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Abstract. When there is a need to understand the data stored in a database, one 

of the main requirements is being able to extract knowledge in the form of 

rules. Classification strategies allow extracting rules almost naturally. In this 

paper, the CLUHR classification strategy is extended to work with databases 

that have nominal attributes. Finally, the results obtained using the databases 

from the UCI repository are presented and compared with other existing 

classification models, showing that the algorithm presented requires less 

computational resources and achieves the same accuracy level and number of 

extracted rules. 
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1   Introduction 

The extraction of knowledge is a process that combines machine learning, statistics 

and pattern recognition techniques, among others, used to assist the decision making 

process, understand the data and explain certain situations or phenomena. Various 

data mining techniques have been successfully applied to various areas that handle or 

have large volumes of data, as tools to model the available information and thus 

obtain knowledge [1] [2] [3]. 

Among the tasks that can be carried out with data mining techniques, clustering 

and classification are of great interest. Clustering involves techniques capable of 

clustering data in different groups by means of a similarity measurement [4] [5] [6] 

[7] [8]. On the other hand, the classification task includes techniques that know the 

class of each data element and whose purpose is establishing common patterns that 

allow explaining or summarizing the data belonging to each class [9] [10] [3]. 

IF-THEN rules are the most common way of passing knowledge, since they are 

easy to understand. Additionally, adaptive techniques allow adding new rules and 

removing or modifying existing ones. This is why rules are used by most existing 

techniques to produce knowledge [10] [11] [12] [13] [14] [15]. 

In [16], a powerful extraction strategy that extracts knowledge as IF-THEN rules is 

presented, called CLUHR. This strategy uses hyper-rectangles as tool to describe the 

characteristics of the various data classes. The greatest disadvantage of CLUHR is 
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that it can only be used in databases whose attributes are numeric, since hyper-

rectangles can only be handled in numeric domains. This disadvantage greatly 

reduces the scope of the strategy, since there are not many databases with only 

numeric attributes. 

In this paper, and extension of the CLUHR technique, called CLUIN, is presented; 

CLUIN uses hyper-rectangles and overlap indexes for handling numeric attributes, 

adding the ability of dealing with nominal or categoric dataset attributes. 

The same as CLUHR [16], this technique is deterministic because it no longer 

depends on absolute randomness, and also, response time in model building is lower 

than with other classification techniques, achieving similar results regarding the 

accuracy of the model built and the number of rules extracted. 

The rest of the paper is organized as follows: in Section 2, the strategy proposed 

and the CLUIN algorithm are presented. In Section 3, the results obtained are 

detailed. Finally, the conclusions drawn from this work are discussed in Section 4. 

2   CLUIN 

The strategy proposed in this paper, called CLUIN, uses the same algorithm as 

CLUHR to work with numeric attributes by adding a new algorithm that is 

responsible for handling the nominal attributes in the database.  

Each of the nominal attributes i in the database has its own domain represented by 

a set Si. Thus, the data model of a given class is formed by a hyper-rectangle that 

describes the numeric attributes of the class and a set S, called set of nominal values, 

that is formed by sets Si. 

Definition: Be C a class of data and value(x,i) the nominal value of attribute i for 

element x ∈ C. Set Si for C is formed as follows: Si = { v | ∃ x ∈ C, value(x,i) = v } 

Definition: Be C a class of data and Si, i=1..N, the corresponding sets of the N 

nominal attributes of class C. The set of nominal values S is formed by all Si: 

S = { Si, i=1..N } 

Definition: Be C a class with N nominal attributes and M numeric attributes, the 

data in class C are represented by the set of nominal values S formed from the N 

nominal attributes and hyper-rectangle H formed from the M numeric attributes. 

In CLUHR, two hyper-rectangles whose classes are different can present an 

overlap in space, the same as two sets of nominal values from different classes can 

intersect. 

Definition: Be S and T two sets of nominal values in classes C and D, respectively. 

There is an intersection between both sets if the intersection of all pairs of sets Si and 

Ti is different from the empty set. 

From the definition above, it can be seen that with just one attribute i for which 

Si ∩ Ti = ∅, classes C and D will not intersect. Attribute i is precisely the one that 

allows splitting data from both classes. 

Definition: Two classes C and D overlap if their respective hyper-rectangles 

overlap and their respective sets of nominal values also overlap. 

