
CLUIN – A New Method for Extracting Rules for

Large Databases

Waldo Hasperué1,2 and Leonardo Corbalan
1

1Instituto de Investigación en Informática LIDI – School of Computer Science – National

University of La Plata, Argentina.
2 CONICET scholarship

{whasperue, corbalan}@lidi.info.unlp.edu.ar

Abstract. When there is a need to understand the data stored in a database, one

of the main requirements is being able to extract knowledge in the form of

rules. Classification strategies allow extracting rules almost naturally. In this

paper, the CLUHR classification strategy is extended to work with databases

that have nominal attributes. Finally, the results obtained using the databases

from the UCI repository are presented and compared with other existing

classification models, showing that the algorithm presented requires less

computational resources and achieves the same accuracy level and number of

extracted rules.

Keywords: Rule extraction, classification, large datasets, supervised learning.

1 Introduction

The extraction of knowledge is a process that combines machine learning, statistics

and pattern recognition techniques, among others, used to assist the decision making

process, understand the data and explain certain situations or phenomena. Various

data mining techniques have been successfully applied to various areas that handle or

have large volumes of data, as tools to model the available information and thus

obtain knowledge [1] [2] [3].

Among the tasks that can be carried out with data mining techniques, clustering

and classification are of great interest. Clustering involves techniques capable of

clustering data in different groups by means of a similarity measurement [4] [5] [6]

[7] [8]. On the other hand, the classification task includes techniques that know the

class of each data element and whose purpose is establishing common patterns that

allow explaining or summarizing the data belonging to each class [9] [10] [3].

IF-THEN rules are the most common way of passing knowledge, since they are

easy to understand. Additionally, adaptive techniques allow adding new rules and

removing or modifying existing ones. This is why rules are used by most existing

techniques to produce knowledge [10] [11] [12] [13] [14] [15].

In [16], a powerful extraction strategy that extracts knowledge as IF-THEN rules is

presented, called CLUHR. This strategy uses hyper-rectangles as tool to describe the

characteristics of the various data classes. The greatest disadvantage of CLUHR is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that it can only be used in databases whose attributes are numeric, since hyper-

rectangles can only be handled in numeric domains. This disadvantage greatly

reduces the scope of the strategy, since there are not many databases with only

numeric attributes.

In this paper, and extension of the CLUHR technique, called CLUIN, is presented;

CLUIN uses hyper-rectangles and overlap indexes for handling numeric attributes,

adding the ability of dealing with nominal or categoric dataset attributes.

The same as CLUHR [16], this technique is deterministic because it no longer

depends on absolute randomness, and also, response time in model building is lower

than with other classification techniques, achieving similar results regarding the

accuracy of the model built and the number of rules extracted.

The rest of the paper is organized as follows: in Section 2, the strategy proposed

and the CLUIN algorithm are presented. In Section 3, the results obtained are

detailed. Finally, the conclusions drawn from this work are discussed in Section 4.

2 CLUIN

The strategy proposed in this paper, called CLUIN, uses the same algorithm as

CLUHR to work with numeric attributes by adding a new algorithm that is

responsible for handling the nominal attributes in the database.

Each of the nominal attributes i in the database has its own domain represented by

a set Si. Thus, the data model of a given class is formed by a hyper-rectangle that

describes the numeric attributes of the class and a set S, called set of nominal values,

that is formed by sets Si.

Definition: Be C a class of data and value(x,i) the nominal value of attribute i for

element x ∈ C. Set Si for C is formed as follows: Si = { v | ∃ x ∈ C, value(x,i) = v }

Definition: Be C a class of data and Si, i=1..N, the corresponding sets of the N

nominal attributes of class C. The set of nominal values S is formed by all Si:

S = { Si, i=1..N }

Definition: Be C a class with N nominal attributes and M numeric attributes, the

data in class C are represented by the set of nominal values S formed from the N

nominal attributes and hyper-rectangle H formed from the M numeric attributes.

