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MOTIVES AND PERIODS IN BIANCHI IX GRAVITY MODELS

WENTAO FAN, FARZAD FATHIZADEH AND MATILDE MARCOLLI

Abstract. We show that, when considering the anisotropic scaling factors and
their derivatives as affine variables, the coefficients of the heat kernel expansion of
the Dirac–Laplacian on SU(2) Bianchi IX metrics are algebro-geometric periods of
motives of complements in affine spaces of unions of quadrics and hyperplanes. We
show that the motives are mixed Tate and we provide an explicit computation of
their Grothendieck classes.

1. Introduction

In this paper we continue our investigation of arithmetic structures arising in mod-
els of Euclidean gravity based on the spectral action functional of [3]. More specif-
ically, here by “arithmetic structures” we mean the occurrence of algebro-geometric
periods of mixed motives of algebraic varieties defined over number fields. In [10] we
showed that the heat-kernel Seeley-deWitt coefficients for the Dirac-Laplacian of the
Robertson–Walker metrics can be expressed as periods of mixed Tate motives given
by affine complements of unions of quadrics and hyperplanes. In the present paper,
we extend the result of [10] on the homogeneous and isotropic Robertson–Walker
metrics to the case of the homogeneous but non-isotropic Bianchi IX metrics. Al-
though the argument used in [10] does not immediately apply to the anisotropic case,
we provide a different parameterization of the integrals computing the Seeley-deWitt
coefficients, for which we can derive a very similar statement about expressing these
integrals as periods of certain mixed Tate motives given by complements of unions of
quadrics and hyperplanes.

The Bianchi IX metrics play an important role in Euclidean quantum gravity and
quantum cosmology in the form of minisuperspace models in Hartle–Hawking gravity,
see [8]. In view of a similar approach to quantum cosmology based on the spectral
action, currently being developed (see [18]), it is interesting to investigate what role
of arithmetic structures will play in such gravity models. The Bianchi IX metrics
are closely related to the mixmaster cosmological models of [12]. These have been
widely studied (see for instance [5], [19], [20]) and are known to have very interesting
relations for number theory, see [14], [15], [16], [17]. In [6] we proved a rationality
result for the Seeley-deWitt coefficients of the Bianchi IX metrics, which generalizes
an analogous rationality result for the Robertson–Walker case conjectured in [2] and
proved in [9]. In [7] we proved that, in the case of the two-parameter family of [1]
of Bianchi IX gravitational instantons, the Seeley-deWitt coefficients for the Dirac-
Laplacian are vector valued modular forms. We expect that, in addition to these
occurrences of motives, periods, and modular forms, a broader range of interesting
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relations between gravity models based on spectral action and heat kernel and number
theory remain to be uncovered.

2. Bianchi IX metrics and Dirac operators

We consider here SU(2)-Bianchi IX metrics of the form

(2.1) ds2 = w1(t)w2(t)w3(t) dt
2 +

w2(t)w3(t)

w1(t)
σ2
1 +

w3(t)w1(t)

w2(t)
σ2
2 +

w1(t)w2(t)

w3(t)
σ2
3,

where the σi are left-invariant 1-forms on SU(2)-orbits satisfying the relations

dσ1 = σ2 ∧ σ3, dσ2 = σ3 ∧ σ1, dσ3 = σ1 ∧ σ2.

This metric can be written locally as ds2 =
∑
gµν dx

µdxν , in the set of local coor-
dinates x = (xµ)µ=1,...,4 = (t, η, φ, ψ), where the 3-dimensional sphere S3 ' SU(2) is
parametrized by the map

(η, φ, ψ) 7→
(
cos(η/2) ei(φ+ψ)/2, sin(η/2) ei(φ−ψ)/2

)
.

Here the parameters have the ranges 0 ≤ η < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π. The
local formula of the Dirac operator D of the metric in this coordinate system and its
pseudodifferential symbol σD can be computed as in [6]. Using the symbol one can
locally write the action of D on a spinor s as

Ds(x) = (2π)−2
∫
ei x·ξ σ(D)(x, ξ) ŝ(ξ) dξ

= (2π)−4
∫ ∫

ei (x−y)·ξ σ(D)(x, ξ) s(y) dy dξ,(2.2)

where ŝ denotes the component-wise Fourier transform of s. In this formula ξ is in
fact an element of the cotangent fibre at the point x, which is identified with R4. We
have

σ(D)(x, ξ) = q1(x, ξ) + q0(x, ξ),

q1(x, ξ) = −
iγ2
√
w1 (csc(η) cos(ψ) (ξ4 cos(η)− ξ3) + ξ2 sin(ψ))

