
achieve this, we had to create a file named linkerscript.lds that is used during the
program1.bin, program2.bin, and libiblio.bin for determining the virtual address of
the start of the LOAD segment and where it is going to be loaded in memory, as well
as which sections will conform them. The last step was to modify the size of the ELF
header in the function iFnReadExecutableHeader from the gdt.c code file, just to
avoid any load address miscalculation.

3.5.2 Dynamic library files loading into memory

The inclusion of the dynamic link library is done by loading the libiblio.bin object
file in memory. We implemented the dlopen syscall to aid the resolution of dynamic
references during the execution of the semi-dynamic processes. This syscall must be
invoked from the main procedure of program1.bin or program2.bin using the
following syntaxis:

selector = dlopen(“library_name”);

Dlopen invokes iFnLoadLibrary –present in the gdt.c kernel code file– automatically,
while the ES selector register is associated to the code descriptor of the dynamic
library in memory, allowing the process to access it. In this manner, while, initially
after one semi-dynamic process performs a fork syscall, the child’s process ES
descriptor is set to point to the GDT entry of the parent process, when it executes the
dlopen syscall, that value is replaced by the base segment address where the dynamic
library is loaded (See figure 3).

Figure 3. The ES register selector is replaced by the dynamic library GDT position

In a temporal context, the dynamic library is loaded into memory just after the first
time a process invokes it. When another –or the same– process needs to invoke it too,
it is already present in memory and does not need to be reloaded.

In a spatial context, the dynamic library is loaded always in higher memory
position than the calling process. This was implemented this way simply because in
order to load it before we should have evaluated the program’s library requests in
load-time, which might incur in unnecessary overhead and memory usage if the
process ends up not using them. Also, one cannot preventively fix up free space
upfront, because the size of the library is unknown until it is invoked. However, one
exception for inverse library positioning is that a first process invokes a library before
another process comes into memory and uses it (see Figure 4).

Figure 4. Possible memory setup for memory distribution using dynamic link libraries

4 Results and achievements

After the research findings and further development, SODIUM counts with a
dynamic link library that allows:

• The use of the dlsym syscall that allows obtaining the relative offset of the address
of any function within a dynamic link library. This offset is obtained from the
value field of the library’s symbols table. The dlsym syscall must be invoked
within the main procedure, and must be executed only after having used dlopen,
using the following syntax:

offset = dlsym(“library_name”, “function_name”);

Upon execution, dlsym automatically invokes the kernel function
iFnObtainDirFunction, placed in the gdt.c code file, which looks up for the
function’s offset within the library’s symbols table. Once found, retrieves it to the
semi-dynamic process through the EAX register.

• The actual execution of a function within a dynamic link library. Right now it is
limited to be invoked from the main of a user process, but it can be
straightforwardly upgraded to a more general usage. It must be executed after
dlopen and dlsym with the following syntaxis:

vFnFuncDin(unsigned int selector, unsigned int offset);

This function is a very simple assembler programmed stub –which we placed in a
code file named pltOutput.asm– which is compiled and statically attached to every
semi-dynamic compiled program. It receives two parameters: the first one,
selector, is the GDT selector position where the dynamic link library is loaded
obtained from the previous execution of dlopen; and the second, offset, is the
relative offset of the address where the function to be executed is placed obtained
from the previous execution of dlsym.
Upon receiving the offset value, it is stored into the EAX register to be used as
input for the vFnPLTlibrary –which we placed in a code file name pltInput.asm

that is statically linked into the called library–, to use it for the actual call to the
external function.
The scheme of both –input and output– PLTs placement and function is depicted in
Figure 5. The narrow arrows represent the calls to the input PLTs, and the thick
ones represents the ones that execute the retf return instruction.

Figure 5. Call and return to an input PLT and from an Output PLT, respectively.

One of the main reasons why we decided to implement two different PLT files (for
input and output) and not just one (only for output) is that all the functions from the
dynamic link library are compiled with normal ret instruction returns that is limited
only to the current memory segment. However, since all the libraries will be placed
in their own segments, we rather needed to execute a retf instruction that allows a
inter-segment return. The pltInput.asm file serves then as a wrapper for each
function call that takes the EAX register as the offset and re-calls internally with a
simple call instruction. When the function returns, it does so with a ret instruction
back to the PLT wrapper that takes the return value and does execute the needed
retf return instruction. Otherwise, when we first implemented direct calls, we
would be executing the functions, but not being able to return (usually a CPU
exception occurred).

