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Abstract. We discuss the features and current status of a software tool
developed for checking refinement properties of a particular (though still
quite general) class of probabilistic nondeterministic programs. The tool
has been used successfully for several interesting examples, and its de-
velopment is currently being expanded to encompass even more classes
of probabilistic programs. The novelty of the tool lies in its expressing
the refinement checking as a linear satisfiability problem, and also in
producing evidence of lack of refinement by a problem of the same kind.
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tion, refinement checking, trace generation, linear satisfiability checking.

1 Background

We are interested in the use of some versions of pGCL (probabilistic Guarded
Command Language) for the purpose of machine-assisted formal methods in
establishing properties of interest about programs. pGCL is a generalization of
Dijkstra’s guarded command language ([6]) by adding an operator for probabilis-
tic choice (and retaining the demonic nondeterministic choice operator, that is
to say, a choice which we cannot affect and which is not made with respect to
any probability). This results in a quite non-trivial addition, since the behaviour
of programs that contain both nondeterministic (as in the original language)
and probabilistic choice can exhibit complex behaviour, difficult to figure out
intuitively. Our long term goal is to be able to solve some interesting problems
about web services, that can be expressed by probabilistic programs and their
properties of interest, using computer-assisted formal methods ([4]).

The semantic model for pGCL we use is the one in which a program is
seen operationally as a function or transition mapping initial states to sets of
probability distributions over final states. More exactly, the formal semantics
uses discrete distributions, and the final sets of those distributions that are the
meaning of programs are restricted to the convex, up-closed, and Cauchy closed
ones. This is not a problem for the tool design and use, since such complex sets
of distributions are always implied by a finite set of discrete distributions over
final states. If the initial states are finite, so are the final ones too, and that is
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the context in which we work for the time being. Technical details and examples
of pGCL can be found in previously published results by McIver and Morgan
(see [11] for a comprehensive reference to all aspects of pGCL).

With this semantics, if we call S to our set of states, we can define what
it means for a program p to be refined (usually denoted by the symbol v) by
another program q in pGCL:

p v q iff ∀s ∈ S : p.s ⊇ q.s

where p.s denotes the set of discrete probability distributions (satisfying the
convexity and closure properties already mentioned) over final states that is the
meaning of program p.

We have called the tool pGCLd , as it fundamentally leans on this oper-
ational view of the semantics of probabilistic programs to generate both final
distributions and traces of the program behaviour. The tool outputs files that
can be processed by the linear satisfiability solver Yices ([17]) to test refinement
between such programs. A linear satisfaction problem is similar to a linear pro-
gram, formed by several linear arithmetic constraints, but instead of solving for
a maximum or minimum of some function subjected to those constraints, we
only need to know if there exists values for all the variables such that all the
constraints are satisfied.

2 The input language: a subset of pGCL

Our working language is a subset of pGCL: we don’t yet deal with iteration as
present in the full language. The tool’s syntax is case-sensitive, and all variables
are implicitly declared with (implicit) type integer. It is possible to have arrays
of such variables too. A program consists of a sequential composition of program
fragments, where each fragment can be either an assignment, a conditional, a
demonic choice, or a probabilistic choice. Conditionals must have both branches,
demonic choice is always binary (not a limitation due to its associativity), and
probabilistic choice can have as many branches as desired.

A (simplified) BNF description of the input syntax follows:

variable ::= letter (letter | digit)∗

integer ::= [∼] digit+

real ::= digit+ . digit+

numop ::= + | - | * | / | %

numexp ::= variable | integer | ( numexp ) |
numexp numop numexp | ∼ numexp



relop ::= < | <= | > | >= | = | <>

boolexp ::= TT | FF | ( boolexp ) | numexp relop numexp |
boolexp & boolexp | boolexp | boolexp | ! boolexp

prog ::= variable := numexp | ( prog ) | prog ; prog |
if boolexp then prog else prog endif | prog ^ prog |
@{ real : prog [, real : prog ]∗ }

^ denotes demonic choice, @ followed by a list of branches between braces
denotes probabilistic choice, conditionals have their condition between square
brackets (the ”then” part to the left of the condition, the ”else” part to the
right), composition is denoted by semicolon. In Boolean expressions, & denotes
and, | or, ! not. In integer expressions, % is the remainder operation. Notice that
negative integers and sign inversion are denoted by a ∼, following ML syntax.
Note again that we don’t deal (for the time being) with loops in our tool, but
that this still allows us to investigate many interesting small programs and their
properties, due to the already mentioned complex behaviour of such programs
when probabilistic and nondeterministic choice interact freely.