In CLUHR, two hyper-rectangles whose classes are different can present an

overlap in space, the same as two sets of nominal values from different classes can

intersect.

Definition: Be S and T two sets of nominal values in classes C and D, respectively.

There is an intersection between both sets if the intersection of all pairs of sets Si and

Ti is different from the empty set.

From the definition above, it can be seen that with just one attribute i for which

Si ∩ Ti = ∅, classes C and D will not intersect. Attribute i is precisely the one that

allows splitting data from both classes.

Definition: Two classes C and D overlap if their respective hyper-rectangles

overlap and their respective sets of nominal values also overlap.

Therefore, the overlapping classes can be split just by dividing the sets of nominal

values or the hyper-rectangles.

The intersections detected in the sets of nominal values must be removed; to do so,

similarly to CLUHR, certain indexes are calculated. In CLUHR, divisibility indexes

Zi are calculated, which are applicable to each numeric attribute. These indexes Zi are

used to calculate the divisibility index Ωi, which in turn determines the attribute to be

used for the adjustment. CLUIN uses the same index Ωi for numeric values and also

uses the divisibility indexes Yj that are calculated for each nominal attribute and are

used for calculating the divisibility index Ψj. The maximum value between Ψj and Ωi

determines the attribute to be used for the splitting operation.

If the attribute is numeric, hyper-rectangles are divided as described for CLUHR. If

the attribute is nominal, the division is done by modifying the sets of nominal values

as detailed further on.

2.1 Indexes

In CLUHR, overlap indexes are calculated to measure how much two hyper-

rectangles overlap in each space dimension. This index is calculated for all space

dimensions and for each of the two hyper-rectangles. Thus, if two hyper-rectangles H

and J overlap, the indexes Zi(H) and Zi(J) are calculated for i=1..M.

Similarly, CLUIN calculates the intersection indexes for each nominal attribute

and for each of the intersected sets of nominal values S and T. Thus, indexes Yj(S) and

Yj(T) are calculated for j=1..N, and are then used to calculate the divisibility index Ψj.

In this paper, we present the use of two indexes Y that have been successfully used

in various classification algorithms. The first of these indexes is the Information Gain

Ratio used in many decision trees [17] [18] [19] and the second one is Kolmogorov-

Smirnoff distance, used in more recent works [20] [21].

Information Gain Ratio: This index determines the nominal value v in an

attribute j that has the lowest entropy among all values of i. This index returns a value

between 0 and 1, where 0 indicates the greatest possible entropy and the lowest

entropy is indicated by the value tending to 1. As this index is calculated using the

values from both sets S and T, a single calculation is done, and it is assigned to

indexes Yj(S) and Yj(T):

Yj(S) = Yj(T) = IGR(S ∪ T, j)

IGR(ST, j) = IG(ST, j) / IV(ST, j)

IG(ST,i)=H(ST)– ∑
#��	∈	��	|	
�����,���
}

#��
	∈	
�������� 	 . ���� ∈ ��|���� ��, !� = �}�

IV(ST, i) = – ∑
#��	∈	��	|	
�����,���
}

#��
	∈	
�������� 	 . ��#$�
#��	∈	��	|	
�����,���
}

#��
�

Where H(E) is the entropy of set E.

Once the attribute with the highest value of Y is selected, the nominal value v is

determined; this value is used to carry out the split operation that has the lowest

entropy.

Kolmogorov-Smirnoff distance: This distance is a statistical test that finds the

maximum distance between two probability functions. When using this index, the

division of the two sets of nominal values is carried out by means of the nominal

value that generates the greatest division of data from both classes. This index tends

to 1 when the use of a value generates a better division of the classes, and it tends to 0

in the opposite case.