Therefore, the overlapping classes can be split just by dividing the sets of nominal 

values or the hyper-rectangles. 



The intersections detected in the sets of nominal values must be removed; to do so, 

similarly to CLUHR, certain indexes are calculated. In CLUHR, divisibility indexes 

Zi are calculated, which are applicable to each numeric attribute. These indexes Zi are 

used to calculate the divisibility index Ωi, which in turn determines the attribute to be 

used for the adjustment. CLUIN uses the same index Ωi for numeric values and also 

uses the divisibility indexes Yj that are calculated for each nominal attribute and are 

used for calculating the divisibility index Ψj. The maximum value between Ψj and Ωi 

determines the attribute to be used for the splitting operation. 

If the attribute is numeric, hyper-rectangles are divided as described for CLUHR. If 

the attribute is nominal, the division is done by modifying the sets of nominal values 

as detailed further on. 

2.1   Indexes 

In CLUHR, overlap indexes are calculated to measure how much two hyper-

rectangles overlap in each space dimension. This index is calculated for all space 

dimensions and for each of the two hyper-rectangles. Thus, if two hyper-rectangles H 

and J overlap, the indexes Zi(H) and Zi(J) are calculated for i=1..M. 

Similarly, CLUIN calculates the intersection indexes for each nominal attribute 

and for each of the intersected sets of nominal values S and T. Thus, indexes Yj(S) and 

Yj(T) are calculated for j=1..N, and are then used to calculate the divisibility index Ψj. 

In this paper, we present the use of two indexes Y that have been successfully used 

in various classification algorithms. The first of these indexes is the Information Gain 

Ratio used in many decision trees [17] [18] [19] and the second one is Kolmogorov-

Smirnoff distance, used in more recent works [20] [21]. 

Information Gain Ratio: This index determines the nominal value v in an 

attribute j that has the lowest entropy among all values of i. This index returns a value 

between 0 and 1, where 0 indicates the greatest possible entropy and the lowest 

entropy is indicated by the value tending to 1. As this index is calculated using the 

values from both sets S and T, a single calculation is done, and it is assigned to 

indexes Yj(S) and Yj(T): 

 

Yj(S) = Yj(T) = IGR(S ∪ T, j) 

IGR(ST, j) = IG(ST, j) / IV(ST, j) 
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Where H(E) is the entropy of set E. 

Once the attribute with the highest value of Y is selected, the nominal value v is 

determined; this value is used to carry out the split operation that has the lowest 

entropy. 

Kolmogorov-Smirnoff distance: This distance is a statistical test that finds the 

maximum distance between two probability functions. When using this index, the 

division of the two sets of nominal values is carried out by means of the nominal 

value that generates the greatest division of data from both classes. This index tends 



to 1 when the use of a value generates a better division of the classes, and it tends to 0 

in the opposite case. 
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Once the attribute j with the highest value of Y is selected, the nominal value v is 

determined; this value is used to carry out the split operation that generated the value 

of the index (that with the maximum distance). 

These two indexes are used for calculating the divisibility index Ψi. 
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Thus, the maximum between Ψj and Ωi determines the attribute to be used to split the 

classes. If the attribute is numeric, the split operation is carried out by modifying the 

respective hyper-rectangles from each class as in CLUHR, while if the attribute is 

nominal, then the split process is carried out by modifying the sets of nominal values.  

If the attribute to be used for the division is nominal, then it is possible that each of 

the calculated indexes Y may have yielded a different value for the division. This 

strategy does not suggest the use of any specific value over the others; any of them 

can be used. The value chosen to be used for the split process will depend on the 

problem to be solved, and it is determined by the user. 

To carry out a division by modifying a nominal attribute with a value v, one of the 

two sets Sj is arbitrarily selected and two new sets are formed for class C. One of them 

will be formed by all data such that for attribute j it is equal to v, and the other one 

will be formed by its complement. 

 

Sj1 = { x | value(x, j) = v } 

Sj2 = { x | value(x, j) ≠ v } 

2.2   Regrouping sets of nominal values and hyper-rectangles. 

If the split operation is carried out using a numeric attribute, the hyper-rectangles 

from both classes are modified and new hyper-rectangles are generated. Each new 

hyper-rectangle has a new set of corresponding data from the class with which the 

minimum representative hyper-rectangle is adjusted (see [16] for more details). At the 

same time, with each data subset, the corresponding set of nominal values is 

calculated. 