√
w2
√
w3

(2.3)

+
iγ3
√
w2 (sin(ψ) (ξ3 csc(η)− ξ4 cot(η)) + ξ2 cos(ψ))

√
w1
√
w3

+
iγ1ξ1√

w1
√
w2
√
w3

+
iγ4ξ4

√
w3√

w1
√
w2

,

q0(x, ξ) =
1

4
√
w1w2w3

(
w
′
1

w1

+
w
′
2

w2

+
w
′
3

w3

)
γ1 −

√
w1w2w3

4

(
1

w2
1

+
1

w2
2

+
1

w2
3

)
γ2γ3γ4,

where the γi are 4× 4 matrices such that (γi)2 = −I and γiγj + γjγi = 0 for i 6= j.

Correspondingly, for the Dirac-Laplacian D2 we have

σ(D2)(x, ξ) = p2(x, ξ) + p1(x, ξ) + p0(x, ξ),
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where the homogeneous terms are given by

p2(x, ξ) = q1(x, ξ)
2,

p1(x, ξ) = q0(x, ξ) q1(x, ξ) + q1(x, ξ) q0(x, ξ)(2.4)

+
4∑
j=1

(
−i(∂ξjq1)(x, ξ) (∂xjq1)(x, ξ)

)
,

p0(x, ξ) = q0(x, ξ)
2 +

4∑
j=1

(
−i(∂ξjq1)(x, ξ) (∂xjq0)(x, ξ)

)
.

In particular, for later use, note that we can write the degree-two homogeneous term
in the form

p2(x, ξ) =

(
4∑

µ,ν=1

gµνξµξν

)
I,

where the matrix (gµν) is the inverse of the symmetric matrix (gµν) formed by the
components of the metric tensor.

3. Seeley-deWitt coefficients and periods

The spectral action functional of Euclidean gravity, introduced in [3], is defined as
a trace Tr(f(D/Λ)) of the Dirac operator regularized by an even rapidly decaying
function f approximating a cutoff function on the Dirac spectrum, with Λ an energy
scale. It can be viewed as a modified gravity model, since the leading terms in the
large Λ expansion include the Einstein-Hilbert action of gravity with cosmological
term, as well as some higher derivative terms that include conformal gravity and
Gauss–Bonnet gravity. Overviews of applications of the spectral action functional to
cosmology and particle physics can be found in [18] and [24].

The Seeley-deWitt coefficients of the heat-kernel expansion of the Dirac-Laplacian

Tr(e−sD
2

) ∼s→0+ s
−dim(M)/2

∞∑
n=0

a2n(D2)sn

determine the coefficients of the large energy asymptotic expansion of the spectral
action functional, see [3] and §1 of [4] for more details. Thus, our approach to
investigating the arithmetic properties of the spectral action models of gravity is
based on identifying arithmetic structures in the Seeley-deWitt coefficients of the
heat-kernel expansion of the Dirac-Laplacian.

3.1. The Seeley-deWitt coefficients as residues. For any n ∈ Z≥1, the Seeley-
deWitt coefficients a2n can be computed as a noncommutative residue (see [6])

(3.1) a2n =
1

32 πn+3
Res(∆−12n ),

where
∆2n = D2 ⊗ 1 + 1⊗∆T2n−2 ,
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with ∆T2n−2 the Laplacian of the flat metric on an auxiliary (2n − 2)-dimensional
torus T2n−2 = (R/Z)2n−2. Since the operator ∆2n is acting on the smooth sections of
a vector bundle on a (2n+2)-dimensional manifold, in order to calculate Res(∆−12n ),
we need the term that is positively homogeneous of order −2n− 2 in the asymptotic
expansion of the symbol of ∆−12n . We write

σ(∆−12n )(x, ξ) ∼ξ→∞
−2∑

m=−∞

σm(∆−12n )(x, ξ),

where each σm(∆−12n ) is (positively) homogeneous of order m in ξ.

By definition (see [26], [27])

(3.2) Res
(
∆−12n

)
=

∫
M×T2n−2

(∫
|ξ|=1

tr (σ−2n−2(x, ξ)) |σξ, 2n+1|
)
|dx1 ∧ · · · ∧ dx2n+2|,

in which σξ, 2n+1 is the volume form of the unit sphere |ξ| = 1 in the cotangent fibre
R2n+2 ' T ∗x (M × T2n−2), given by

(3.3) σξ, 2n+1 =
2n+2∑
j=1

(−1)j−1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξ2n+2.