There is a default priority for the operators and constructions of pGCL pro-
grams, though the reader will probably feel more comfortable parenthesizing
fully all the program fragments that may cause ambiguity. For Boolean expres-
sions, or is lowest, and comes next, and not is highest. Boolean operators have
lower precedence than comparison relations, which are all ranked at the same
precedence level. Arithmetic expressions have higher precedence than compari-
son relations and follow the usual rules of precedence for such expressions. For
program constructions, conditionals are the strongest, then demonic choice, and
finally sequencing as the lowest precedence one.

An input file should contain only one pGCL program, well-formed according
to the preceding grammatical rules. Syntax errors are reported to the user with
a brief indication of the position where the first such error was detected during
parsing.

3 Some simple examples of tool use

To illustrate how the tool works and the kind of information about refinement
we can obtain through its use, we show in this section some simple examples to
give the reader an idea of how things work in practice.

In all the following examples, suppose program p1 is the following one:

x:= 0 ^ x := 1

This program’s meaning is that the value of x is chosen nondeterministically to
be either 0 or 1.

Now suppose program p2 is:



@{0.5: x := 0, 0.5: x:=1}

And this program’s meaning is that the value of x is chosen to be either 0 or
1, randomly and with the same probability of choosing one of the two possible
values.

3.1 Generating final distributions

Executing pGCLd we can get the corresponding distribution tables for both
programs, respectively for p1:

[<{x=0}, 1.0>]

[<{x=1}, 1.0>]

and for p2:

[<{x=0}, 0.5><{x=1}, 0.5>]

The results are shown in this notation: each distribution is between matching
brackets, and each point of the distribution (consisting of a final state and a
probability for that state to be reached as final) is between angular brackets.

This is implemented as the straightforward following of the operational se-
mantics of pGCL mentioned before, that is, transforming a current set of dis-
tributions over states along the way as the program sentences are found. Some
additional details can be found in [5]. In particular, the reader might find the
rewriting rules for the used fragment of pGCL of interest, as they present some
complexities any implementation of a semantic evaluator for pGCL needs to deal
with. While our first implementations used the rewriting rules just cited, cur-
rently we have a smarter traversal of the input program’s syntax tree in which
they are implicitly used to generate the resulting probability distributions, im-
proving the efficiency.

We show now a program that uses array variables, and how their indices can
be affected by probabilistic choices too, which illustrates how complex and hard
it could be for a person to figure out the behaviour of a pGCL program without
the help of a tool generating the final distributions. Consider the program p3:

@{1/3: a := 1, 2/3: a:=2};

n := 2*a;

if n>2 then x[a-1] := 2 else x[a-2] := 1 endif

After processing it with our tool and asking for the result distributions, we
obtain:

Distribution list for program:

There are 1 distributions.

Distribution with 2 component(s):

<{a=1, n=2, x[0]=2}, 0.333333333333>

<{a=2, n=4, x[1]=2}, 0.666666666667>



We should point out that undefined variables don’t show up on the final state
that is part of a result distribution, for instance x[1] in the first component of
the result for p3 just shown.

3.2 Testing refinement between two programs

We can also use the tool to test the first program against the second one for
containment. The execution of Yices on the result file will look like this, assuming
we have stored the representations of p1 and p2 in the respective files ex1.p and
ex2.p:

Containment check for ex1.p against ex2.p:

L1 is [<{x=0}, 1.0>]

L2 is [<{x=1}, 1.0>]

Testing against (0.5, 0.5): sat

(= L1 1/2)

(= L2 1/2)

There is a reason for the shape of L1 and L2, and it has to do with being able
to understand the evidence the solver Yices can present to us when checking the
refinement problem as a satisfiability one. Abstracting from the Yices syntax for
the file generated by our tool, which by the way follows the conventions of LISP
(this explains why the values for L1 and L2 are shown in such a way) the solver
is asked to verify the satisfiability of the following problem:

1× L1 + 0× L2 ≥ 0.5

0× L1 + 1× L2 ≥ 0.5

subject to L1 + L2 > 0 and L1 + L2 = 1 (L1, L2 ∈ [0, 1]). As informed by the
Yices solver, the problem has as an (obvious!) solution the values L1 = 0.5 and
L2 = 0.5.

