
Formalizing Relations between Use Cases in the

Unified Modeling Language

Roxana Giandini Claudia Pons Gabriel Baum

LIFIA, Universidad Nacional de La Plata

Calle 50 esq.115, 1er.Piso, (1900) La Plata, Argentina

Tel/Fax: (+54 221) 422 8252

e-mail: [giandini, cpons, gbaum]@sol.info.unlp.edu.ar

Abstract

The Unified Modeling Language (UML) is a semi-formal graphical language that has been
accepted as standard to model object-oriented software systems. This language defines various
kinds of diagrams that are used to describe different aspects or views of a system. In particular,
Use Cases diagrams are used to capture the requirements of the systems and to guide their
development process. The different Use Cases defined throughout a development process are not
independent but it is possible to set relations between them. The main relations considered by
UML are the following: Generalization, Include and Extend. These relations as well as the
remaining UML constructs are semi-formally defined, giving place to ambiguous interpretations
and inconsistencies.

This paper presents a formalization that gives precision to the definition of the main relations
between Use Cases. This formalization will allow us to check consistency when incrementing the
Use Cases model during the software development process and when relating Use Cases model
with others models.

Keywords: Software Engineering, Object-Oriented Analysis and Design, Graphical Modeling
Languages, Use Cases, Formal Semantics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The Unified Modeling Language (UML) [17] is a semi-formal graphical language that has been ac-
cepted as standard to model object-oriented software systems. This language defines various kinds of
diagrams which are used to describe different aspects or views of a system. In the UML, one of the key
tools for behavior modeling is the Use Cases construct, originated from OOSE [7] and developed in
works as [8] between others. A Use Case specifies one way of using a system without revealing the in-
ternal structure of the system. Use cases have been adopted almost universally to capturing require-
ments, but they are much more than a tool for specifying the requirements of a system. They also drive
its design, implementation and test; that is they drive the whole development process.

Generally, software development process -for instance the Unified Process [9]- are iterative and
incremental, they repeat over a series of iterations making up the life cycle of a system. Each iteration
takes place over time and it consists of one pass through the requirements, analysis, design,
implementation and test workflows. The result of each iteration represents an increment over each
model building in the previous workflows. The different Use Cases defined throughout a development
process are not independent but it is possible to set relations between them. The main relations
considered by UML are the following:

• Generalization: is a relation that reflects the amplification of the use case functionality or refines
its original functionality through the addition of new operations and/or attributes and/or behavior
sequences.

• Include : is a relation that allows us to reuse an encapsulated use case in different context through
its invocation from others use cases.

• Extend : is a relation that reflects the amplification of the use case functionality through the
extension of its behavior sequences.

These relations as well as the remaining UML constructs are defined in the UML semantics document
[17]. This description is semi-formal, i.e. parts of it are specified with well-defined languages, while
other parts have been described informally in English. The abstract syntax of the different language
constructs in UML is specified with the graphical notation of diagrams in UML itself, while the well-
formedness rules of UML are given in OCL [12], an object-oriented constraint language. Ordinary
English is choseen for describing the semantics of UML. This make the structure of the language
rigorous whereas the semantics of the language is still quite informal.

A language needs a formal specification to be unambiguous, understandable and properly used.
Furthermore, the semantics of the language must be precise if tools are to perform intelligent operations
on models expressed in the language, like consistency checks and transformations from one model to
another.

There is an important number of theoretical works giving a precise description of core concepts of
the graphical modeling notation UML and providing rules for analyzing their properties; see, for instance
[1, 3, 4, 5, 10, 11, 16]. Specifically, in the area of UML behavioral diagrams, Övergaard in [13] and [14]
formalizes Use Cases and Collaborations, respectively; however, in all these cases, the definitions in-
clude semantics elements of the system, such as objects of the system. On the other hand, the work of
Back [2] analyzes and formalizes the Use Cases diagrams through contracts defining previously the
classes that model the system and its behavior.

In this paper, we present rigorous definitions and well-formedness rules in order to determine
without ambiguity in which cases the operations between use cases are well-defined and how is the

result of applying them. These definitions conform an algebra for Use Cases. We want to pointout that
these definitions are only based on syntactics elements of the system, i.e. they do not include different
development levels (e.g. specification and execution) setting an advantage respect to the refered works.
Moreover, we consider the current versions of the UML to describe relationship between use cases.
Finally, we develop a semantics comparison between the include and extend relationships.