Yi(S)= max
	∈	
���������#��	 ∈ �	|���� ��, !� = �} −	#��	 ∈ �	|���� ��, !� ≠ �}�

Yi(T)=max
	∈	
���������#��	 ∈ �	|���� ��, !� = �} − 	#��	 ∈ �	|���� ��, !� ≠ �}�

Once the attribute j with the highest value of Y is selected, the nominal value v is

determined; this value is used to carry out the split operation that generated the value

of the index (that with the maximum distance).

These two indexes are used for calculating the divisibility index Ψi.

Ψ i(H, S) =
∑ *+���
,
+-.

/

Thus, the maximum between Ψj and Ωi determines the attribute to be used to split the

classes. If the attribute is numeric, the split operation is carried out by modifying the

respective hyper-rectangles from each class as in CLUHR, while if the attribute is

nominal, then the split process is carried out by modifying the sets of nominal values.

If the attribute to be used for the division is nominal, then it is possible that each of

the calculated indexes Y may have yielded a different value for the division. This

strategy does not suggest the use of any specific value over the others; any of them

can be used. The value chosen to be used for the split process will depend on the

problem to be solved, and it is determined by the user.

To carry out a division by modifying a nominal attribute with a value v, one of the

two sets Sj is arbitrarily selected and two new sets are formed for class C. One of them

will be formed by all data such that for attribute j it is equal to v, and the other one

will be formed by its complement.

Sj1 = { x | value(x, j) = v }

Sj2 = { x | value(x, j) ≠ v }

2.2 Regrouping sets of nominal values and hyper-rectangles.

If the split operation is carried out using a numeric attribute, the hyper-rectangles

from both classes are modified and new hyper-rectangles are generated. Each new

hyper-rectangle has a new set of corresponding data from the class with which the

minimum representative hyper-rectangle is adjusted (see [16] for more details). At the

same time, with each data subset, the corresponding set of nominal values is

calculated.

Similarly, if the division is carried out using a nominal attribute, the new sets of

nominal values obtained will each have a subset of data. With these same data, the

corresponding minimum representative hyper-rectangles are formed.

After the adjustments are made, there is a new search for overlaps and indexes Ωi

and Ψj are calculated once again.

The CLUIN algorithm is as follows:

Initialize hyper-rectangles and sets of nominal values

for each class of data

Detect overlaps and calculate indexes Ωi

while there are overlaps

Divide by hyper-rectangles or by sets of nominal values

Adjust the new hyper-rectangles and sets of nominal

values

Calculate indexes Ωi

end while

Extract resulting rules

2.3 Rule extraction

When the algorithm finishes, the result obtained are the hyper-rectangles and the sets

of nominal values that form the entire data model. Each data class is mapped to one or

more pairs of hyper-rectangles and sets of nominal values. Each pair of hyper-

rectangle/set will be used to extract a classification rule. This rule will be formed by

the limits of the hyper-rectangle itself for numeric attributes and the nominal values

contained in the set of nominal values.

The clauses of the numeric attributes will be formulated as: (value_attribute_i ≥

Hni) AND (value_attribute_i ≤ hx1).

While the clauses of the nominal attributes can have either of two formulations:

(value_attribute_i = nominal_value) or (value_attribute_i ∈ subset_of

_nominal_values)

For high-dimension problem spaces, this procedure produces very complex and

inadequate rules if the purpose is extracting knowledge from the base that the user can

understand and explain knowledge through these rules.

The conditions of these complex rules can be refined by simple inspection; the

problem, however, is when there is a large number or dimensions of rules. The reader

can find methods to automatically simplify rules in the bibliography ([22] [23]).

3 Results

CLUIN, the technique proposed in this paper, has been tested on 13 databases of the

UCI repository [24]. Both performance and the computational effort required to build

the model were compared with the results presented by [25] and [26]. The

comparative analysis of the results obtained by CLUHR in [16] and CLUIN is not

necessary, because the latter inherits the same classification strategy used by CLUHR

for handling databases with numeric attributes, and therefore, the same results are

obtained.