The reason for this translation to that particular linear satisfiability prob-
lem is explained fully in our previous work [12]. Basically the idea is that we
express a program as a convex set, determined by the final distributions. Then
the refinement problem p v q reduces (nontrivially!) to a verification that each
distribution of the refinement q is contained in the convex set of the specification
p, and this can be expressed as a linear satisfiability problem solvable by a tool
like Yices. If all the points of p are contained in the convex set of q, then p is
refined by q. In the previous example, the results obtained via Yices mean that
p1 is refined by p2.

If we test the containment in the other direction, the result will be negative
and look like this:

Containment check for ex2.p against ex1.p:



L1 is [<{x=0}, 0.5><{x=1}, 0.5>]

Testing against (1.0, 0.0): unsat

unsat core ids: 3

Testing against (0.0, 1.0): unsat

unsat core ids: 4

There are two separate tests, since p1 has two final distributions that the whole
of p2 needs to be checked for containment.

Here the ids mentioned in the result are mentions to which constraints failed
to be satisfied in each test. If you inspect the Yices file generated by our tool,
the numbering of the ids refers to the position of the failing constraint, the first
listed being id 1. In this case, then, we have that p2 does not refine p1. Again,
abstracting from Yices syntax, the first test would be the satisfiability problem
(without solutions):

0.5× L1 ≥ 1

0.5× L1 ≥ 0

subject to L1 = 1 (and of course to L1 > 0). The first constraint already fails,
and is the id 3 that the Yices solver is talking about.

3.3 Finding evidence that refutes a refinement

Ideally, once we know a refinement doesn’t hold, we would like evidence for
it, that is, a certificate for refuting the proposed refinement. To see how the
preceding success and failure relate to results that give us such certificate, we
show now how those results look like:

Separation check for ex1.p against ex2.p:

L1 is {x=0}

L2 is {x=1}

Testing against (0.5, 0.5): unsat

unsat core ids: 1 2

Not surprisingly, since as we have seen before there is refinement of p1 by p2, no
refuting certificate is found.

On the other hand, let’s see what happens when asking for a certificate that
p2 isn’t refined by p1, which we also know from before:

Separation check for ex2.p against ex1.p:

L1 is {x=0}

L2 is {x=1}



Testing against (1.0, 0.0): sat

(= L1 0)

(= L2 2)

Testing against (0.0, 1.0): sat

(= L1 2)

(= L2 0)

We use the term separation, as we can say that the certificate separates p2
from p1 regarding the proposed refinement in geometric terms. The technical
details are somewhat involved so we refer the interested reader to our previous
work [12]. Here we will just say that if there is indeed a final distribution that
falls outside the convex set of the refined program, then there is an hyperplane
separating it from the convex set of the refinement. In the particular convex
sets involved in the refinement problem, the search for such a separation can
be achieved by another linear satisfiability problem. The solution to this new
problem describes such a hyperplane, which is the certificate that we have been
talking about (it’s actually the hyperplane’s normal).

3.4 Obtaining traces of the full execution

In many situations it is useful to see the traces that lead to a final distribution
in a probabilistic program. Our tool also offers that facility, which we illustrate
with another example.

Consider the following program:

x:=1;

@{1/2: y:=0, 1/2: y:=1};

y:=0

We can ask our tool to provide the final distributions, as always, but also to
accompany them with the corresponding traces that ended in such distributions.
The traces begin by the final state and list backwards all the program statements
that were executed to reach the final state, along of course with the probability
that this particular execution took place:

Trace list for program ex4.p:

There are 1 distributions.

Distribution with 2 component(s):

<After y := 0: {x=1, y=0}

After y := 0: {x=1, y=0}

After x := 1: {x=1}

, 0.5>

<After y := 0: {x=1, y=0}

After y := 1: {x=1, y=1}



After x := 1: {x=1}

, 0.5>

4 Results and some remarks on implementation

Besides examples like the preceding ones, that serve to illustrate the correctness
of the methods used by our tool in conjunction with the linear solver, we have
managed to apply the tool to more complex cases, even in situations in which the
tool isn’t fully comprehensive of the pGCL constructs used. In particular, the
Tank Monitoring problem [16] was explored in a useful way by the refinement
checking allowed by our tool (for details and results we refer to our work in [5]).
Much more remains to be done, of course, and in particular the application of
the tool to situations involving properties of web services.