2 Use Case

A Use Case describes one service provided by a system, i.e. a specific way of using the system. The
complete set of Use Cases specifies all possible ways in which the system can be used, without revealing
how this is to be implemented by the system. This makes Use Cases suitable for defining functional
requirements in the early stages of system development, when the inner structure of the system has not
yet been defined. Since Use Cases do not deal with technicalities inside the system but focus on how the
system is perceived from the outside, they are most useful in discussions with end-users to make sure
that there is agreement on the requirements on the system, on its delimitation etc. More specifically, a
Use Case specifies a set of complete sequences of actions which the system can perform. Each sequence
is initiated by a user of the system, and it includes the interaction between the system and its
environment as well as the system’s response to these interactions.

2.1 Example

We will present the model of a system to maintain a Library. The members of the library share a
collection of books. The system should allow them to borrow books, to return them or to renew a loan.
When returning or when renewing the loan of a book, the member should pay a fee. In the event this fee
is not paid, the member won't be able to borrow a new book or to renew a loan. The figure 1 shows the
use case RenewLoan. This use case specifies the functionality of the system, for the renewing of a loan.

Use cases can be specified in a number of ways. Generally natural
language structured as a conversation between user and system is
used, see [8]. The conversation shows the request of a user and
the corresponding answers of the system, at a high level of
abstraction. Figure 2 shows a conversation between an actor (a
member of the library) and the system. The conversation considers
the normal action sequence and also alternative sequences (e.g.

the case in that the book is not available).

In the UML a Use Case is a kind of Classifier having a collection of operations (with its corresponding
methods). Operations describe messages that instances of the use case can receive. Methods describe the
implementation of operations in terms of action sequences that are executed by the instances of the use
case. In general instead of having a set of operations, a use case has only a single operation, for example
the RenewLoan use case has a single operation named “ask for renew loan”. The method that
implements that operation contains the set of action sequences, some of the sequences in this set
correspond to normal execution paths, while others correspond to alternative cases.

Let uc be the use case defined above. The definition of uc, using the standard notation and metamodel
of UML ([17], pag. 2-14, 2-114) is as follows:

uc.name= RenewLoan

Member

RenewLoan

Figure 1. RenewLoan Use Case

uc.operation1 = {op1}

op1.name=ask for renew loan

op1.method.body2= {< validate member identification, validate book availability, ask for debt, renew loan>,

< validate member identification, reject loan>, < validate member identification, validate book availability,
reject loan>,< validate member identification, validate book availability, ask for debt, pay fee, renew loan >}

User Actions

Actor: Member

System Answers

1. ask for renew loan 2. validate member identification

3. validate book availability

4. ask for debt

5 renew loan

Alternatives:

1. member identification is not valid -> reject loan

2. book is not available -> reject loan

3. member has debt -> payFee, then renew loan

Figure 2. Use Case RenewLoan Conversation

3 The Include relation between Use Cases

An include relationship between two use cases means that the behavior defined in the target use case is
included at one location in the sequence of behavior performed by an instance of the base use case.
When a use case instance "reaches the location" where the behavior of another use case is to be
included, it performs all the behavior described by the included use case and then continues according to
its original use case. The included use case may not be dependent on the base use case. In that sense the
included use case represents encapsulated behavior which may easily be reused in several use cases.

3.1 Example

In the example above, in order to enhance the use case model, we can add a new use case named PayFee
that performs the pay of the debt. The figure 3 shows the use case RenewLoan related to the use case
PayFee by the include relation.

The use case PayFee has a single operation named
payFee, with a single action sequence:
payFee.actionSequence= {< input payment, validate
payment, modify debt>}

The include relation between the use cases RenewLoan and PayFee can be described as follow:

1 For a Classifier C, C.operation denote the set of operations of C. Each operation op consists of a name and a set of
Action sequences, denoted op.name y op.method.body, respectively. In general we abbreviate op.method.body by
op.actionSequence.

2 The body of a method is a Procedure expression specifying a possible implementation of an operation. The definition of
procedure expressions is out of the scope of UML, we interpret a procedure expression as a set of action sequences.

