
 

 

Collective Computing  
 

 
González J.A.1, Leon C.1, Piccoli F.2, Printista M.2, Roda J.L.1, Rodriguez C.1 and Sande F.

 
1 

 
1 

Universidad de La Laguna 
Departamento de Estadística, I. O. y Computación 

Facultad de Matemáticas. c/ Astrofísico Francisco 
Sánchez, s/n 

38271 La Laguna S/C de Tenerife 
casiano@ull.es, 

SPAIN 

2

Departamento de Informática 
Grupo de Interés en Sistemas de Computación 

 

Ejército de los Andes 950 
Universidad Nacional de San Luis 

San Luis  
    {mprinti,mpiccoli}@unsl.edu.ar  

ARGENTINE 
 
 

 
 

Abstract 
 

The parallel computing model used in this paper, the Collective Computing Model 

(CCM), is a variant of the well-known Bulk Synchronous Parallel (BSP) model. 

The synchronicity imposed by the BSP model restricts the set of available 

algorithms and prevents the overlapping of computation and communication. 

Other models, like the LogP model, allow asynchronous computing and 

overlapping but depend on the use of specific libraries. The CCM describes a 

system exploited through a standard software platform providing facilities for 

group creation, collective operations and remote memory operations. Based in the 

BSP model, two kinds of supersteps are considered: division supersteps and  

normal supersteps. To illustrate these concepts, the Fast Fourier Transform 

Algorithm is used. Computational results prove the accuracy of the model in four 

different parallel computers: a Parsytec Power PC, a Cray T3E, a Silicon 

Graphics Origin 2000 and a Digital Alpha Server. 
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1.  Introduction 
 

A computational model defines the behaviour of a theoretic machine. The goal of a model is to 
ease the design and analysis of algorithms to be executed in a wide range of architectures with the 
performance predicted by the model. The definition of a computational model limits the set of 
methodologies to design algorithms and how to analyse and evaluate their execution times. These 
methodologies restrict the design of the programming languages and guide the building of 
compilers that produce code for the architectures that match the model. In [Valiant 90], Valiant 
diagnosed the crisis of parallel computing: the main cause of the crisis is the absence of a parallel 
computing model that plays the role of bridge between the software and the architecture that is 
provided by the von Neumann model in the case of sequential computing. The conclusion of 
Valiant’s work is the need of a simple and precise parallel computing model that guides the design 
and analysis of parallel algorithms. In that work [Valiant 90], Valiant proposed the Bulk 
Synchronous Parallel (BSP) model. The result of the impact caused by the paper in the theoretic 
computation community has been the development of BSP algorithms and the software to support 
their implementation. This software has been specially promoted by the group of McColl and Hill 
in Oxford, giving place in 1996 to the Oxford BSP Library [Hill  97]. The synchronicity proposed 
by the BSP restricts the set of available algorithms. In 1993 Karp and Culler proposed the LogP 
model [Culler  93]. Culler’s group developed Active Messages [Eicken  92], a library that 
supports the LogP model. Afterwards, more libraries and languages oriented to this model have 
appeared like Fast Messages [Pakin  95] or Split C [Eicken  92]. 

The parallel programming standards have evolved independently of the rising of these two 
models. In 1989 the first version of Parallel Virtual Machine (PVM) [Geist 94] appeared. The 
capacity of PVM to exploit supercomputers and clusters of workstations contributed to its fast 
spread. In 1993 PVM was the standard “de facto”. The success of PVM leads to the first formal 
definition of Message Passing Interface (MPI) [Snir  96] that was presented in the ICS conference 
in 1994. In the following years, MPI has replaced PVM until reaching its actual position of 
parallel programming standard. It is necessary to emphasize that MPI offers a programming model 
but not a computational model. The prediction of execution times of parallel algorithms developed 
in MPI or PVM under BSP or LogP presents limitations and difficulties [Kort  98], [Rodriguez 
98b]. 

