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ABSTRACT 
A probabilistic algorithm for on-line tomographic reconstruction of ellipse-like images is 

presented. The algorithm takes advantage of the characteristic preferential direction of the objects, 
constructing a guidance function to select the angles for subsequent radiographic projections. The 
simulation results confirm that the technique reduces the number of projections required to achieve a 
given quality limit.  

 
I. INTRODUCTION 

Recent advances in radiation technology have risen new challenges in image 
processing and recognition. Radiation pulses provide unique characteristics compared with 
other radiation devices, namely very short flashes (10 nanoseconds) of high intense beams. 
This feature opens interesting possibilities in industry and medicine. Very short radiation 
pulses have been proposed in recent years for ultra-fast tomographic scannings to obtain fast 
cross-sectional information (Casali et al, 1995). Three-dimensional images of the internal 
structure of key components or critical parts in production lines have an enormous potential 
from the point of view of quality control. One can imagine a step in a production line where 
the quality of certain critical components is automatically monitored by means of 
tomographic identification of material defects. However, this step will introduce some time 
cost, which should be minimized if the technique is to be applied in real production lines.  

Essentially, a computed tomography is a tridimensional image of an object constructed 
from a certain number of photographs of the attenuated radiation passing through the object at 
different angles. In order to construct a perfect tomography, infinite projections are required. 
However, certain images can be reconstructed from a finite number of projections (although 
with some distortion). The present work is oriented to develop an image processing system, 
which takes advantage of radiation flashes, optimizing the emission-detection-reconstruction 
procedure. An optimization technique based in a probabilistic algorithm for the assessment of 
the best projection-angles is presented. The proposed algorithm is applied to design a strategy 
for an interactive on-line scanning of elliptical objects from limited projection data. 

 

II. ANGLE SPACING DISTRIBUTION 

 
Let us consider the ellipse shown in Fig.1, representing a cut of an object with certain 

attenuation properties. A radiation beam of intensity Io

 

 passing through at a given angle θ 
produces a projection profile I on a screen located behind the object. This profile is related to 
the local attenuation distribution  f(x,y) by: 
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where R is the Radon transform. Considering the image digitalized in pixels (i,j), and 
projected through by N parallel beams at M different angles, Eq. (1) is written as: 

 

ijmnijmn fRg =          (2) 

 

Given a set of projection profiles gmn , the original image fij

Usually, the M projection angles are distributed uniformly in the interval (0,π). 
However, this is not always the best strategy. Figure 2 compares the reconstructions of an 
ellipse (a) using four projections, equally spaced (b) and with an appropriate selection of the 
perspectives (c). It can be seen that substantial quality differences can be achieved with a 
careful selection of the view angles, and is reasonable to take this into account for the design 
of an intelligent control of the angles the object will be rayed through.  

 can be reconstructed 
solving Eq. (2) by numerical methods. This is known as the algebraic reconstruction 
technique (Herman 1980), and it was the procedure followed whenever a reconstruction is 
required along the present paper. 

The particular characteristic of the angle distribution of Fig. 2c is that most of the 
angles accumulate close to the direction of the main axis of the ellipse. In this example the 
ellipse is known prior to the reconstruction. In a real tomographic process the position and 
orientation of the object is not known a priori, and consequently a suitable algorithm should 
be provided to estimate these parameters. 

Let us consider a digital representation, eij
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 , of an ellipse in a square domain: 

 

 The position of the center of the ellipse can be calculated determining the position of 
the center of mass, (xc ,yc

 

 ) of the image: 
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A useful indicator of the projection angles that provide information about the ellipse 
orientation is the standard deviation of the image respect to a line passing through (xc ,yc

 

 ), 
that is: 
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where dij(θ) represents the distance of the pixel (i,j) from a line with an orientation θ. Figure 3 
shows the standard deviation of the ellipse shown in Fig. 2a. The minimum σ corresponds to 
the direction of the main axis. Since better reconstructions can be achieved accumulating 
more views about the main axis, the function σ(θ) is useful to construct an estimate of the 



optimum angle distribution, that is: 
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Equation (5) can be seen as the energy distribution of a collection of thermodynamic 
states, where )(e θσ−  plays the role of a Boltzmann factor, and σ(θ) corresponds to an energy to 
be minimized (REF Chandler). Figure 3 shows the distribution, p(θ). 