The test known as 10-fold cross validation was performed over each database; the

test was run 10 separate times over each dataset and the final accuracy was

determined as the average of these 10 runs. The comparative results of classification

accuracy for CLUIN and the results presented by [25] and [26] are shown in Table 1.

Table 2 shows the average number of rules that were created during the process.

The two-sided t-student test with a confidence level of 95% was carried out to

determine if the differences between CLUIN and PSO/ACO2 are statistically

significant. In tables 1 and 2, the signs “+” or “-” are used to indicate if CLUIN was

better or worse, respectively, with a statistically significant difference, and the sign

“=” is used to indicate that there was no difference. It should be noted that the work

presented in [25] does not include statistical data and it was therefore impossible to

compare it.

Based on tables 1 and 2, it can be concluded that, even though the efficacy of the

method proposed is similar to those presented for the remaining techniques, the

number of hyper-rectangle/set pairs generated is lower. This reduces the number of

rules and facilitates understanding the knowledge extracted by the user.

The techniques proposed in [25] and [26], being based on evolutionary and

optimization strategies, are able to find an individual from their respective

populations that represents an optimal solution to the problem. Even if this is the case,

it can be seen that CLUHR achieves similar results to those obtained by these

techniques. The main disadvantage of the latter is the computational effort that they

require to build the model.

In [25], an evolutionary algorithm is used to find a set of hyper-rectangles that

represent a model of the data. From an initial set HS of hyper-rectangles, each

individual of the evolutionary population represents a subset of HS, which are evolved

until the best individual is found, after several generations. This hyper-rectangle is

built using both numeric and nominal attributes – when a dimension i of the hyper-

rectangle corresponds to a nominal attribute, this dimension is built with a subset of

values of attribute i, converting the hyper-rectangle into a structure that is not

numerically complete. On the other hand, the fitness of an individual is assessed by

searching, for each element x of the database used, the hyper-rectangle that is closest

to x. This means that, for each assessment of the fitness of each individual, the entire

database must be examined. In [25], it is mentioned that for the tests carried out, one

run of the evolutionary algorithm consists in 10,000 assessments, which means that

the entire database is examined 10,000 times. Optimistically, it can be assumed that

this technique will achieve an optimal result in a shorter time. Either way, for a

population of 100 individuals, the optimal result will hardly be achieved in less than

20 generations, which means that the lower limit would be 2,000 assessments of

individuals to achieve the optimal result, which in turn means that the database has to

be examined 2,000 times.

In [26], a hybrid algorithm between PSO and ACO is used to find rule clauses.

ACO is used to find the clauses of the nominal attributes, while PSO is used to find

the clauses of the numeric attributes. In ACO, each particle has a pheromone matrix

for each nominal attribute, and in PSO, each particle vector has two values for each

attribute – one for the lower limit and one for the upper limit. To test a particle in the

pheromone matrix, the nominal clauses are chosen probabilistically and the vector in

PSO is converted into clauses that are then tested.

The first time that the PSO algorithm tries to find a rule, it works with all the data

in a class. Both in ACO and PSO, assessing the fitness of a particle implies exploring

the entire database and measuring the accuracy of the rule represented by the vector

of the particle. The result of this operation is a rule, and all the data that meet this rule

are not analyzed when looking for a second rule.

Since there is no way of knowing which subset of data is assessed over and over

again as the rules are generated, the lower limit is set by considering that for each

class, a single rule is extracted. It is therefore established that for each class, the ACO

algorithm is run once and the PSO algorithm is run once with the data from that class.

In [26], it is explained that the runs of ACO and PSO are carried out with a swarm

of 100 particles, and that the algorithms are run a maximum of 100 iterations. In

ACO, the 100 iterations are always run to obtain the pheromone matrixes that yield

the best possible result; in each iteration rule quality has to be measured, which

requires going through the entire database. Therefore, one run of ACO goes through

the database 100 x 100 = 10,000 times.