RenewLoan PayFee

<<include>>

Figure 3. The Include relation between Use Cases

Let PayRenewLoan be the use case obtained from RenewLoan by the inclusion of the use case PayFee.
The textual representation of PayRenewLoan is:
PayRenewLoan.operation = {op1´}, op1´.name= ask for renew loan,

op1´.actionSequence= {<validate member identification, validate book availability, ask for debt, renew loan>,<
validate member identification, reject loan>,< validate member identification, validate book availability, reject
loan>,< validate member identification, validate book availability, ask for debt, input payment, validate payment,
modify debt, renew loan >}

3.2 Formalizing the Include relation between Use Cases

We present a formalization for the inclusion between use cases, defined in UML by the include relation-
ship.

Definition 1: Use Case Inclusion

A use Case UC is the result of including UC2 in UC1; i.e. UC = UC1 ⊕inc UC2 if the following holds:

a- Applicability: in UC1 there must be an invocation to UC2

∃o∈ UC1.operation . ∃ut∈ o.actionSequence . UC2.name∈ ut

b- Completeness: UC contains all the possible ways to include UC2 in UC1

∀o1∈UC1.operation . ∃o∈ UC.operation . (o.name=o1.name ∧ (∀s1∈o1.actionSequence. inclu-
sions(s1,UC2) ⊆⊆ o.actionSequence))

c- Correctness: every action sequence in UC comes from UC1, possibly extended by UC2.
∀o∈UC.operation . ∃o1∈ UC1.operation . (o.name=o1.name ∧ (∀s∈o.actionSequence.
∃s1∈o1.actionSequence. s∈inclusions(s1,UC2)))

Definition 2:
isIncluible: ActionSequence x UseCase

The predicate is true if the action sequence contains some invocation to the use case.

∀s:ActionSequence ∀uc:UseCase . isIncluible(s,uc) ↔ uc.name ∈s

Definition 3:
inclusions: ActionSequence x UseCase -> Set(ActionSequence)

The function inclusions(s, uc) returns the set of all possible inclusions of the use case uc inside the sequence
s. The function is defined by cases.

Case 1: ¬ isIncluible(s, uc)

inclusions(s, uc)={s}

Case 2: isIncluible(s, uc)

inclusions(s, uc)={ before(s,a);s2;after(s,a) / a=uc.name ∧ s2∈uc.actionSequence }

3.3 Applying the formalization to the example

We present part of the instantiation of the formulas that define the inclusion between use cases on the
example in 3.1, using the textual representation of the use case in 2.1. The goal is to show that the
model in the example fulfils the formulas, that is to say, it is a complete and correct Use Case inclusion.

According to Definition 1, we must prove that: PayRenewLoan = RenewLoan ⊕inc PayFee, i.e. the following
points must be satisfied:

a) Applicability: the use case RenewLoan has an invocation to the use case PayFee, i.e.:

∃o∈ RenewLoan.operation . ∃ut∈ o.actionSequence . PayFee.name∈ut, Since the only operation op1 in Renew-
Loan has an action sequence: < validate member identification, validate book availability, ask for debt, pay fee,
renew loan > that includes the action payFee and considering that PayFee is a use case with a single operation
named payFee, the applicability condition is proved.

b- Completeness: PayRenewLoan contains all possible ways to include PayFee in RenewLoan

∀o1∈RenewLoan.operation. ∃o∈ PayRenewLoan.operation . (o.name=o1.name ∧ (∀s1∈o1.actionSequence. in-
clusions(s1, PayFee) ⊆⊆ o.actionSequence)) As RenewLoan and PayRenewLoan have a single operation each one
-op1 and op1´ respectively- with the same name, only remains to verify the inclusions, i.e.:

(∀s1∈op1.actionSequence. inclusions(s1, PayFee) ⊆⊆ op1´.actionSequence).

In the example the action sequences are the following ones:

op1.actionSequence={ut1, ut2, ut3, ut4}

 op1’.actionSequence={ut1, ut2, ut3, ut4’}

By Definition 2, only the sequence ut4 of op1 -see point a)- satisfies the predicate isIncluible. By Definition 3:

inclusions(ut4, PayFee) = {<validate member identification, validate book availability, ask for debt, input
payment, validate payment, modify debt, renew loan >}. Then inclusions(ut4, PayFee) ⊆⊆ op1´.actionSequence.
The remaining of the sequences exist in op1´in their original form, then the inclusion is satisfied.