Similarly, if the division is carried out using a nominal attribute, the new sets of 

nominal values obtained will each have a subset of data. With these same data, the 

corresponding minimum representative hyper-rectangles are formed. 

After the adjustments are made, there is a new search for overlaps and indexes Ωi 

and Ψj are calculated once again. 

The CLUIN algorithm is as follows: 



Initialize hyper-rectangles and sets of nominal values 

for each class of data 

Detect overlaps and calculate indexes Ωi 

while there are overlaps 

Divide by hyper-rectangles or by sets of nominal values 

Adjust the new hyper-rectangles and sets of nominal 

values 

Calculate indexes Ωi 

end while 

Extract resulting rules 

2.3   Rule extraction 

When the algorithm finishes, the result obtained are the hyper-rectangles and the sets 

of nominal values that form the entire data model. Each data class is mapped to one or 

more pairs of hyper-rectangles and sets of nominal values. Each pair of hyper-

rectangle/set will be used to extract a classification rule. This rule will be formed by 

the limits of the hyper-rectangle itself for numeric attributes and the nominal values 

contained in the set of nominal values.  

The clauses of the numeric attributes will be formulated as: (value_attribute_i ≥ 

Hni) AND (value_attribute_i ≤ hx1). 

While the clauses of the nominal attributes can have either of two formulations: 

(value_attribute_i = nominal_value) or (value_attribute_i ∈ subset_of 

_nominal_values) 

For high-dimension problem spaces, this procedure produces very complex and 

inadequate rules if the purpose is extracting knowledge from the base that the user can 

understand and explain knowledge through these rules. 

The conditions of these complex rules can be refined by simple inspection; the 

problem, however, is when there is a large number or dimensions of rules. The reader 

can find methods to automatically simplify rules in the bibliography ([22] [23]). 

3   Results 

CLUIN, the technique proposed in this paper, has been tested on 13 databases of the 

UCI repository [24]. Both performance and the computational effort required to build 

the model were compared with the results presented by [25] and [26]. The 

comparative analysis of the results obtained by CLUHR in [16] and CLUIN is not 

necessary, because the latter inherits the same classification strategy used by CLUHR 

for handling databases with numeric attributes, and therefore, the same results are 

obtained. 

The test known as 10-fold cross validation was performed over each database; the 

test was run 10 separate times over each dataset and the final accuracy was 

determined as the average of these 10 runs. The comparative results of classification 



accuracy for CLUIN and the results presented by [25] and [26] are shown in Table 1. 

Table 2 shows the average number of rules that were created during the process. 

The two-sided t-student test with a confidence level of 95% was carried out to 

determine if the differences between CLUIN and PSO/ACO2 are statistically 

significant. In tables 1 and 2, the signs “+” or “-” are used to indicate if CLUIN was 

better or worse, respectively, with a statistically significant difference, and the sign 

“=” is used to indicate that there was no difference. It should be noted that the work 

presented in [25] does not include statistical data and it was therefore impossible to 

compare it. 

Based on tables 1 and 2, it can be concluded that, even though the efficacy of the 

method proposed is similar to those presented for the remaining techniques, the 

number of hyper-rectangle/set pairs generated is lower. This reduces the number of 

rules and facilitates understanding the knowledge extracted by the user. 

The techniques proposed in [25] and [26], being based on evolutionary and 

optimization strategies, are able to find an individual from their respective 

populations that represents an optimal solution to the problem. Even if this is the case, 

it can be seen that CLUHR achieves similar results to those obtained by these 

techniques. The main disadvantage of the latter is the computational effort that they 

require to build the model. 

In [25], an evolutionary algorithm is used to find a set of hyper-rectangles that 

represent a model of the data. From an initial set HS of hyper-rectangles, each 

individual of the evolutionary population represents a subset of HS, which are evolved 

until the best individual is found, after several generations. This hyper-rectangle is 

built using both numeric and nominal attributes – when a dimension i of the hyper-

rectangle corresponds to a nominal attribute, this dimension is built with a subset of 

values of attribute i, converting the hyper-rectangle into a structure that is not 

numerically complete. On the other hand, the fitness of an individual is assessed by 

searching, for each element x of the database used, the hyper-rectangle that is closest 

to x. This means that, for each assessment of the fitness of each individual, the entire 

database must be examined. In [25], it is mentioned that for the tests carried out, one 

run of the evolutionary algorithm consists in 10,000 assessments, which means that 

the entire database is examined 10,000 times. Optimistically, it can be assumed that 

this technique will achieve an optimal result in a shorter time. Either way, for a 

population of 100 individuals, the optimal result will hardly be achieved in less than 

20 generations, which means that the lower limit would be 2,000 assessments of 

individuals to achieve the optimal result, which in turn means that the database has to 

be examined 2,000 times. 