As regards PSO, in the best of cases PSO runs a single iteration to obtain the

optimal result. To do so, it has to assess the fitness of 100 particles by going through

all of the data in a class for each of these assessments. If for each class, a single PSO

is run with only one iteration (hypothetical case that is almost impossible), then the

database has to be explored in its entirety at least 100 times.

ACO's 10,000 times added to PSO's 100 times are the minimum number of times

that the database is explored in its entirety. More realistically, assuming that two rules

are extracted for each class in PSO, with the second rule being built only with 50% of

the data from each class, and each PSO running 20 iterations, then the database would

have to be explored 2,000 to find the first rule and 1,000 times to find the second one

(since it would be working with half the data), for a total of 3,000 times that the

database is explored in full. This plus the 10,000 times required for ACO adds up to a

total of 13,000 times.

With CLUIN, the data is explored in its entirety only the first time to build the

hyper-rectangles and the nominal data sets, a second time to determine how many

data fall within each intersection, and a third time to calculate the indexes and

determine how to remove the intersection selected. In summary, for each intersection

that is to be removed, the database is explored three times. The total number of times

that the database is explored will be 3*Q, where Q is the number of intersections that

is removed during the execution of the algorithm.

When an intersection is removed, only the hyper-rectangles and the sets of nominal

data involved are modified, and therefore, only the data represented by such pairs of

hyper-rectangle/set are explored. At each intersection q, these data represent a fraction

fq of the database, meaning that the database is explored 3*Q*fq times.

Table 3 shows, for each database used for the tests, the number of times that the

database was explored.

Table 1. Accuracy of the method proposed versus the results presented in [25] and

[26]. Standard deviation is indicated between brackets; statistical differences are

shown in the last column.

Dataset EHS-CHC PSO/ACO2 CLUIN

Contraceptive 0.4983 0.4852 (0.0265)

Credit 0.8464 0.8560 (0.0284) 0.8497 (0.0541) =

Zoo 0.9300 0.9718 (0.0625) 0.9621 (0.0357) =

Balance scale 0.8272 (0.0477) 0.8236 (0.0219) =

Australian credit 0.8531 (0.0414) 0.8479 (0.0387) =

German credit 0.6790 (0.0582) 0.6802 (0.0468) =

Statlog heart 0.8111 (0.0616) 0.8257 (0.0521) =

Mushroom 0.9990 (0.0110) 0.9742 (0.0205) -

Promoter 0.8100 (0.1212) 0.8351 (0.0981) =

Soybean 0.8701 (0.0653) 0.8594 (0.0782) =

Tic-Tac-Toe 1.000 (0.0000) 0.9863 (0.0029) -

Chess (Kr vs. Kp) 0.9947 (0.0510) 0.9746 (0.0268) =

Splice 0.9348 (0.0124) 0.9420 (0.0254) =

Table 2. Number of hyper-rectangle/set pairs created for the data model by the

strategies studied. Standard deviation is indicated between brackets; statistical

differences are shown in the last column.

Dataset EHS-CHC PSO/ACO2 CLUIN

Contraceptive 12.7 11.8 (3.27)

Credit 6.1 22.5 (3.1) 7.9 (3.80) +

Zoo 5.6 7.1 (0.32) 6.3 (1.32) =

Balance scale 26.6 (1.07) 29.4 (2.92) -

Australian credit 22.7 (2.0) 25.14 (4.84) =

German credit 54.3 (1.89) 48.67 (1.51) +

Statlog heart 9.7 (1.34) 10.8 (1.63) =

Mushroom 8.7 (0.48) 6.5 (0.87) +

Promoter 5.1 (0.32) 6.3 (0.49) -

Soybean 24.2 (1.03) 22.1 (2.07) +

Tic-Tac-Toe 9.0 (0.0) 8.06 (0.62) +

Chess (Kr vs. Kp) 18.7 (2.0) 25.8 (3.98) -

Splice 88.0 (2.91) 95.7 (4.79) -

Table 3. Number of times the entire database is explored with algorithms EHS-CHC,

PSO/ACO2 and CLUIN. For CLUIN, the average and the standard deviation for 10

runs are shown. For the other two techniques, the number of times estimated in

section 4, Results, is used.

