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Abstract. In this paper we present a comparative study of four tra-
jectory metaheuristics or single-solution based metaheuristics (S-meta
heuristics): Iterated Local Search (ILS), Greedy Randomized Adaptive
Search Procedure (GRASP), Variable Neighborhood Search (VNS) and
Simulated Annealing (SA). The metaheuristics were used to minimize the
Maximum Tardiness (Tmax) for unrestricted parallel identical machine
scheduling (Pm) problem, which is considered as NP-Hard problem. The
results obtained through experimentation show that SA was the best
behaved.
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1 Introduction

The unrestricted parallel identical machines problem Pm considered in this paper
consists of scheduling n jobs on m identical parallel machines Pm to minimize
the Tmax. There are no constraints in the assignement of jobs to machines,
therefore the problem is described by a (Pm||Tmax). This problem belongs to
more basic model of Pm which is NP-hard, even when m = 2 [13]. The Pm are
representative of many real world problems. In such systems is usual to minimize
objective functions based on the due dates, such as the Tmax. Metaheuristics
have been used to solve similar problems that we are concerned. For instance
in [17], [13] a set of dispatching rules and heuristics are presented. In a related
work [15] the Pm was solved with SA and GRASP algorithms to minimize the
maximum completion time (i.e., the makespan). In [6] SA was used to solve
Pm with sequence-dependent setup times to minimize the makespan. The VNS
algorithm was developed in [12] to minimize the weighted number of late jobs
with release dates and in [9] to minimize the makespan. The ILS algorithm was
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presented in [1] to solve Pm with sequence-dependent setup times and unequal
ready times to minimize total weighted number of tardy jobs.

The remainder of the paper is organized as follows. Section 2 introduces the
Pm problem. In Section 3, the trajectory metaheuristics are presented. The ex-
perimental design is described in Section 4. In Section 5, the results are analyzed.
Section 6 provides our conclusions and future work.

2 Unrestricted Parallel Machine Scheduling Problem

The formal notation used in the literature [13] for the scheduling problem that
we are dealing is a triplet: (Pm || Tmax). The first field describes the machine
environment Pm, the second one contains the restrictions, we note that our
problem is unrestricted, therefore this field is empty, and the third provides the
objective function Tmax to be optimized. This scheduling problem can be stated
as follows: there are n jobs to be processed without interruption on some of the
m identical machines belonging to the system Pm; each machine can process not
more than one job at a time. Job j (j=1,2,...n) is made available for processing at
time zero. It requires an uninterrupted positive processing time pj on a machine
and it has a due date dj by which it should ideally be finished. For a given
processing order of the jobs (schedule), the earliest completion time Cj and the
maximum delay time Tj = {Cj - dj , 0} of the job j can be easily estimated. The
problem consists in finding an optimum schedule objective value. The objective
to be minimized is:

MaximumTardiness : Tmax = maxj (Tj )

The problems related to the due dates have received considerable attention
from a practical and theoretical point of view. Besides, they are considered as
NP-Hard when 2 ≤ m ≤ n [13].

3 Description of Trajectory Metaheuristics

Single-solution based metaheuristics (S-metaheuristics) improve a single solu-
tion. They could be viewed as walks through neighborhoods or search trajectories
through the search space of the problem at hand [5]. The walks (or trajectories)
are performed by iterative procedures that move from the current solution to
another one in the search space. S-metaheuristics show their efficiency in tackling
various optimization problems in different domains.

3.1 BLS

Basic Local Search is the oldest and simplest metaheuristic. It starts at a given
initial solution. At each iteration, the heuristic replaces the current solution by
a neighbor that improves the objective function. The search stops when all can-
didate neighbors are worse than the current solution, meaning a local optimum



is reached. Algorithm 1 describes this process [5]. BLS metaheuristic is included
here because it is invoked by the other metaheuristics, but it is not involved in
our comparative analysis.

Algorithm 1 Basic Local Search (BLS)
s=s0 {initial solution}
while {not Termination Criterion} do

Generate(N(s)) {Generation of candidate neighbors}
if {There is no better neighbor in N(s)} then

Stop
else

s′=s {Select a better neighbor in N(s)}
end if

end while

{Output: Final solution found (local optima)}

3.2 ILS

Iterated local search may be used to improve the quality of successive local
optima. In multistart local search, the initial solution is always chosen randomly
and then is unrelated to the generated local optima. ILS improves the classical
multistart local search by perturbing the local optima and reconsidering them
as initial solutions. Algorithm 2 shows the pseudocode of ILS [5].