In [26], a hybrid algorithm between PSO and ACO is used to find rule clauses. 

ACO is used to find the clauses of the nominal attributes, while PSO is used to find 

the clauses of the numeric attributes. In ACO, each particle has a pheromone matrix 

for each nominal attribute, and in PSO, each particle vector has two values for each 

attribute – one for the lower limit and one for the upper limit. To test a particle in the 

pheromone matrix, the nominal clauses are chosen probabilistically and the vector in 

PSO is converted into clauses that are then tested.  

The first time that the PSO algorithm tries to find a rule, it works with all the data 

in a class. Both in ACO and PSO, assessing the fitness of a particle implies exploring 

the entire database and measuring the accuracy of the rule represented by the vector 



of the particle. The result of this operation is a rule, and all the data that meet this rule 

are not analyzed when looking for a second rule. 

Since there is no way of knowing which subset of data is assessed over and over 

again as the rules are generated, the lower limit is set by considering that for each 

class, a single rule is extracted. It is therefore established that for each class, the ACO 

algorithm is run once and the PSO algorithm is run once with the data from that class. 

In [26], it is explained that the runs of ACO and PSO are carried out with a swarm 

of 100 particles, and that the algorithms are run a maximum of 100 iterations. In 

ACO, the 100 iterations are always run to obtain the pheromone matrixes that yield 

the best possible result; in each iteration rule quality has to be measured, which 

requires going through the entire database. Therefore, one run of ACO goes through 

the database 100 x 100 = 10,000 times. 

As regards PSO, in the best of cases PSO runs a single iteration to obtain the 

optimal result. To do so, it has to assess the fitness of 100 particles by going through 

all of the data in a class for each of these assessments. If for each class, a single PSO 

is run with only one iteration (hypothetical case that is almost impossible), then the 

database has to be explored in its entirety at least 100 times.  

ACO's 10,000 times added to PSO's 100 times are the minimum number of times 

that the database is explored in its entirety. More realistically, assuming that two rules 

are extracted for each class in PSO, with the second rule being built only with 50% of 

the data from each class, and each PSO running 20 iterations, then the database would 

have to be explored 2,000 to find the first rule and 1,000 times to find the second one 

(since it would be working with half the data), for a total of 3,000 times that the 

database is explored in full. This plus the 10,000 times required for ACO adds up to a 

total of 13,000 times. 

With CLUIN, the data is explored in its entirety only the first time to build the 

hyper-rectangles and the nominal data sets, a second time to determine how many 

data fall within each intersection, and a third time to calculate the indexes and 

determine how to remove the intersection selected. In summary, for each intersection 

that is to be removed, the database is explored three times. The total number of times 

that the database is explored will be 3*Q, where Q is the number of intersections that 

is removed during the execution of the algorithm.  

When an intersection is removed, only the hyper-rectangles and the sets of nominal 

data involved are modified, and therefore, only the data represented by such pairs of 

hyper-rectangle/set are explored. At each intersection q, these data represent a fraction 

fq of the database, meaning that the database is explored 3*Q*fq times. 

Table 3 shows, for each database used for the tests, the number of times that the 

database was explored. 

 

Table 1. Accuracy of the method proposed versus the results presented in [25] and 

[26]. Standard deviation is indicated between brackets; statistical differences are 

shown in the last column. 