In similar way, the Correctness formula can be instantiated, showing that is fulfilled. The instantiations
of the next definitions are not included due to space limitations.

4 The Extend relation between Use Cases

An extend relationship defines that a use case may be extended with some additional behavior defined in
another use case. This relation contains a condition and references a sequence of extension points in the
target use case. Once an instance of a use case is to perform some behavior referenced by the first
extension point in an extend relationship, the condition es evaluated. If it is fulfilled, the sequence of the
use case instance is extending to include the sequence of the extending use case. The different parts of
the extending use case are inserted at the locations defined by the sequence of extension points in the
relationship – one part at each referenced extension point.

4.1 Example

The use case in figure 1 can be extended in order to count how many book renews are rejected because
the member identification is not valid. This extension can be achieved without modifying the original use
case, by means of an extend relationship and a new use case specifying the increment of behavior. Figure
4 shows this relationship between use cases. In this case the extension point specified by the extend re-
lationships is the action of to reject loan. The condition of the extension is that the member identification
is not valid.

Let CountReject be the use case specifying the incre-
ment of behavior. CountReject has a single operation
with a single action sequence, as follow:
countReject.actionSequence= {<updateRejectCounter>}

The extend relation ext is defined as follows:
ext.base= RenewLoan, ext.extension= CountReject

ext.condition= the member identification is not valid

ext.extensionPoint= { reject loan }

Let CountRejectRenewLoan be the use case obtained from RenewLoan by the application of the exten-
sion specified by ext, i.e. CountRejectRenewLoan = RenewLoan ⊕ext CountReject. The textual repre-
sentation of CountRejectRenewLoan is as follows:

countRejectRenewLoan.actionSequence= {<validate member identification, validate book availability, ask for
debt, renew loan >, < validate member identification, reject loan, updateRejectCounter >,< validate member identi-
fication, validate book availability, reject loan>, < validate member identification, validate book availability, ask
for debt, pay fee, renew loan >}

4.2 Formalizing the Extend relation between Use Cases

As in the case of the inclusion, we present a formalization for Use Case Extension, defining the features
of the resulting use case. In the UML the extension relation is a special modeling element, so the relation
appears explicitily in the following definition:

Definition 4: Use Case Extension
A use Case UC is the extension of UC1 by UC2 through an “extend” relationship ext;

i.e. UC = UC1 ⊕ext UC2 if the following holds:

a- Applicability: UC1 is extensible by ext if the following condition holds:

For each extension point of ext, there should exist a corresponding action inside the sequences of actions
of the use case:

∀i ∈ ext. extensionPoint. ∃uo ∈ UC1.operation . ∃uot∈ uo.actionSequence . i.location ∈ uot

b- UC1-Completeness: every action sequences in UC1 is extended in every possible way:

∀o1 ∈ UC1.operation . ∃o ∈ UC.operation .

(o.name=o1.name ∧ (∀s1∈o1.actionSequence. extensions(s1,ext,UC2) ⊆ o.actionSequence))

c- UC1-Correctness: every action sequence in UC is an extension of some action sequence in UC1.

∀o∈UC.operation .∃o1∈ UC1.operation .

(o.name=o1.name ∧ (∀s∈o.actionSequence. ∃s1∈o1.actionSequence. s∈extensions(s1,ext,UC2)))

Definition 5:
isExtensible: ActionSequence x Extend

The predicate is true if the action sequence contains some extension point defined by the extend relation.

∀s:ActionSequence ∀ext:Extend .

isExtensible(s,ext) ↔ ∃ i∈ext.extensionPoint . i.location∈s

RenewLoan CountReject

 <<extend>>

Figure 4. The extend relation between Use Cases

Definition 6:
extensions: ActionSequence x Extend x UseCase -> Set(ActionSequence)

The function extensions(s,ext,uc) returns the set of all possible extensions of the sequence s given by the Ex-
tend relation ext and the Use Case uc. The function is defined by cases.