Dataset EHS-CHC PSO/ACO2 CLUIN

Contraceptive 2000 25 (5.4)

Credit 2000 13000 47 (4.2)

Zoo 2000 13000 15 (3.2)

Balance scale 13000 32 (1.8)

Australian credit 13000 54 (4.8)

German credit 13000 26 (5.4)

Statlog heart 13000 41 (3.9)

Mushroom 13000 35 (4.8)

Promoter 13000 28 (2.8)

Soybean 13000 52 (8.2)

Tic-Tac-Toe 13000 14 (3.7)

Chess (Kr vs. Kp) 13000 15 (5.3)

Splice 13000 61 (7.1)

5 Conclusions

A new knowledge extraction strategy has been presented, called CLUIN, that extends

the strategy proposed by CLUHR [16] to work with nominal attributes. Each hyper-

rectangle generated with the numeric attributes corresponds to a set of nominal

values. This hyper-rectangle/set pairs are reduced to other, smaller ones as indicated

by the result of calculating a battery of indexes to remove or minimize existing

overlaps.

The use of indexes as criterion to select two overlapping hyper-rectangles or sets

that intersect in order to be modified and thus remove such overlap turns the proposed

strategy into a robust and efficient tool, in the sense that certain indexes can be

calculated or not depending on the interests of the end user, including the possibility

of adding new indexes resulting from new research activities or future experiences

with problems that are solved using this method.

CLUIN improves the power of CLUHR by adding the possibility of handling

nominal attributes. CLUIN follows the same line as CLUHR; namely, it uses the same

definition of overlapping sets of nominal values and how to detect these overlaps, and

calculates indexes to determine the degree of intersection between sets of different

classes used together with the intersection indexes used in CLUHR to calculate the

overlap index. The latter indicates the attribute that should be used to minimize the

overlap between the data from both classes.

The results obtained were compared with an evolutionary technique and an

optimization technique, and it was observed that a better accuracy and a slightly

smaller number of extracted rules were achieved. The greatest advantage of CLUHR,

when compared with the strategies mentioned, is that it requires a significantly lower

computational effort to achieve similar results. This is very important when working

with large databases.

References

1. Bouguessa, M., Wang, S. Mining Projected Clusters in High-Dimensional Spaces. IEEE

Transactions on Knowledge and Data Engineering, 21 (4), 507-522. (2009)

2. Hsu, C.-M., Chen, M.-S. On the Design and Applicability of Distance Functions in High-

Dimensional Data Space. IEEE Transactions on Knowledge and Data Engineering, 21 (4),

523-536. (2009).

3. Koul, N., Caragea, C., Honavar, V., Bahirwani, V., Caragea, D. Learning Classifiers from

Large Databases Using Statistical Queries. Web Intelligence and Intelligent Agent

Technology IEEE/WIC/ACM International Conference on, 923-926. (2008).

4. Bandyopadhyay, S., Saha, S. A Point Symmetry-Based Clustering Technique for Automatic

Evolution of Clusters. IEEE Transactions on Knowledge and Data Engineering, 20 (11),

1441-1457. (2009).

5. Chen, H.-L., Chuang, K.-T., Chen, M.-S. On Data Labeling for Clustering Categorical Data.

IEEE Transactions on Knowledge and Data Engineering, 20 (11), 1458-1472. (2009).

6. Lu, J.-L., Wang, L.-Z., Lu, J.-J., Sun, Q.-Y. Research and application on KNN method

based on cluster before classification. Machine Learning and Cybernetics International

Conference on, 307-313. (2008).

7. Wang, Z., Qi, Q., Xu, L. Cluster Analysis Based on Spatial Feature Selecting in Spatial Data

Mining. Computer Science and Software Engineering International Conference on, 386-389.