Remark 3.1. Because of the homogeneity degree of σ−2n−2(x, ξ) in (3.2) and the
Stokes theorem, the integration over the sphere |ξ| = 1 can be replaced with integra-
tion over the unit sphere of the metric or any other similar locus that is homologous
to the sphere as a closed cycle, see Proposition 7.3 on page 265 of [11].

The σm(∆−12n ) satisfy the recursive relations (see [6])

(3.4) σ−2(∆
−1
2n ) (x, ξ) =

(
p2(x, ξ1, . . . , ξ4) +

(
ξ25 + · · ·+ ξ22n+2

)
I
)−1

,

and, for m ≤ −3,

σm(∆−12n ) (x, ξ) =(3.5)

−


∑

α1,α2,α4∈Z≥0

m<j≤−2, 0≤k≤2
j−α1−α2−α4+k=m+2

(−i)α1+α2+α4

α1!α2!α4!

(
∂α1
ξ1
∂α2
ξ2
∂α4
ξ4
σj(∆

−1
2n )
) (
∂α1
t ∂

α2
η ∂

α4
ψ pk

)
σ−2(∆

−1
2n ).

Note that in this expression we have considered the fact that the symbol of the Dirac
operator D given by (2.3) is independent of the coordinate φ.

3.2. Seeley-deWitt coefficients as period integrals. We focus here on the Seeley-
deWitt coefficient before time integration, treating the anisotropy coefficients wi and
their derivatives as affine variables. We show that for algebraic values of these vari-
ables the resulting coefficient is a period integral in the algebro-geometric sense (see
[13]), that is, an integral of an algebraic differential form on a semi-algebraic set in
an algebraic variety.
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Remark 3.2. In the following we use the notation α2n for the Seeley-deWitt coeffi-
cient prior to integration in the time variable, namely

(3.6) a2n =

∫
α2n(t) dt,

where the t-dependence of α2n is through the cosmic expansion factors (anisotropy
coefficients) wi(t) of the Bianchi IX metric, for i = 1, 2, 3, and their derivatives,

(3.7) α2n(t) = α2n(wi(t), w
′
i(t), w

′′
i (t), . . . , w

(2n)
i (t)).

Proposition 3.3. Introducing new variables

(3.8)
W1 = 1√

w1(t)
√
w2(t)
√
w3(t)

, W2 = −
√
w1(t)√

w2(t)
√
w3(t)

,

W3 =

√
w2(t)√

w1(t)
√
w3(t)

, W4 =

√
w3(t)√

w1(t)
√
w2(t)

and the change of coordinates

ζ1 = ξ1,

ζ2 = ξ4 cot(η) cos(ψ)− ξ3 csc(η) cos(ψ) + ξ2 sin(ψ),

ζ3 = −ξ4 cot(η) sin(ψ) + ξ3 csc(η) sin(ψ) + ξ2 cos(ψ)

ζ4 = ξ4, ζ5 = ξ5, . . . ζ2n+2 = ξ2n+2,

the expression tr (σ−2n−2) is given by

tr (σ−2n−2) =
Mn∑
j=1

{
cj,2n (sin η)β0,1,j(cos η)β0,2,j (sinψ)β1,1,j(cosψ)β1,2,j

ζ
β1,j
1 ζ

β2,j
2 · · · ζβ2n+2,j

2n+2

Q
ρj,2n
W,2n

3∏
i=1

ω
ki,0,j
i,0 ω

ki,1,j
i,1 · · ·ωki,2n,j

i,2n

}
,

(3.9)

where

cj,2n ∈ Q,
β0,1,j, β0,2,j, β1,1,j, β1,2,j, ki,0,j ∈ Z,
β1,j, . . . , β2n+2,j, ρj,2n, ki,1,j, . . . , ki,2n,j ∈ Z≥0,

where

(3.10) QW,2n(ζ1, . . . , ζ2n+2) = W 2
1 ζ

2
1 +W 2

2 ζ
2
2 +W 2

3 ζ
2
3 +W 2

4 ζ
2
4 + ζ25 + · · ·+ ζ22n+2,

with the variables ωi,j associated with the cosmic expansion factors w1(t), w2(t), w3(t)
given by

(3.11) ωi,0 = wi(t), ωi,1 = w′i(t), . . . ωi,2n = w
(2n)
i (t).
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Proof. This is a direct consequence of (3.4), (3.5), the explicit formulas provided in
[6] for the homogeneous symbols p2, p1, p0 (which were calculated using (2.4)), and
the fact that

p2(x, ξ1, . . . , ξ4) + ξ25 + · · ·+ ξ22n+2 = QW,2n(ζ1, . . . , ζ2n+2).