Due to the difficulty for finding a computational model for current parallel architectures, the 
best solution until now has been to find models that predict accurately the behaviour of a restricted 
set of communication functions as in [Abandah 96] and [Arruabarrena  96]. In this paper we try to 
give a formal generalisation of this approach, the Collective Computing Model (CCM). To show 
how it works, we use a parallel version of the Fast Fourier Transform algorithm. The experiments 
were performed in a Parsytec Power PC, a Cray T3E, a Silicon Graphics Origin 2000 and a Digital 
Alpha Server 8400. MPI was the software platform considered. 

The rest of the paper is organised as follows. The next section introduces the Collective 
Computing Model. Sections 3 and 4 present a comparison between the computational analysis 
and the experimental results obtained for the example used. In these sections we make a detailed 
analysis of this algorithm according to the CCM. Finally, section 5 presents some conclusions. 
 
 
2. The Collective Computing Model. 
 

The proposed parallel computational model considers a computer made up by a set of P 
processing elements and memories connected through a network. The model describes a system 
exploited through a library with functions for group creation and collective operations. The role 
of this library can be played for example, by the collective functions of MPI, the group 
functions of PVM or La Laguna C (llc) [Rodriguez 98a]. We assume the presence of a finite set 
P of partition functions and procedures that allow us to divide the current group in subgroups 
(these groups having the same properties than the initial one), and a finite set F of collective 
communication functions and procedures whose calls must be executed by all the processors in 



 

 

the current group. The computation in the Collective Computing Model (CCM) occurs in steps 
that we will refer to, following the BSP terminology, as supersteps. In the model we consider 
two kinds of supersteps. 

The first kind, called normal superstep, has two stages: 

1. Local computation. 
1.2. Execution of a collective communication function f from F. 

The second kind of superstep defined in the CCM is the division superstep. At any instant, 
the machine can be divided in a certain set r of submachines with sizes P0, …,Pr-1 as a 
consequence of the call to a collective partition function g∈ P. We suppose that after the 
division phase, the processors in the kth group are renamed from 0 to Pk

1. Distribution of the P processors in r groups of sizes P

-1. In its most general 
form, the division process g implies five stages: 

0, …,Pr-1 
1.2. Distribution of the input data, IN

(Processor Assignment) 
0, …,INr-1 of the tasks to be executed (Input Data 

Assignment) among the P  processors: in0, …,in
1.3. Execution Task

p-1 
0, ..,Taskr-1

1.4. A phase of reunification (Rejoinment), and 
 over these input data (Task Execution) 

1.5. Distribution of the results OUT0,…, OUTr-1, generated by the execution of the tasks (Result 
Data Assignment) among the P processors out0,…, outp-1

Some of these stages can be dropped in some division functions (for example in MPI, 
MPI_Comm_Split has not associated an input data assignment, neither does it have a result data 
assignment stage, and the tasks in this case are only one). Therefore, a division process g is 
characterised by the way it does each of the five previous stages. 

,. 

The CCM distinguishes the communication and division costs. Associated with each 
collective communication function f ∈ F there is a cost function, Tf that predicts the time 
invested by the communication pattern f depending on the number of processors P of the actual 
submachine and the length of the messages involved. Similarly, the model assumes the presence 
of a cost function Tg

The cost Φ
 for each division pattern g ∈ P. 

s

Φ

 of a normal superstep s, composed by a computation W, and the execution of a 
collective function f, is given by: 

s = W + Tf  = max {Wi / i = 0,…,P-1} + Tf (P, h0, …,hP-1

Where W

) 

i is the time invested in computation by processor i in this superstep and hj

Let’s consider the other case, where the superstep is a division one with partition function g ∈ 
P. The time or cost Φ

 is the 
amount of data (given by the maximum or the sum of the packets sent and received) 
communicated by processor j = 0, ..., P-1 under the pattern f and P denotes the number of 
processors of the current machine. 

s

Φ

 is given by:  

s  = Tg(P,in0 ,..,inP-1, r, out0 ,…, outP-1) +  max{ Φ( Task0),...,Φ( Taskr-1

T

) } 

g corresponds to the time invested in the division process, input data distribution, 
reunification and output data interchange. The second term is the maximum of the times, 
recursively computed for each of the tasks Task0, ..,Taskr-1

In conclusion, the CCM is characterised by the tuple: 

 associated with the call to the 
division function g. 