 
III. INTERACTIVE TOMOGRAPHY 

In real tomographies the proposed guidance angle distribution, p(θ), cannot be used, 
for the actual object is unknown. Nevertheless, it is still possible to construct successive 
approaches of p(θ) using partial reconstructions, which can be applied to determine 
successive best choices. However, the estimates of p(θ) should be complemented by a filter to 
prevent the occurrence of redundant angles that add little information to the reconstruction. 
For simplicity, the "I-already-got-that" filter is incorporated into the guidance function as a 
modulation factor that creates dark zones around the angles previously visited. Therefore, 
calculating the σn
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(θ) from the partial reconstruction using n projections, the guidance function 
for the choice of the next angle is: 

 

where θi

The complete algorithm is summarized in the following set of rules: 
 is the angle projection in the step-i, and k is an appropriate normalization coefficient. 

1) Start with two projections. 

2) Reconstruct a partial image, eij

3) Calculate an estimate of σ

(n). 

n

4) Calculate the guidance function, p

(θ) applying Eq. (4) to the previous partial 
reconstruction. 

n

5) Generate a new projection angle randomly with probability distribution p

(θ) applying Eq. (5). 

n

6) Repeat rules (2) to (5) while the quality enhancement between e
(θ). 

ij(n) and eij

 

(n-1), 
exceeds certain convergence criterion. 

III. RESULTS AND DISCUSSION 

The probabilistic algorithm was implemented in C++ and applied to an ellipse with 
aspect ratio ε = 0.5. Figures 4 show the evolution of pn(θ ) and σn(θ) during the 
reconstruction sequence of the ellipse shown in Fig. 2a. In the first step (Fig. 4a), the shadow 
resulting from the partial reconstruction using two projections is used to produce a 
preliminary estimate of the orientation and to assess where should be rayed the next view 
i.e. angles with larger p1(θ). Figure 4b shows the third step in the reconstruction. Two new 
angles where already taken (83o and 105o), and consequently the filter algorithm reduces the 
probability in the corresponding neighbourhoods. Finally, in the seventh step, the quality of 



the image is highly improved, and the maxima of the guidance function, p7

The proposed algorithm was compared against tomographies using equally spaced angles in 
order to assess its efficiency. The quality of the reconstruction can be measured using a 
distortion indicator defined by: 

(θ), indicate the 
views that would provide more information in future shots. 
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where ije′  is the reconstruction of the original pixel eij

The performance is measured by counting the number of projections needed to reduce 
the distortion below a given value. Ultimately, this metric will represent savings in irradiation 
doses or monitoring costs, depending on the particular application of the tomography. Figure 
5 compares the performance of the present algorithm with uniform spacing, for the ellipse 
shown in Fig. 2a. It can be seen that the same distortion limit can be achieved more efficiently 
using the proposed algorithm. Figure 6 compares two reconstructions from seven projections 
using uniform spacing and the probabilistic algorithm The difference in quality is quite 
evident. 

.  

 

IV. CONCLUSIONS 

A probabilistic algorithm has been applied to the design of an adaptive procedure for 
on-line tomographic reconstructions of ellipse-like images. The algorithm takes advantage of 
the characteristic preferential direction of the objects, constructing a probability distribution to 
guide the selection of the angles for subsequent radiographic projections. The simulation 
results confirm that the technique allows the reduction of the number of projections required 
to achieve a given quality reconstruction limit. Furthermore, the conceptual procedure can be 
extended to more general objects involving appropriate guidance functions, covering families 
of objects sharing similar shapes. 
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Figure 1. Image space f(x,y) and projection space g(s, θ). 

 

 

   
(a)                                  (b)                                  (c) 

Figure 2. Reconstruction of an ellipse using 4 projections. (a) original image, (b) uniform 
spacing (00,450,900,1350), (c) non-uniform spacing (00,630, 800,980

 

). 

 



Figure 3. Deviation σ(θ) and optimum angle distribution p(θ) of image 2a. 

Figure 4a. Partial reconstruction (step 1) 
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Figure 4b. Partial reconstruction (step 3)



 

Figure 4c. Partial reconstruction (step 7) 



Figure 5. Number of projections required to achieve a given distortion. Uniform spacing 
(dashed line), probabilistic algorithm (solid line). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Reconstructions with seven projections. Uniform spacing (left), probabilistic 
algorithm (right) 
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