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Abstract. In [1] a form of representation of logic circuits by chains of integer 
numbers is presented. That type of representation is easy to simulate and to 
export to FPGA hardware in such a way that, by adding a genetic algorithm 
(GA), it can be used in an evolutionary process. Because regular GAs utilize 
binary number coding, one was designed, with all its operators and processes, 
that uses integer number coding. This evolvable hardware (EH) process was 
tested with more than 200 hours of runs to determine the effectiveness of the 
integer coded GA. Results show that, given the proper conditions, the GA is 
effective in finding solutions that fulfill the required needs of the target system 
and that this particular EH platform is suitable for applications where fault 
tolerance capability is required, such as space systems. 
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1 Introduction 

Although real number representation, or, more precisely, integer or natural number 
representation, is often used in GAs because it is ideal to encode a wide spectrum of 
optimization problems, it has drawbacks when compared against binary number 
representation. According to Holland’s theory of GAs, the main disadvantage is that it 
reduces the number of schemata which disfavors diversity and probability of forming 
good building blocks, which are the part of the chromosome that produces high 
aptitude. Lastly, integer number coding has a much shorter longitude than its binary 
counterpart. 
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2 Outline of the Algorithm 

The basis of the GA design was taken from the chromosome model presented in [1]. 
Because, as mentioned before, regular GAs implement binary coding, the integer 
coded chromosome demanded a redesign of each GA operator and process to make 
them compatible with each other. In order to so, firstly, appropriate crossover and 
mutation operators were designed and, secondly, stages like evaluation, selection and 
replacement were implemented to work with vectors of integer numbers. 
The GA was designed with the following parameters (which should be considered as 
standard): 

• One point crossover 
• Roulette wheel selection 
• 100% replacement 
• Elite equal to one 

The evaluation of each individual (i.e., possible solution to the optimization problem) 
is the degree of similarity, expressed as a percentage, between the represented 
circuit’s output (obtained by simulation) and the target output signal. An aptitude of a 
100% indicates the complete similarity between the simulated and the target output 
signals and an aptitude of 0% indicates the complete dissimilitude between the 
previously mentioned signals. 

3 Genetic Operators   

3.1 Crossover 

As mentioned before, one point crossover was implemented. Figure 1 shows where 
the crossover point separates, on the one hand, matrices A and B (which encode 
routing) and, on the other, matrix U (which encodes the type of logic gate being used 
in the circuit). This way, the  first  descendant  inherits the first progenitor’s U  matrix  

 

Fig. 1. One point crossover operator for integer number coding 

and matrices A and B from the second one; meanwhile the second descendant inherits 
the second progenitor’s U matrix and matrices A and B from the first one. 



3.2 Mutation 

The mutation operator, as Figure 2 shows, works, firstly, choosing randomly a gene to 
mutate and, secondly, modifying it, also randomly, according to the possible values of 
the alphabet in use without the possibility of repeating the previous allele. 

 

Fig. 2. Mutation operator for integer number coding 

4 Search Space 

The search space or problem domain is proportional to the size of the circuit that is to 
be evolved. For example, for a circuit that has three inputs (M=3) and one layer of 
logic gates (N=1), it results, for matrix U, in a search space of 729 (9M) and, for 
matrices A and B, a search space larger than 262×103 ((M+1)M.(2.N+1)). This shows 
that, even though the amount of permutations of matrix U is modest, the number of 
different ways to interconnect those gates with the inputs and outputs is great.  

5 Evolutionary Process 

Once the GA was designed and implemented in a programming language, it was put 
to the test with different objectives of varied difficulty, thus developing an EH 
process. The first objective given to the GA was to implement the circuit expressed by 
Equation 1. As shown, it is a regular logic system with three functions: one AND, one  
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OR and one XOR. However, if U matrix’s search space is analyzed, i.e., the search 
space of the matrix that encodes the intermediate layer of logic gates, it turns out that 
only a handful of gate combinations will yield the expected result. This is explained 
because there are no alternatives to implement the desired logic function. Later it will 
be clear that the AG’s effectiveness to find a good result will be affected by this fact. 
The second objective of the EH process was to implement the logic function given by 
Equation 2. It is a simpler logic function when compared to Equation 1 because it has 
two NOT gates and one AND gate. There are several ways a NOT logic function can 



be implemented with logic gates, for example with NAND and NOR gates (also 
known as universal logic gates). Due to this, there are also several alternatives to 
reach the desired goal.  For this objective, 11% of the possible gate combinations 
could, if interconnected in a proper manner, provide with the right result. 
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The last objective, and the simplest of the three, consists only of two outputs instead 
of three -like the other two- and two logic functions: an OR and a NOT (see Equation 
3). In this case it is clear that the number of gate combinations that can yield the 
correct result is the biggest of all, namely 44%. 
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6 Analysis of the Successful Circuits 

In Figure 3 the generic logic circuit to be evolved can be seen. It consists in three 
input and three output buffers (M=3), plus one intermediate layer (N=1) of three logic 
gates, which can be any of the nine available types. 