(P, F, TF ,P, TP

where 

) 

• P is the number of processors. 
• F is the set of collective functions (for example, those from MPI, PVM or La Laguna C) 
• TF

• P is the set of partition functions (for example the ones in MPI or La Laguna C) 
 is the set of cost functions for each collective function in F. 
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• TP

Different proposals can be used to determine T

 is the set of cost functions for each partition function in P. 

F . For example, it would be valid to take as 
TF the empirical set of linear by pieces functions obtained from Abandah’s [Abandah 96] or 
Arruabarrena’s[Arruabarrena  96] studies, where latency and bandwidth are considered 
depending on the communication pattern. The CCM assumes a linear by pieces behaviour in the 
message size of the functions in TP. However, this behaviour can be non-linear in the number P 
of processors (i.e. broadcast usually have a logarithmic factor in P). A similar approach could be 
used for obtaining TP

 

. The dependence of the architecture allowed in the cost functions is in the 
coefficients defining each particular function. Thus, once the analysis for a given architecture 
has been completed, the predictions for a new architecture can be obtained replacing in the 
formulas the function coefficients. 

 
III.3. An Example: The Fast Fourier Transform 

 
Since the use of collective functions - and their associated  normal supersteps, is  a common 

practice among MPI programmers, we will concentrate in the use of division supersteps.  The 
code in Figure 1 shows a natural parallelization of the Fast Fourier Transform (FFT) algorithm 
using La Laguna C [Rodriguez 98a], a set of macros and functions that extend MPI and PVM 
with the capacity for nested parallelism. The algorithm takes as input a vector of complex A, and 
the number n of elements in that vector; and returns in vector B the transformed signal. The 
algorithm is based in the fact that the computation of the transform of the even and odd terms is 
independent and therefore can be performed in parallel. 

 

 
 
In La Laguna C, variable NUMPROCESSORS holds the number of processors available at 

any instant. The algorithm begins testing if there are more than one processor in the current set. 
If there is only one processor, a call to the sequential algorithm seqFFT, provided by the user, 
occurs. Otherwise, the algorithm tests if the problem is trivial. If not, function odd_and_even() 
decompose the input signal A in its odd and even components that are stored in vectors a1 and 
a2 respectively. After that, the PAR construct in line 15 is employed to make two recursive calls 

 1 void parFFT(Complex *A, Complex *B, int n) { 
 2   Complex *a2, *A2;       /* Even terms */ 
 3   Complex *a1, *A1;       /* Odd terms */ 
 4   int m, size; 
 5 
 6   if(NUMPROCESSORS > 1) { 
 7     if (n == 1) {           /* Trivial problem */ 
 8       b[0].re = a[0].re; 
 9       b[0].im = a[0].im; 
10     } 
11     else { 
12       m = n / 2; 
13       size = m * sizeof(Complex); 
14       odd_and_even(A, a2, a1, m); 
15       PAR(parFFT(a2, A2, m), A2, size, parFFT(a1, A1, m), A1, size); 
16       Combine(B, A2, A1, m); 
17     } 
18   } 
19   else 
20     seqFFT(A, B, n); 
21 } 

Figure 1. The Fast Fourier Transform in llc. 

Con formato: Numeración y viñetas



 

 

to function parFFT in order to compute in parallel the transform of the even and odd 
components. The results of these computations are returned in A1 and A2 respectively. The PAR 
macro deals with the update of variable NUMPROCESSORS for the two sets of processors 
created (one dealing with the computation of the even components and the other with the odd 
ones) accordingly with the distribution policy implemented. Function Combine() combines the 
resulting transform signals A1 and A2 into the resulting vector, B. The Figure 2 shows the code 
corresponding to the main function.  