Case 1: ¬ isExtensible(s,ext)

extensions(s,ext,uc)={s}

Case 2: isExtensible(s,ext)

extensions(s,ext,uc)={before(s,i.location); s2; after(s, i.location) /

i∈ext.extensionPoint ∧ i.location∈s ∧ s2∈uc.actionSequence }

Definition 7: UC extends UC1 if there exists a use case UC2 such that UC is the extension of UC1 by
UC2 through an ext relation: UC extendsext UC1 ↔ ∃ UC2:UseCase . (UC = UC1 ⊕ext UC2)

5 The Generalization relation between Use Cases

A generalization relationship between use cases implies that
the child use case inherits all the attributes, sequences of
behavior, extension points and relationship of the parent use
case. The child use case may also define new operations, as
well as to redefine or to enrich existing operations in the
parent use case, with new behavior sequences. To distin-
guish the kind of specialization of an operation, we suggest
the inclusion of an stereotype -UML element-: <<rede-
fine>> for the first case and <<enrichment>>for the second.

5.1 Example

The use case in figure 1 and fugure 2 can be specialized in order to count how many people have re-
newed the loan of a technical book. This specialization can be achieved without modifying the original
use case, by means of a generalization relationship and a new use case specifying the increment of be-
havior. Figure 5 shows this relationship between the use cases.

Let Statistic be the use case specifying the increment of behavior. Statistic has a single operation with a
single action sequence that enriches the only one operation of RenewLoan, as follows:

Statistic.operation= {op1} op1.name=renewLoan op1.stereotype=<<enrichment>>

op1.actionSequence= {<validate member identification, validate book availability, ask for debt, renew
loan, updateRenewsTechnicalCounter >, < validate member identification, validate book availability,
ask for debt, pay fee, renew loan, updateRenewsTechnicalCounter >}

Let StatisticRenewLoan be the use case obtained from RenewLoan by the application of the
generalization relation. The textual representation of StatisticRenewLoan is:

StatisticRenewLoan.operation={op},op.name=renewLoan

RenewLoan

 Statistic

 Figure5. Use Cases Generalization

op.actionSequence= {<validate member identification, validate book availability, ask for debt, renew
loan >,< validate member identification, reject loan >, < validate member identification, validate book
availability, reject loan>, < validate member identification, validate book availability, ask for debt, pay
fee, renew loan >, <validate member identification, validate book availability, ask for debt, renew loan,
updateRenewsTechnicalCounter >, < validate member identification, validate book availability, ask for
debt, pay fee, renew loan, updateRenewsTechnicalCounter >}

5.2 Formalizing the Generalization relation between Use Cases

In this section, we formalize the generalization between use cases, defining the features of the re-
sulting use case. Since use cases are generalizable elements of UML, by the implicit mechanism of in-
heritance, the resulting use case will contain all attributes and asociations -e.g. with Actors outside of
the system- of both the parent use case and the child, considering the redefinitions specified in the later.
In the UML, regarding the Generalization relationship, the behavior of redefined or enriched operations
is not clearly defined. Our formalization focus on improving the precision on this specification.

Definition 8: Use Case Generalization

A use Case UC is the generalization of UC1 by UC2; i.e. UC = UC1 ⊕gen UC2 if the following holds:

a- Applicability: every operation in UC2 that is not included in UC1 must have different name from any
action in UC1. If this does not happen, actions can be confused with operations in the resulting use case.

∀o2 ∈ UC2.operation . (o2 ∉ UC1.operation → ∀o1 ∈ UC1.operation .

∀s1 ∈ o1.actionSequence . ∀a ∈ s1. o2.name<>a)

b- Completeness:

b.1- every operation in UC1 that is not included in UC2 and every operation in UC2 that is not included
in UC1, are in UC in its original form:

∀o1 ∈ UC1.operation . ((∀o2 ∈ UC2.operation . o2.name<>o1.name)→ o1∈ UC.operation)

∀o2 ∈ UC2.operation . ((∀o1 ∈ UC1.operation . o1.name<>o2.name)→ o2∈ UC.operation)

b.2- every operation in both UC1 and UC2, is included in UC redefined or enriched, according to its
stereotype.

∀o1 ∈ UC1.operation .

(∃o2 ∈ UC2.operation . o2.name=o1.name)→
((o2.stereotype = <<redefine>> → o2 ∈ UC.operation) ∧
 (o2.stereotype = <<enrichment>> → ∃o∈ UC.operation . (o.name =o2.name ∧

o.actionSequence= o1.actionSequence ∪ o2.actionSequence)))

b.3- Inheritance of extension relations: for each extension relation with base in either UC1 or UC2,
there will be one extension relation from UC with both the same name and the same extension points.