 

Fig. 3. Generic logic circuit to be evolved by the GA 

Figure 4 shows one of the circuits that meet the first objective and the chromosome 
that encodes it (U, A and B vectors one after the other). As mentioned above, there 
aren’t many alternatives to implement the objective logic function, a fact that puts the 
GA in a disadvantageous position. Actually, only 6 out of 729 possible permutations 
of U matrix can, if interconnected properly, achieve objective 1. This could have been 
different if, for example, a second layer of intermediate logic gates would have been 
added to the circuit (N=2). Thus, the AND and OR gates could have been 
implemented with NAND and NOR gates. Also, if another layer of gates is added 



(N=3), the XOR gate could have been implemented with universal logic gates, but not 
without a high computational cost. 

 

[ 3 7 4 1 2 3 3 2 1 1 2 1 2 1 2 3 0 1 0 3 0 1 0 1 0 1 0]  

Fig. 4. Logic circuit that implements Equation 1’s logic function 

The second successful case we will analyze is portrayed in Figure 5, where the logic 
circuit and the chromosome that encodes it are shown. An interesting particularity of 
the circuit is that it uses an alternative implementation of the NOT gate (by using 
NOR gate) and, also, a NOT gate in itself.  

 

[ 6 2 3 2 1 2 2 1 3 1 2 1 2 1 2 1 0 1 0 3 0 0 0 1 0 1 0 ] 

Fig. 5. Logic circuit that implements Equation 2’s logic function 

Lastly, in Figure 6 one of the circuits that implements Equation 3’s logic function is 
presented, along with the chromosome that encodes it. In the circuit, yet another 
different form to implement a NOT gate with a NOR gate can be seen. 



 

[ 6 4 1 2 2 1 1 0 2 1 2 1 2 0 2 2 0 3 0 0 0 1 0 1 0 0 0 ] 

Fig. 6. Logic circuit that implements Equation 3’s logic function 

7 Results, Effectiveness of the Algorithm 

Table 1 presents the results of the different runs carried out for each one of the 
objectives previously discussed. GA’s parameters where, for all runs and objectives, 
as follows: 

• Population size 100 
• Generations (iterations) 100 
• Mutation 3%1  

Parameter selection was made by performing initial test runs and by considering the 
size of the search space. Mutation rate is a controversial issue because some authors 
consider it should be low (less than 1%) and others consider a low mutation rate to be 
counterproductive. Thus, the chosen parameter value is a compromise selection. 
As anticipated, the GA’s effectiveness in finding the correct circuit for objective 1 is 
low. This is explained because the set of good solutions is very small when compared 
to the entire search space. Table 1 shows that in several runs with unsuccessful 
results, the average aptitude of the population is equal, or almost, to the best 
individual’s aptitude.  Thus, all individuals in the population are equal, a fact that 
results in no new genetic information generated by the crossover operator. In other 
words, the AG has been attracted to a local maximum and is trapped in it, leaving 
remote chances of it reaching a global maximum. 
Results obtained for objective 2 are slightly better, mainly due to the fact that there 
are several ways to implement the NOT logic function. However, arguments similar 
to the first case can be stated to explain the second case’s GA performance.  
 