• The ability to clean up the memory segment assigned to the library after its usage.
For this purpose, we developed the dlclose syscall that must be invoked from the
main procedure after having executed the vFnFuncDin function. This syscall
automatically calls the iFnCloseLibrary function placed in the gdt.c code file, that
frees the segment occupied by the library, modifies the segment descriptor of all
the processes pointing to it back to their parent processes’ code segments.
One inconvenience carried by this approach is that if one of the semi-dynamic
processes executes the dlclose syscall, it won’t be able to further share the library.
This happens because, when a process executes dlclose, the segment is freed and
the other process will have to reload the library. In order to fully seize the benefits
of the sharing library, none of the processes must execute dlclose. By doing this,
the loaded libraries will still be available after the first process that needed it finally
exited; if a further process needs to use it, it will be already available in memory,
and there won’t be any need for reloading. However, it is the responsibility of the
operating system to keep track of those libraries that are still open and most likely
won’t be used in the future.

5 Conclusions

Due to the static nature of all the previous SODIUM’s user processes, many
modifications in the way of compiling the kernel source code files had to be done, in
order to allow the copy of a program to a virtual drive and then loaded into memory.
Until now, the performed adaptations aimed to achieve a more stable operating
system that could run both static and dynamically compiled and linked programs, and
that also could handle dynamic calls through different memory segments.

SODIUM allows now the usage of dynamic link libraries with limited
functionality, although clearing the path for further needed extensions in the future.
Its use will be extended to a n-quantity of processes, and the SODIUM standard
library (libsodium) will be changed from statically to dynamically linked. These
changes will greatly improve stability and the horizon for further developments.

This research was carried out by both professors and alumni of the Universidad
Nacional de La Matanza Advanced Operating Systems class, and had a double
educational value: in part, for those alumni involved in the research that could learn
about both intricacies of program linking and memory segments administrations; and
for the forthcoming alumni that will be able to experiment and learn about dynamic
library loading by consciously experimenting with the explicit syscalls hereby
presented.

6 References

[1] Youngdale, E.: The ELF Object File Format by dissection. Linux Journal, 1995.
[2] Darlet, P.: Runtime Loader-Linker Technologies. Embedded System Conference, 2001.
[3] Stallings, W.: Operating Systems Internals and Design Principals, Prentice Hall, 2008.
[4] Executable and Linking Format (ELF) Specification Version 1.2, Tool Interface Standard

(TIS). 1995.
[5] Levine, J. R.: Linkers & Loaders. Morgan Kaufmann Publishers, San Francisco, 1999.
[6] Silverschatz, A., Galvin, P., Gagne, G.: Operating System Concepts. 7th edition. John

Wiley & Sons, 2004.
[7] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A: Instruction

Set Reference, A-M. Intel, 2008.
[8] Tanenbaum, A.: Structured Computer Organization. 4th edition. Prentice Hall,1998.
[9] Muchknick, S. S.: Advanced compilers: Design and Implementation. Morgan Kaufmann

Publishers. 1997.
[10] Casas, N., De Luca, G., Cortina, M., Puyo, G., Valiente, W.: Implementación de diferentes

tipos de memoria en un sistema operativo didáctico. In proceedings of XIV Congreso
Argentino de Ciencia de la Computación (CACIC). Argentina, 2010.

[11] Stallman, R. M.: Using and porting the GNU compiler collection. Iuniverse Inc, 2000.
[12] Gorman, M.: Understanding the Linux, Virtual Memory Manager. Prentice Hall, 2004.

http://www.linuxjournal.com/user/800105

	Introduction
	Dynamic Loader
	Load-time reference resolution
	Runtime reference resolution

	Design
	Memory management
	Dynamic library loading
	Libc library dependencies
	Compilation and loading from SODIUM virtual drive
	Dynamic Loader
	Dynamic program object files loading into memory
	Dynamic library files loading into memory

	Results and achievements
	Conclusions
	References