The time invested in the division of the original vector takes time O(n), and  the combination 
stage has the same complexity O(n).  

This example is a particular case of a paradigm that we will call a common-common 
algorithm. We say a problem to be solved in parallel is a common-common problem (CCP) if 
initially, the input data are replicated in all the processors and at the end, the solution to the 
problem is required to be also in all the processors. Analogously we can talk about private-
private problems (PPP) as those whose input and output are distributed among the processors. 
Problems can be classified according to the four possible combinations: CCP, PPP, PCP, CPP. 
A common-common Divide and Conquer is a divide and conquer algorithm that solves a CCP. 
The closure property is the main advantage of the common-common computation: the 
composition of two common-common algorithms is also a common-common algorithm.  

 
 

 
 
Figure 3 shows the pseudocode produced by the expansion of the PAR macro in Figure 1. In line 
10, INLOWSUBSET macro divides the set of processors in two groups, G and G’. Each 
processor NAME in a group G chooses a processor PARTNER in the other group G’, and results 
are interchanged between partners. 
 

1 main(void)  
2 {  clock_t itime, ftime; 
3   int n; 
4   complex *A, *B; 
5  
6   INITIALIZE; 
7   initialize(A);   /* Read array A */ 
8   itime = clock(); 
9   parFFT(A, B, n); 
10   ftime = clock(); 
11   GPRINTF("\n%d: time: (%lf)\n",  NAME, difftime(ftime,itime));       
12   EXIT; 
13 } /* main */  

Figure 2. The main() function for the code in Figure 1. Notice the same code  
  for all  the processors. 



 

 

 
 
Figure 4 shows a set with eight processors that is divided in two groups with four processors 
each and the partnership relations established among the processors in the two groups when a 
block policy is used. The second recursive call to the PAR macro gives place to the relations 
presented in Figure 5. Notice that a third recursive call would give place to a set of partnership 
relations that form a perfect binary hypercube. Each level of parallelism corresponds to a 
dimension in the hypercube.  
 

 
 
In the FFT algorithm, the groups of processors are always divided in two sets of equal size 

because the number of odd and even components of the signal is the same. However, it is 
sometimes useful to divide the set of processors in sets with different cardinals to balance the 
workload assigned to each processor. This is the case, for example, for any divide and conquer 
algorithm where the amount of work associated with each division of the problem could be 
different. The division of the set of processors available in subsets with different sizes can be 
reached in La Laguna C through the use of a different version of the PAR construct, the 
WEIGHTEDPAR. If the sets have different sizes, the resulting topology is what we call a 
dynamic polytope. Figure 6 shows a division process where an initial group with 6 processors 

1 PUSHPARALLELCONTEXT; 
2   /* Subset division phase */ 
3   Compute: 
4     NUMPROCESSORS, 
5     NAME, 
6     NUMPARTNERS AND PARTNERS,  
7     INLOWSUBSET 
8   /* do the calls and swap the results */ 
9   if (INLOWSUBSET) { 

10     parFFT(a2, A2, n); 
11     SWAP(partner, A2, size, A1, size); 
12   } 
13   else { 
14    parFFT(a1, A1, n); 
15     SWAP(partner, A1, size, A2, size); 
16   } 
17   /* Rejoinment */ 
18   POPPARALLELCONTEXT; 
19 } 

Figure 3. Expansion of the call to the PAR macro in Figure 1. 

P0 P1 P2 P3 P4 P5 P6 P7
NAME=0

NUMPROCESSORS=4 NUMPROCESSORS=4

NAME=1 NAME=2 NAME=3 NAME=0 NAME=1 NAME=2 NAME=3

Figure 4. Division phase. Each of the eight processors chose a partner in 
            the other group. 