�

We can then compute the Seeley-deWitt coefficient α2n of (3.6) as follows.

Proposition 3.4. The Seeley-deWitt coefficient is given by the integral

(3.12) α2n =
1

πn+2

∫ π/2

0

sin(η) dη

∫ π/2

0

dψ

∫
∑2n+2

i=1 ζ2i =1

tr (σ−2n−2)σζ, 2n+1.

Proof. By (3.2) and Remark 3.1 we have

α2n =
1

32πn+3

∫ π

0

dη

∫ 2π

0

dφ

∫ 4π

0

dψ

∫
|ξ|g=1

tr (σ−2n−2)σξ, 2n+1

=
1

πn+2

∫ π/2

0

dη

∫ π/2

0

dψ

∫
|ξ|g=1

tr (σ−2n−2)σξ, 2n+1,(3.13)

where |ξ|g =
∑4

µ,ν=1 g
µνξµξν + ξ25 + · · · + ξ22n+2. Note that for the second identity in

(3.13), we used the fact that

1

sin(η)w1(t)w2(t)w3(t)

∫
|ξ|g=1

tr (σ−2n−2) σξ, 2n+1

is independent of the variables η, φ, ψ. This fact is indeed associated with the sym-
metries of the Bianchi IX metric and was proved in [6]. Next observe that the sphere
|ξ|g = 1 determined by the metric g is homologous to the sphere defined by

2n+2∑
i=1

ζ2i = ξ21 + ξ22 + csc2(η)ξ23 + csc2(η)ξ24 − 2 cot(η) csc(η)ξ3ξ4 + ξ25 + · · ·+ ξ22n+2 = 1,

since the matrix

1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 csc2(η) − cot(η) csc(η) 0 0 · · · 0
0 0 − cot(η) csc(η) csc2(η) 0 0 · · · 0
0 0 0 0 1 0 · · · 0
0 0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 · · · 1


is positive definite. By direct calculations one can also see that in the ζ coordinates
one has

σξ, 2n+1 =
2n+2∑
j=1

(−1)j−1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξ2n+2 =
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= sin(η)
2n+2∑
j=1

(−1)j−1ζj dζ1 ∧ · · · ∧ d̂ζj ∧ · · · ∧ dζ2n+2

= sin(η) σζ, 2n+1

Therefore, considering Remark 3.1, we can write the Seeley-deWitt coefficient in the
form (3.12). �

Moreover, we need the following observation for the purpose of our description of
the Seeley-deWitt coefficients as periods.

Lemma 3.5. Only the terms with β0,1,j, β0,2,j, β1,1,j, β1,2,j ∈ 2Z in (3.9) contribute
non-trivially to the calculation of α2n in (3.12).

Proof. This follows from the fact that the integral

1

sin(η)

∫
|ξ|g=1

tr(σ−2n−2)σξ, 2n+1 =

∫
Q2n=1

tr(σ−2n−2)σζ, 2n+1

is independent of the variables η and ψ. Indeed, this implies that the terms in (3.9)
where at least one of the integers β0,1,j, β0,2,j, β1,1,j, β1,2,j is odd cancel each other out
after the integration over

Q2n =
4∑
i=1

W 2
i ζ

2
i +

2n+2∑
i=5

ζ2i = 1.

The terms where all the exponents are even, after the same integration, add up to an
expression that is independent of the variables η and ψ. �

We introduce new coordinates, µ1 and µ2, defined by

µ1 = − cos(η) cos(ψ), µ2 = sin(ψ),

and we denote by b−2n−2 the expression obtained from tr(σ−2n−2) by removing all
the terms for which at least one of the β0,1,j, β0,2,j, β1,1,j, β1,2,j is an odd integer. Our
argument above shows that the following holds.

Corollary 3.6. The density b−2n−2 is a rational expression in the variables µ1, µ2,
ζ1, ζ2, . . ., ζ2n+2 and in the affine variables ωi,j, i ∈ {1, 2, 3}, j ∈ {1, 2, . . . , 2n}
determined by (3.11).

Proof. This follows directly from the previous arguments and the identities

sin2(ψ) = µ2
2, cos2(ψ) = 1− µ2

2,

sin2(η) =
1− µ2

1 − µ2
2

1− µ2
2

, cos2(η) =
µ2
1

1− µ2
2

.