(2008).

8. Aslanidis, T., Souliou, D., Polykrati, K. CUZ, An Improved Clustering Algorithm.

Computer and Information Technology Workshops IEEE 8th International Conference on,

43-48. (2008).

9. Bakar, A.A., Othman, Z.A., Hamdan, A.R., Yusof, R., Ismail, R. An Agent Based Rough

Classifier for Data Mining. Intelligent Systems Design and Applications Eighth

International Conference on, 145-151. (2008).

10. Kamwa, I., Samantaray, S. R., Joos, G. Development of Rule-Based Classifiers for Rapid

Stability Assessment of Wide-Area Post-Disturbance Records. IEEE Transactions on Power

Systems, 24 (1), 258-270. (2009).

11. Martens, D., Baesens, B., Van Gestel, T. Decompositional Rule Extraction from Support

Vector Machines by Active Learning. IEEE Transactions on Knowledge and Data

Engineering, 21 (2). 178-191. (2009).

12. Shi, X.-J., Lei, H. A Genetic Algorithm-Based Approach for Classification Rule Discovery.

Information Management, Innovation Management and Industrial Engineering International

Conference on, 175-178. (2008).

13. Hasperué, W., Osella Massa, G., Lanzarini, L. Obtaining a Fuzzy Classification Rule

System from a non-supervised Clustering. Information Technology Interfaces (ITI) 30th

International Conference of, 341-346. (2008).

14. Konig, R., Johansson, U, Niklasson, L. Genetic programming - a tool for flexible rule

extraction. Evolutionary Computation IEEE Congress on, 1304-1310. (2007).

15. Hasperué, W., Lanzarini, L.C. A new clustering strategy for continuous datasets using

hypercubes. 36th Conferencia Latinoamericana de Informática. (2010).

16. Hasperué, W., Lanzarini, L., De Guisti, A. Rule Extraction on Numeric Datasets Using

Hyper-rectangles. Computer and Information Science. Vol. 5, No 4, pp. 116 131. (2012).

17. Quinlan J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc.

ISBN 1-55860-238-0. (1993).

18. Quinlan J. R. Induction of Decision Trees Machine Learning. 1: Vol. 1. - págs. 81-106.

(1986).

19. Piao M., Li M. y Ryu K. Ho Using Significant Classification Rules to Analyze Korean

Customers' Power Consumption Behavior: Incremental Tree Induction using Cascading-

and-Sharing Method. págs. 1649-1653. (2010).

20. Mballo, C., Diday E. Kolmogorov-Smirnov for Decision Trees on Interval and Histogram

Variables. (2004).

21. Chao S., Wong Fai. An incremental decision tree learning methodology regarding attributes

in medical data mining. International Conference on Machine Learning and Cybernetics.

págs. 1694-1699. (2009)

22. Darrah, M., Taylor, B., Skias, S. Rule Extraction from Dynamic Cell Structure Neural

Networks Used in a Safety Critical Application. Proceedings of the Seventeenth

International Florida Artificial Intelligence Research Society Conference, 629-634. (2004).

23. Ma, J., Guo, D., Liu, M., Ma, Y., Chen, S. Rules Extraction from ANN Based on

Clustering. Computational Intelligence and Natural Computing International Conference on,

19-21. (2009).

24. A. Asuncion and D. Newman, UCI machine learn-ing repository, Available:

http://archive.ics.uci.edu/ml/ (2007).

25. Garcia, S., Derrac, J., Luengo, J., Herrera, F. A First Approach to Nearest Hyperrectangle

Selection by Evolutionary Algorithms. Intelligent Systems Design and Applications Ninth

International Conference on, 517-522. (2009).

26. Holden, N., Freitas, A.A. A hybrid PSO/ACO algorithm for discovering classification rules

in data mining. Journal of Artificial Evolution and Applications, 1-11. (2008).