Dataset EHS-CHC PSO/ACO2 CLUIN  

Contraceptive 0.4983  0.4852 (0.0265)  

Credit 0.8464 0.8560 (0.0284) 0.8497 (0.0541) = 

Zoo 0.9300 0.9718 (0.0625) 0.9621 (0.0357) = 

Balance scale  0.8272 (0.0477) 0.8236 (0.0219) = 



Australian credit  0.8531 (0.0414) 0.8479 (0.0387) = 

German credit  0.6790 (0.0582) 0.6802 (0.0468) = 

Statlog heart  0.8111 (0.0616) 0.8257 (0.0521) = 

Mushroom  0.9990 (0.0110) 0.9742 (0.0205) - 

Promoter  0.8100 (0.1212) 0.8351 (0.0981) = 

Soybean  0.8701 (0.0653) 0.8594 (0.0782) = 

Tic-Tac-Toe  1.000 (0.0000) 0.9863 (0.0029) - 

Chess (Kr vs. Kp)  0.9947 (0.0510) 0.9746 (0.0268) = 

Splice  0.9348 (0.0124) 0.9420 (0.0254) = 

Table 2. Number of hyper-rectangle/set pairs created for the data model by the 

strategies studied. Standard deviation is indicated between brackets; statistical 

differences are shown in the last column. 

Dataset EHS-CHC PSO/ACO2 CLUIN  

Contraceptive 12.7  11.8 (3.27)  

Credit 6.1 22.5 (3.1) 7.9 (3.80) + 

Zoo 5.6 7.1 (0.32) 6.3 (1.32) = 

Balance scale  26.6 (1.07) 29.4 (2.92) - 

Australian credit    22.7 (2.0) 25.14 (4.84) = 

German credit  54.3 (1.89) 48.67 (1.51) + 

Statlog heart  9.7 (1.34) 10.8 (1.63) = 

Mushroom  8.7 (0.48) 6.5 (0.87) + 

Promoter  5.1 (0.32) 6.3 (0.49) - 

Soybean  24.2 (1.03) 22.1 (2.07) + 

Tic-Tac-Toe  9.0 (0.0) 8.06 (0.62) + 

Chess (Kr vs. Kp)  18.7 (2.0) 25.8 (3.98) - 

Splice  88.0 (2.91) 95.7 (4.79) - 

Table 3. Number of times the entire database is explored with algorithms EHS-CHC, 

PSO/ACO2 and CLUIN. For CLUIN, the average and the standard deviation for 10 

runs are shown. For the other two techniques, the number of times estimated in 

section 4, Results, is used. 

Dataset EHS-CHC PSO/ACO2 CLUIN 

Contraceptive 2000  25 (5.4) 

Credit 2000 13000 47 (4.2) 

Zoo 2000 13000 15 (3.2) 

Balance scale  13000 32 (1.8) 

Australian credit  13000 54 (4.8) 

German credit  13000 26 (5.4) 

Statlog heart  13000 41 (3.9) 

Mushroom  13000 35 (4.8) 

Promoter  13000 28 (2.8) 

Soybean  13000 52 (8.2) 

Tic-Tac-Toe  13000 14 (3.7) 

Chess (Kr vs. Kp)  13000 15 (5.3) 

Splice  13000 61 (7.1) 



5   Conclusions 

A new knowledge extraction strategy has been presented, called CLUIN, that extends 

the strategy proposed by CLUHR [16] to work with nominal attributes. Each hyper-

rectangle generated with the numeric attributes corresponds to a set of nominal 

values. This hyper-rectangle/set pairs are reduced to other, smaller ones as indicated 

by the result of calculating a battery of indexes to remove or minimize existing 

overlaps. 

The use of indexes as criterion to select two overlapping hyper-rectangles or sets 

that intersect in order to be modified and thus remove such overlap turns the proposed 

strategy into a robust and efficient tool, in the sense that certain indexes can be 

calculated or not depending on the interests of the end user, including the possibility 

of adding new indexes resulting from new research activities or future experiences 

with problems that are solved using this method. 

CLUIN improves the power of CLUHR by adding the possibility of handling 

nominal attributes. CLUIN follows the same line as CLUHR; namely, it uses the same 

definition of overlapping sets of nominal values and how to detect these overlaps, and 

calculates indexes to determine the degree of intersection between sets of different 

classes used together with the intersection indexes used in CLUHR to calculate the 

overlap index. The latter indicates the attribute that should be used to minimize the 

overlap between the data from both classes. 

The results obtained were compared with an evolutionary technique and an 

optimization technique, and it was observed that a better accuracy and a slightly 

smaller number of extracted rules were achieved. The greatest advantage of CLUHR, 

when compared with the strategies mentioned, is that it requires a significantly lower 

computational effort to achieve similar results. This is very important when working 

with large databases. 
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