∀ext: Extend . (ext.base = UC1 ∨ ext.base = UC2 →∃ext’. (ext’.base=UC ∧ ext’.name=ext.name ∧
ext’.extensionPoint=ext.extensionPoint))

c -Correctness: every operation in UC, is included either in UC1 or in UC2. If the operation is defined
in both, it will be redefined or enriched, according to its stereotype:

 ∀o∈UC.operation .

((o∈ UC1.operation ∧ ∀o1∈UC2.operation . o1.name <> o.name) ∨
(o∈ UC2.operation ∧ ∀o1∈UC1.operation . o1.name <> o.name) ∨
(o∈ UC2.operation ∧ o2.stereotype = <<redefine>>) ∨
(∃o1∈ UC1.operation . ∃o2∈UC2.operation . (o1.name = o2.name ∧ o2.stereotype = <<enrichment>>

∧ o.name =o2.name ∧ o.actionSequence= o1.actionSequence ∪ o2.actionSequence)))

Definition 9: UC is a generalization of UC1 through the increment specified by UC2 if UC is obtained
composing UC1 with UC2 by a generalización relation, i. e.:

UC generaliceUC2 UC1 ↔ (UC = UC1 ⊕gen UC2)

6 Comparison between the Include and Extend relations

The UML defines the extend and include relationships for use cases, indicating differences between
them. The former includes a construct to define the relation, that contains extension points -coinciding
with actions of the extending use case- and a condition to be evaluated to reach the first extension point.
On the other hand, the include relationship is defined as the inclusion of a use case in another, in a
“modularization of procedures” style, since the “location” where the addition is performed must coincide
with the name of the included use case. This mechanism is similsr to “invocation” between procedures.

After developing examples and defining a formalization of both relations, we can observe that there is
not semantics differences between them. More precisely, we can conclude that the include relation can
be considered a particular case of the extend relation, where:

§ The extension point sequence is a unary sequence where the single point coincides with the invoca-
tion of the included use case.

§ The condition that must be satisfies at this point, is always true.

6.1 Example

The inclusion relation presented in section 3, between use cases RenewLoan and PayFee can be ex-
pressed through an extend relation, in the following way:

Let ext´ be the extend relation that is defined as follows:

ext´.base= RenewLoan ext´.extension= PayFee ext´.condition= true ext´.extensionPoint= {pay fee}

Let PayRenewLoan´ be the use case obtained from RenewLoan by the application of the extension
specified by ext´, i.e. PayRenewLoan´ = RenewLoan ⊕ext´ PayFee. The textual representation of PayRe-
newLoan´ is as follows:

PayRenewLoan´.actionSequence= {< validate member identification, validate book availability, ask for debt, re-
new loan>, < validate member identification, reject loan>, < validate member identification, validate book avail-
ability, reject loan>, < validate member identification, validate book availability, ask for debt, input payment, vali-
date payment, modify debt, renew loan >}

We can observe that the resulting use cases PayRenewLoan -defined in section 3 through an include re-
lation- and PayRenewLoan´ -defined in this section through an extend relation-, are equal.

7 Conclusions and Future Works

The Unified Modeling Language (UML) is a semi-formal graphical language that has been
accepted as standard to model object-oriented software systems. This language defines various kinds
of diagrams that are used to describe different aspects or views of a system. In particular, Use Cases
diagrams are used to capture the requirements of the systems and to guide their development process.
The different Use Cases defined throughout a development process are not independent but it is
possible to set relations between them. The main relations considered by UML are the following:
Generalization, Include and Extend. These relations as well as the remaining UML constructs are
semi-formally defined, giving place to ambiguous interpretations and inconsistancies.

In this paper, we present rigorous definitions and well-formedness rules in order to determine
without ambiguity in which cases the operations between use cases are well-defined and how is the
result of applying them. These definitions conform an algebra for Use Cases. This approach will allow us
to carry out consistency checks when incrementing the Use Cases model through iterations during the
software devepolment process and when relating this model with others. Regarding this topics, in [15]
we distinguish three different kinds of dependency relations between UML models and propose a formal
description of them.

Also, we develop a comparison between the extend and include relations, arriving to the conclusion
that they not present important differences.

On top of this formalization we can analyze more complex forms of evolution obtained from the
combination of primitive operations. These evolutions may arise conflictive situations that can be
formally detected using this formalization. In this direction, in [6] we analyze conflicts in reusable
components evolution, that we think can be applied in Use Cases evolution.