As the nature of the problem turns out to be mainly the semantic eval-
uation of a probabilistic program of a reduced class, we decided to choose a
functional programming language for the implementation. The expressive style
of the functional paradigm greatly helped to make the implementation of such an
experimental tool a manageable effort. We used for this task the final available
version of Moscow ML ([13]) (a no longer maintained or updated version of ML
that is notable for its portability, small size, and lack of complexities or bugs as
an implementation environment).

Since Moscow ML is hardly the choice most readers would have picked for
implementing a tool of this nature, we should remark that there were contextual
reasons too for the choice. It was expected to tie the tool to other efforts using
the proof assistant HOL [8], in particular to some successful formalizations of
pGCL ([9]). HOL is implemented in Moscow ML, hence the original requirement
for its use as the implementation environment of our tool. While those interested
could probably and without much effort still try to use our tool code to work
along HOL, we are currently rewriting the tool in Haskell [7] to enjoy the many
powerful features of this modern functional language. In particular we are eager
to extend the tool towards a version of pGCL with hidden variables and refine-
ments that should satisfy safety properties about such secrets [10]. The rough
results so far are very encouraging.

Ideally, we would also like to implement clearer, better interfaces for the non-
expert user. Providing a full GUI would be the natural goal, but even working
inside the command line there is some room to improve the pre- and postpro-
cessing of results and input files communicated to the Yices solver. A particular
avenue to explore is using Yices as a library to be called inside a Haskell program
instead of through a chain of separate programs. This will demand, however, a
careful study of how the Yices libraries can be safely combined with the runtime
environment of Haskell.



5 Conclusions, other work and future work

We feel confident that our tool is already useful and promising, but also aware of
its limitations and implementation quirks. A change of implementation language,
most likely to Haskell, will open new possibilities of integration with other tools
and libraries. We also look forward towards expanding the language of proba-
bilistic programs accepted by the tool. Of particular interest are programs with
hidden information, in which properties of interest such as refinement must also
verify certain security properties (see [10]).

There are other tools for model exploration and even refinement checking for
probabilistic formalisms, but as far as we are aware they also lack the ability
to check for refinements in general and do it (like us) in restricted settings,
like for instance PRISM [14]. Our ability to produce certificates for refuting
refinement is something that a general model checker finds very awkward to do
at present. Another reason for choosing to try an experimental tool of our own
was that using model checkers that are based on the idea of Markov Decision
Processes (for another example see RAPTURE [15]) might force us to express the
program in a shape that ends up obscuring much of the pGCL formal structure.
As work on probabilistic programs with hidden information was anticipated,
we can say that for our purposes starting with a small tool of our own was
the safest plan. An interesting possibility, now that we have a clearer view of
the advantages and limitations of our experimental tool, would be combining
one such probabilistic model checker with our tool to analyze properties, with
the intention of making use of the particular strengths of each piece of formal
methods technology according to the situation.

Finally, and in the same way that our original efforts could be integrated
with related formalizations in the HOL proof assistant, the move to a Haskell-
based implementation would mean the possibility to try and integrate our tool
with the proof assistant Agda ([1]), also based on Haskell and using a power-
ful constructive logic that allows for a very high level computer formalization
of programs and their properties. The possibility of successfully formalizing a
programming language with random choice in a constructive logical framework
has been demonstrated by the work of [2] in the proof assistant Coq ([3], also
based on constructive logic), which makes us quite hopeful of a similar effort for
pGCL in Agda.
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noloǵıa e Innovación Productiva, Presidencia de la Nación, Argentina. This work
has been funded through the author’s project with that institution under the
reference PICT PRH No. 100, and which is part of the RRHH Project No. 37
held by the Universidad Nacional del Sur as agreed with ANPCyT.

References

1. Agda 2. Homepage. Programming Logic Group, Chalmers University of Technology,
Sweden. http://wiki.portal.chalmers.se/agda/



2. P. Audebaud and C. Paulin-Mohring: Proofs of randomized algorithms in Coq. In:
Science of Computer Programming, 74(8), pages 568-589, 2009.

3. The Coq Proof Assistant. Homepage, INRIA, France.
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