                                                           
1  Additionally, 10 runs where carried out with a mutation rate of 5% only of objective 3 



Table 1. Summary table of the GA’s run results2 

Objective Run 
Pop. 
Size 

Generations Mutation Success? 
Best 

Aptitude 
Jumps 

Avg. 
Aptitude 

1 yes 99.2 4 99.06 
2 no 88.33 2 74.34 
3 no 74.83 2 74.58 
4 yes 99.2 4 96.34 
5 no 77.5 0 77.18 
6 no 91 3 85.25 
7 no 77.5 0 77.18 
8 no 91 3 85.25 
9 no 77.5 0 77.18 

1 

10 

100 100 3 

no 77.5 0 77.18 
          20.00% 85.356 1.8 82.354 

1 yes 99.33 5 86.47 
2 no 93.9 5 93.2 
3 yes 99.33 4 93.37 
4 no 77.79 3 76.59 
5 no 88.5 3 87.84 
6 no 82.93 1 81.3 
7 no 82.93 2 74.23 
8 no 77.5 0 77.75 
9 no 88.5 2 88.17 

2 

10 

100 100 3 

yes 99.33 6 98.16 
          30.00% 89.004 3.1 85.708 

1 yes 99.46 2 97.61 
2 no 94.03 0 93.7 
3 no 94.03 1 94.03 
4 yes 99.46 3 98.47 
5 no 94.03 2 92.82 
6 no 94.03 0 93.39 
7 no 94.03 2 92.82 
8 yes 99.46 4 98.47 
9 yes 99.46 3 98.9 

3 
(mutation 

3%) 

10 

100 100 3 

yes 99.46 2 92.51 
          50.00% 96.745 1.9 95.272 

1 no 94.03 1 91.32 
2 yes 99.46 1 99.46 
3 yes 99.46 3 97.4 
4 yes 99.46 1 92.18 
5 no 94.03 2 92.11 
6 yes 99.46 3 92.34 
7 yes 99.46 4 89.69 
8 no 94.03 2 88.25 
9 yes 99.46 2 91.98 

3 
(mutation 

5%) 

10 

100 100 5 

no 94.03 1 87.93 
          60.00% 97.288 2 92.266 

                                                           
2  In all successful runs the best individual’s aptitude isn’t 100% due to slight differences 

between the simulated output and the objective signal. Yet, all implement the right logic. 



For objective 3 results are sensibly better. Success rates of 50 and 60% were obtained 
for mutation rates of 3 and 5% respectably (at this point it is important to remark that 
an increase in mutation rate didn’t have any effect for the previous two objectives). 
Besides, an increase in the average aptitude compared to the other two objectives was 
obtained. 

8 Efficiency of the Algorithm 

A way to measure the efficiency of the GA is to compare two things: the size of the 
search space and the amount of circuits that are tested in each run. Taken the search 
space of matrices A and B (>262×103) and the amount of circuits tested in each run 
(1002, although is clear that many are repeated) it turns out that, explicitly, only less 
than 4% of the search space needed to be explored in order to reach a solution that 
meets with the requirements of the proposed objective.  

9 Problems and Perspectives 

One of the most important problems to consider is the time it takes for the GA to 
complete an entire run, which is, in average, five hours in a home computer and 
bearing in mind the circuit to implement is rather small. One way around this problem 
is to reduce the amount of circuits being tested. It would be doable because the 
crossover operator not always produces new genetic material. Thus, a sort of marking 
has to be developed to indicate when an individual’s aptitude is already known. 
Although significant, the time problem is less important when the size of the 
hardware necessary to run the GA is taken into consideration, especially in space 
applications, where room is a great constraint for design. A solution would be to 
relocate the genetic processor outside the payload, thus controlling the reconfigurable 
hardware on board via telecommunications (if available), with either an intrinsic or 
extrinsic evolutionary process.  
Once the GA is implemented, has its parameters adjusted and has a routine capable of 
transforming a vector of integer numbers coding a logic circuit into VHDL digital 
circuit description language (i.e., VHDL export), the next step would be to implement 
an intrinsic evolutionary process, also named “hardware in the loop”. Furthermore, 
larger circuits can be tested; more complex logic functions implemented and fault 
tolerant capabilities can be tested.  

10 Conclusions 

Firstly, for the GA to perform with high levels of effectiveness, the FPGA circuit 
must have a certain amount of redundancies. If the relationship between the 
complexity of the logic function to implement and the amount of redundancies isn’t 
adequate, the effectiveness of the algorithm will be low (the more complex the 
function to implement, bigger the amount of redundancies that will be needed). On 



the other hand, if bigger circuits are used, the time needed for the GA to finish an 
entire run will be greater (scalability problem, see [8]). There has to be a proper 
compromise between these two requirements.  
Secondly, due to the FPGA’s versatility and the GA’s effectiveness, this EH platform 
can be used as a multifunctional redundant system (see [1] and [2]) to improve 
reliability in systems where fault tolerance is essential to survival, like satellites.  
Lastly, with a large number of runs performed, a good idea of the best algorithm 
parameters was obtained. 
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