The relations considered in this work only add behavior to Use Cases, extending their action
sequences. As continuation, it is interesting to analyze other ways of Use Cases evolution - add new
actors, new roles for objects, etc. On the other hand, the UML Specification Document says that a
complex use case can be refined into a set of smaller use cases. Then, the funtionality specified by the
complex use case must be completely traceable to its subordinate use cases. This is other way of
evolution to consider in future works.

References

1. Araújo, J, Formalizing Sequence Diagrams, In Luís Andrade, Ana Moreira, Akash Deshpande and
Stuart Kent, editors, Proc. OOPSLA´98 Wsh. Formalizing UML. Why? How?, Vancouver, (1998).

2. Back, R. Petre L. and I. Porres Paltor. Analysing UML Use Cases as Contract. Proceedings of the
UML’99 Second International Conference. Fort Collins, CO, USA, October 28-30/99. Lecture
Notes in Computer Science, Springer-Verlag, 1999.

3. Breu,R., Hinkel,U., Hofmann,C., Klein,C., Paech,B., Rumpe,B. and Thurner,V., Towards a formal-
ization of the unified modeling language. ECOOP’97 procs., Lecture Notes in Computer Science
vol.1241, Springer, (1997).

4. Evans,A., France,R., Lano,K. and Rumpe,B., Towards a core metamodelling semantics of UML,
Behavioral specifications of businesses and systems, H,Kilov editor, , Kluwer Academic Publishers,
(1999).

5. Evans,A., France,R., Lano,K. and Rumpe, B., Developing the UML as a formal modeling notation,
UML’98 Beyond the notation, Muller and Bezivin editors, Lecture Notes in Computer Science
1618, Springer-Verlag, (1998).

6. Giandini R. Documentación y evolución de componentes reusables. Tesis del Magister en IS,
Universidad Nacional de La Plata, Argentina, http://www-lifia.info.unlp.edu.ar/~giandini. Setiembre
1999.

7. Jacobson I.. Object-Oriented Development in an Industrial Environment. In Proceedings OOPSLA’
87, special issue of SIGPLAN Notices. Vol 22, N°12, pp.183-191, 1987.

8. Jacobson, I. Christerson, M. Jonsson P. and G. Övergaard. Object-Oriented Software Engineering:
A Use Case Driven Approach. Addison-Wesley, 1993.

9. Jacobson, I Booch, G. Rumbaugh J.. The Unified Software Development Process, Addison Wesley.
ISBN 0-201-57169-2, 1999

10. Kim, S. and Carrington,D., Formalizing the UML Class Diagrams using Object-Z, proceedings
UML´99 Conference, Lecture Notes in Computer Sciencie 1723, (1999).

11. Knapp, Alexander, A formal semantics for UML interactions, <<UML>>´99 - The Unified Model-
ing Language. Beyond the Standard. R.France and B.Rumpe editors, Proceedings of the UML´99
conference, Colorado, USA,. Lecture Notes in Computer Science 1723, Springer. (1999).

12. Object Constraint Language (OCL). version 1.3, July 1999. Part of [17]

13. Övergaard G. and K. Palmkvist. A Formal Approach to Use Cases and Their Relationships. In P.
Muller and J. Bézivin editors, Proceedings of the UML’98: Beyond the Notation, Lecture Notes in
Computer Cience 1618. Springer-Verlag, 1999.

14. Övergaard. G. A Formal Approach to Collaborations in the Unified Modeling Language. Proceed-
ings of the UML’99 Second International Conference. Fort Collins, CO, USA, October 28-
30/99.Lecture Notes in Computer Science, Springer-Verlag, 1999.

15. Pons, C., Giandini, R. and Baum, G, Dependency relations between models in the Unified Process.
In: Proceedings of the IWSSD. San Diego, California, IEEE Press, 5-7 Nov. 2000.

16. Pons,C., Baum,G., Felder,M., Foundations of Object-oriented modeling notations in a dynamic logic
framework, Fundamentals of Information Systems, Chapter 1, T.Polle,T.Ripke,K.Schewe Editors,
Kluwer Academic Publisher, (1999).

17. Unified Modeling Language (UML) Specification - Version 1.3, July 1999. UML specification re-
vised for OMG, http://www.rational.com