Algorithm 2 Iterated Local Search (ILS)
s∗=Local-Search(s0) {Apply a local search algorithm}
repeat

s′= Perturb(s∗) {Perturb the obtained local optima}
s′′=Local-Search(s′) {Apply a local search algorithm on the perturbed solution}
s∗= Accept(s∗, s′′) {accepting criteria}

until Stopping criteria
{Output: Best solution found}

3.3 GRASP

GRASP metaheuristic is an iterative greedy heuristic to solve combinatorial
optimization problems. Each iteration of the GRASP algorithm contains two
steps: construction and local search. In the construction step, a feasible solution
is built using a randomized greedy algorithm, then a local search heuristic is
applied to the solution constructed in the previous step. GRASP pseudocode is
displayed in Algorithm 3 [5].



Algorithm 3 Greedy Random Adaptive Search Procedure (GRASP)
{Input: Number of iterations}
repeat

s=Greedy(seed) {Apply a randomized greedy heuristic}
s′=Local-search(s) {Apply a local search algorithm}

until Stopping criteria {a given number of iterations}
{Output: Best solution found}

3.4 VNS

The basic idea of VNS is to successively explore a set of predefined neighborhoods
to provide a better solution. It explores either at random or systematically a
set of neighborhoods to get different local optima. VNS exploits the fact that
using various neighborhoods in local search may generate different local optima
and that the global optima is a local optima for a given neighborhood. Indeed,
different neighborhoods generate different landscapes. VNS pseudocode is given
in Algorithm 4 [5].

Algorithm 4 Basic Variable Neighborhood Search (VNS)
{Input: a set of neighborhood structures Nk for k = 1, ..., kmax}
s=s0 {Generate the initial solution}
repeat

k = 1
repeat

Shaking() {Pick a random solution s’ from the Nk(s)}
s′′=Local-search(s′) {Apply a local search algorithm}
if s′′ < s′ then

s = s′′

Local-search(s) {Continue to search with N1(s), k=1}
else

k = k + 1
end if

until k = kmax

until Stopping Criteria
{Output: Best solution found.}

3.5 SA

SA is based on the principles of statistical mechanics whereby the annealing
process requires heating and then slowly cooling a substance to obtain a strong
crystalline structure. The strength of the structure depends on the rate of cooling
metals. If the initial temperature is not sufficiently high or a fast cooling is
applied, imperfections (metastable states) are obtained. In this case, the cooling
solid will not attain thermal equilibrium at each temperature. Strong crystals
are grown from careful and slow cooling. The SA algorithm simulates the energy
changes in a system subjected to a cooling process until it converges to an
equilibrium state (steady frozen state). This scheme was developed in 1953 by
Metropolis [14] and it is described in Algorithm 5 [5].



Algorithm 5 Simulated Annealing (SA)
k = 0 {Using for the Equilibrium condition}
s = s0 {Generation of the initial solution}
T = Tmax {Starting temperature}
repeat

repeat

k = k + 1
Generate a random neighbor s′

∆E = f(s′) − f(s)
if ∆E ≤ 0 then

s = s′

else

Acept s′ with a probability e
−∆E

T

end if

until mod(k,Markov-chain-length) == 0 {Equilibrium condition}
Update (T ) {Temperature Update}

until Stopping Criteria
{Output: Best solution found.}

4 Description of Experiments

As it is not usual to find published benchmarks (known optimal values) for the
unrestricted parallel identical machines scheduling problems, we work with some
that were used by previous works such as [2], [3] and [4]. In those works, the
problem instances were built based on selected data corresponding to weighted
tardiness problems and they were taken from the OR-Library [7]. These data
were the input for dispatching rules and conventional heuristics, and PARSIFAL
[17], a software package provided by Morton and Pentico, were used to evaluate
the instances problem by means of different heuristics, for example EDD (Ear-
liest Due Date first) and SPT (Shortest Processing Time first). In this way, the
benchmarks for problem instances for the Tmax objective function were obtained.
There are 20 problem instances of n = 100 jobs each, and they have an increas-
ing identification number, meaning that as its identification number increases, so
does its complexity. This is because they were generated with more high average
tardiness factor TF . We use the following three performance metrics:

1. Best: it is the global best solution found in each run.
2. Mean best (MBest): it is the mean value of Best throughout all runs.
3. Ebest = ((best value−opt-val)/opt-val) ∗ 100: it is the percentage error of

the best found solution when compared with the known or estimated (upper
bound) optimum value opt-val. It gives a measure on how far the best solution
is from that opt-val. When this value is negative, it means that the opt-val
has been improved.