P0 P1 P2 P3 P4 P5 P6 P7

NAME=0 NAME=1

NUMPROCESSORS=
2

NUMPROCESSORS=
2

NUMPROCESSORS=
2

NUMPROCESSORS=
2

NAME=0 NAME=1 NAME=0 NAME=1 NAME=0 NAME=1

 
 

Figure 5. Both groups split again. 



 

 

will be divided irregularly. In the first division, the weights are w1=20 and w2

 

=10 and therefore 
four {0, 1, 2, 3} and two {4, 5} processors are assigned to each group in the first partition.    

 
Links labelled 1 in Figure 7 show the partnership relations for this first division. If we 

suppose that successive divisions of the groups of processors take place like Figure 6 shows, 
then the left group of four processors is divided again with weights w11=11 w12=9 while the 
right group is divided with weights w21=6 and w22

 

=4. This second division “creates” a new 
dimension in the dynamic polytope labelled 2 in Figure 7. The topology resulting from the 
division process shown in Figure 6 is the hypercube presented in Figure 7.  

 
 
When there are no more processors available in the FFT code in Figure 1, the sequential 

algorithm seqFFT is called in line 20. The time for the sequential algorithm is 
O((n/P)*log(n/P)). At the end of the recursive calls to parFFT, the partners interchange the 
results of their computation and a communication of n/2 Complex between partners takes place. 
After the interchange, both groups join in the former group. 

 
The time Φ invested by the algorithm following the Computing Collective Model is given by 

the recursive expression: 
Φ = D*n/2 + F*n/2 + max {Φ( parFFT(a2, A2, m)),Φ( parFFT(a1, A1, m))}+ TPAR 

 
(P,A2,...,A2,A1,...,A1) 

The first term corresponds to the division process of the original signal into its components. 
The second term is the time corresponding to the combination of the transformed signals. D and 
F are the complexity constants for the division and combination stages respectively. The third 
and fourth terms correspond to the division superstep. The time invested in the division 
superstep is the maximum invested in each of the parallel transformations plus the time TPAR 
invested in the interchange of results that takes place following the EXCHANGE pattern in a 
machine with P processors (first argument), without initial data distribution (the first P input 
parameters in0,..,inP-1 and parameter r = 2 of the model formula have been skipped) with an 
interchange where each processor sends and receives m data. We can use the most convenient 
function TPAR

 
.  

TPAR ( P,0,...,0,2, m, ...,m) = m*gPAR+L

 

PAR 

6,5

10
5,4

2 3
6,4

4 5

11,9
w1 = 20, w2 = 10  

         Figure 6. Division process.  
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Figure 7. A dynamic polytope. 
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With a recursive reasoning, we can obtain the total time: 
 

Φ = ∑ i = 0, log(P)-1  D * n/2i + C*(n/P)* log(n/P) + ∑s=1, log(P)  ( gPAR* 2s* n/P)+LPAR+ F * 2s-1 

 

* n/p ) 

C is the complexity constant corresponding to the stage where all the processors compute the 
sequential FFT. 

Figure 8 compares the predicted and measured times for the FFT algorithm running with a 
2MB complex input vector for the Cray T3E, Silicon Graphics Origin 2000 and Digital Alpha 
Server. The Figure shows the accuracy of the model.  

 
 
Figure 9 shows the same results for a Parsytec Power PC for a 256KB complex vector. The 

less accurate results are a consequence of the dependency of the network communication 
system. 
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4.  Conclusions 

 
 By the Collective Computing Model, we try to give a formal generalisation to find models 

that predict accurately the behaviour of a restricted set of communication functions. The model 
describes a system exploited through a library with functions for group creation and collective 
operations. 

In the Collective Computing Model, the computation occurs in steps that we call to, 
following the BSP terminology, as supersteps. Two kinds of supersteps are found: normal 
superstep, and the division superstep.  

The Collective Computing Model  suits the MPI parallel programming collective mode when 
running in  high performance networks. The use of groups and division supersteps has been 
illustrated through a parallel version of the FFT in four high performance machines and the 
results show the model accurately when the influence of network communication is null. In 
other case the accuracy is less. 
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