Before the optimization runs are started, we drive the designs for computer ex-
periments to choose the best parameter values for each metaheuristic. There
are two different design techniques described in [16]. The samples can be placed
either on the boundaries, or in the interior of the design space. The former tech-
nique is used in the classical design of experiments (DOE) and the second is used
by a more modern method called Design and Analysis of Computer Experiments
(DACE). DACE assumes that the interesting features of the true model can be



found in the whole sample space. Therefore space-filling or exploratory design,
which place a set of samples in the interior of the design space, are commonly
used. Mckay et al (1979) proposed Latin Hypercube Sampling (LHS) as an alter-
native to the first proposed Monte Carlo sampling. LHS can be used to generate
the design points for algorithm designs.

4.1 Parameter Settings

We used the statistical software Project R to generate design points for each
metaheuristics. And thus, we obtained a LHD for each algorithm. Each desing
point represents one configuration of parameters. Thus, for ILS, GRASP, VNS
and SA we obtained a LHD of 20 points, one for each metaheuristic, and we did
20 experiments separately, because each metaheuristic has their proper design
space. The configuration of parameters for BLS was included in ILS, VNS, and
GRASP. The ranges of the parameters are given to generate the LHD samples,
and they represent the dimensions of the design points. The Table 1 depicts
the parameter ranges, where NS = Neighboorhood Size, OP = Operator Per-
turbation, NI = Number of Iterations, k=number of neighborhood structures,
VNSI=Varible Neighboorhood Size, MCL=Markov Chain Length, CR=Cooling
Rate, and IT = Initial Temperature.

Table 1. Parameter Ranges

Heuŕıstic NS OP NI k VNSI MCL CR IT

ILS [1,10] [1,5] [10e3,15e3] – – – – –
GRASP [1,10] [1,5] [10e3,15e3] – – – – –
VNS [1,10] [1,5] [10e3,15e3] [1,20] [1,30] – – –
SA – [1,5] [10e3,15e3] – – [10,100] [0,1] [10e3,15e3]

We applied the Friedman test [10], [11], and [8], (Friedman two-way analysis
of variances by ranks) which is a nonparametric similar of the parametric two-
way analysis of variance. It can be used for answering the following question: is
a set of k samples (where k ≥ 2), do at least two of the samples which represent
populations with different mean values?. The Friedman test is a multiple com-
parison test that aims to detect significant differences between the behavior of
two or more algorithms.

Table 2. Parameter Settings

Heuŕıstic Config. NS OP NI k VNSI MCL CR IT

ILS c6 8 1 10389 ∗ 30 – – – – –
GRASP c10 10 2 11785 ∗ 30 – – – – –
VNS c9 9 1 12400 ∗ 30 4 25 – – –
SA c13 – 5 14717 ∗ 30 – – 89 0.64 4039



For each metaheuristics, we applied the Friedman test and its results indicate
us which parameter configurations are better than others. Theses configurations
are shown in Table 2.

5 Analysis of results

All the metaheuristics have been run 30 times for each problem instance. Each
run stop when the maximal number of objective function evaluations (300000) is
achieved. In Table 3 we show the Best found by each metaheuristic and we can

Table 3. The Best achieved by each metaheuristic

Ins. Bench. ILS GRASP VNS SA

1 548 839 907 888 557
6 1594 1933 1622 1850 1574

11 2551 2925 2744 2887 2552
19 3703 3965 3960 4095 3745
21 5187 5480 5387 5460 5177

26 84 1020 721 993 84

31 1134 2055 1836 2057 1145
36 2069 3026 2604 3065 2081
41 3651 4804 4080 4734 3611

46 4439 5029 4753 4827 4443
56 617 2456 1564 2290 621
61 1582 3389 3132 3141 1595
66 2360 3790 3450 3755 2372
71 3786 4955 4880 4848 3824
86 1194 3560 2860 3570 1194

91 2204 4083 3277 4170 2274
96 3185 4480 4255 4372 3259
111 1365 3896 3902 4305 1466
116 2222 4218 3405 4408 2307
121 2999 4693 4387 4670 3281
avg 2323,7 3529,80 3186,30 3519,25 2358,10

see that SA improves 3 values and achieves 2 of them. ILS, GRASP and VNS
show, in a first analysis, similar mean.

The results indicate that SA had a better performance in all the problem
instances, this is graphically ilustred in figure 1. There, the boxplots draw the
values of Ebest metric, which represent the percentage error of the best found so-
lution when compared with the known or estimated optimum value. The boxplot
of SA is near to zero.

For the analysis of the results we use the Friedman test. In nonparametric
statistics is common to use this test to determine the difference between more
than two related samples.

In this study the related samples are the performance of the metaheuristics
measured across the same data sets. The null hypothesis being tested is that all
methods obtain similar results with nonsignificant differences.

The first step in calculating the test statistic is to convert the original results
to ranks. Thus, the best performing algorithm should have the rank of 1, the
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Fig. 1. Boxplots of Trajectory Metaheuristics.

second best rank 2, etc. In order to verify the null hypothesis, if the algorithms
have similar behavior ranges should be equal.

In our analysis the Friedman test takes as input for each algorithm/problem
pair the values of the metric Mbest (it is the mean value of Best value found by
each metaheuristic throughout all runs).

Table 4. Rankings of the algorithms

Algorithm Friedman (Rj) Friedman Aligned Quade

ILS 3.9000000000000012 57.64999999999999 3.9000000000000004
GRASP 2.150000000000001 39.2 2.0523809523809526
VNS 2.9499999999999993 54.64999999999999 3.047619047619047
SA 1.0000000000000002 10.499999999999998 1.0

statistic 54.42000000000013 14.575777663237545 136.01165501165502
P-value 6.7591932051414E-11 0.002217522627622426 5.870461388944716E-26

The test results are shown in Table 4. From the observation of the same we
can reject the null hypothesis since the ranges differ, which indicates that there
are significant differences between the algorithms. Also the heuristic that shows
the best behavior is SA because it is the first in the ranking. Additionally we
also apply the Friedman Aligned Ranks and Quade tests which offer a different
way of ranking computation, but all of them located SA in the first place.

The main drawback of the previous tests is that they only detect significant
differences over the whole multiple comparisons, being unable to establish proper
comparison between some of the metaheuristics considered [8].



To compare the algorithms with each other and check if differences exist
between them, we used a post-hoc procedure. The process is as follows: choose
the heuristic that has shown better performance (in our case SA) and it is used
as a control algorithm. Then each of the other heuristics used in the experimental
study is compared to control heuristic, and a family of hypotheses is built, all
referred to the control method. The application of a post-hoc test allows us
to obtain p-values that determines the degree of rejection of each hypothesis,
depending on a certain level of significance. The Table 5 displays the adjusted
p-values obtained by the application of Holm Post-hoc test.

Table 5. The adjusted p-values of Holm Post-hoc test

Algorithm Friedman Friedman Aligned Quade

ILS 3.648555435089692E-12 4.188721955300531E-10 1.1096750436689544E-6
VNS 3.5673624347880124E-6 3.755266010513546E-9 6.624461201617061E-4

GRASP 0.004848762721678939 9.400147582069817E-5 0.06505610894545293

In the comparison by pairs we can note a significant difference between VNS,
ILS and SA since all p-values are less than 0.05. The above is not satisfied in
the case of GRASP and Quade test, but considering the average values shown
in Table 3 and also, that the p-value obtained for Quade is slightly higher than
0.05, we can say that SA overcomes the performance of GRASP.

6 Conclusions

We compare four trajectory metaheuristics: ILS, GRASP, VNS and SA to mi-
nimize the maximum tardiness for unrestricted parallel identical machine sche-
duling problem. Previously we realized a statistical study to determinate de best
parameter values for each metaheuristic using the DACE method. Finally, we
analyzed the results using different nonparametric statistical tests that allowed
us to perform multiple comparisons between the algorithms to determine if any
of the heuristics was better to solve the problem at hand. The tests shown
that SA had a better performance. SA was then compared with each other
metaheuristics, using the Holm Post-hoc test, in order to determine whether
there were significant differences between them. The results showed that SA
had indeed statistically significant differences with ILS and VNS but not so
with GRASP, even though the mean values obtained by SA outperformed those
achieved by GRASP. These results lead us to select SA as local search algorithm
to hybridize heuristics based on collective intelligence in order to improve the
benchmarks of the problem of our interest.
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8. Joaqúın Derrac, Salvador Garćıa, Daniel Molina, Francisco Herrera,“A practical tu-
torial on the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms”, Swarm and Evolutionary Compu-
tation, 2011.

9. Kai Li and Ba-Yi Cheng,“Variable neighborhood search for uniform parallel machine
makespan scheduling problem with release dates”, 2010 International Symposium on
Computational Intelligence and Design.

10. M. Friedman,“The use of ranks to avoid the assumption of normality implicit in the
analysis of variance”, journal of American Statistical Association 3 (1937) 674-701

11. M. Friedman,“A comparison of alternative test of significance for the problem of
the m rankings”, Annals of Mathematical Statistics 11 (1940) 86-92.
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