�

For the Seeley-deWitt coefficients this then gives the following expression as a
period in the algebro-geometric sense.
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Theorem 3.7. For ωi,j ∈ Q̄, the Seeley-deWitt coefficient α2n(ωi,j) is a period in the
algebro-geometric sense, given by the integral

(3.14) α2n =
1

πn+2

∫
A2n

b−2n−2
1− µ2

2

dµ1 ∧ dµ2 ∧ σζ, 2n+1

of an algebraic differential form

b−2n−2
1− µ2

2

dµ1 ∧ dµ2 ∧ σζ, 2n+1,

defined on the complement in A2n+4 of the union of two hyperplanes

H± = {(µ1, µ2, ζ1, . . . , ζ2n) ∈ A2n+4 : µ2 = ±1}

and the quadric defined by the vanishing of the quadratic form QW,2n(ζ1, . . . , ζ2n),
integrated over the semi-algebraic set
(3.15)

A2n =

{
(µ1, µ2, ζ1, ζ2, . . . , ζ2n+2) ∈ A2n+4(R) : 0 < µ1, µ2 < 1 and

2n+2∑
i=1

ζ2i = 1

}
.

Proof. This follows from the previous results, using Corollary 3.6 and the fact that

sin(η) dη ∧ dψ =
1

1− µ2
2

dµ1 ∧ dµ2.

By Proposition 3.3, the algebraic differential form b−2n−2

1−µ22
dµ1∧dµ2∧σζ, 2n+1 is defined

on the complement in A2n+4 of a hypersurface given by the union of two hyperplanes
H± and the quadric {QW,2n = 0}. �

In the following section we describe the motives underlying these periods, and we
show that they are mixed Tate.

4. The motives

The explicit computation of the motive can be obtained in a way that is similar
to the argument in the Robertson-Walker case of [10]. Due to the different choice
of parameterization, the ambient space and the resulting motive is slightly different,
although the main result about the mixed Tate nature of the motive is unchanged.
The construction given here provides an alternative argument for the Robertson-
Walker case as a particular case. We treat the variables Wi for i = 1, . . . , 4 as
parameters Wi ∈ Gm(Fi), where Fi are number fields. We also consider a number
field F that contains the Fi.

As in [10] we adopt the following notation: we denote by ZW,2n ⊂ P2n+1 the
projective quadric determined by the quadratic form

(4.1) QW,2n(ζ1, . . . , ζ2n+2) =
4∑
i=1

W 2
i ζ

2
i +

2n+2∑
i=5

ζ2i ,
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for W = (W1, . . . ,W4) ∈ Gm(F )4,

ZW,2n = {(ζ1 : . . . : ζ2n+2) ∈ P2n+1 : QW,2n(ζ1, . . . , ζ2n+2) = 0}.

We also denote by C2ZW,2n the projective cone of ZW,2n in P2n+3 and we denote by

ẐW,2n the affine cone in A2n+2 and by Ĉ2ZW,2n the affine cone of C2ZW,2n in A2n+4.

We are interested in the mixed motive

(4.2) m(A2n+4 r (H+ ∪H− ∪ Ĉ2ZW,2n),Σ),

where H± are the hyperplanes

(4.3) H± = {(µ1, µ2, ζ1, . . . , ζ2n+2) ∈ A2n+4 : µ2 = ±1}

and Σ is the divisor in A2n+4 given by

Σ = ∪2i=1 ∪1j=0 Hi,j,

where Hi,j are the hyperplanes

Hi,j = {(µ1, µ2, ζ1, . . . , ζ2n+2) ∈ A2n+4 : µi = j}.

We first give an explicit computation of the class

(4.4) [A2n+4 r (H+ ∪H− ∪ Ĉ2ZW,2n)]

in the Grothendieck ring of varieties K0(VF ) with F an extension of the Fi that also
contains the number field Q(

√
−1), and then we prove that the motive (4.2) is mixed

Tate (as a motive over F ).

4.1. The quadratic form and field extensions. Let F be a number field that
contains the fields Fi, for i = 1, . . . , 4 and Q(

√
−1). Over F consider the change of

variables

(4.5)
X1 = W1ζ1 + iW2ζ2, Y1 = W1ζ1 − iW2ζ2

X2 = i(W3ζ3 + iW4ζ4), Y2 = i(W3ζ3 − iW4ζ4).

In these variables the quadratic form QW,2 becomes the quadratic form

X1Y1 −X2Y2,

hence the projective quadric ZW,2 ⊂ P3 is the Segre quadric

ZW,2 = {X1Y1 −X2Y2 = 0} ' P1 × P1.

Moreover, over the same field F the further changes of coordinates

(4.6) Xn = ζ2n−1 + iζ2n, Yn = ζ2n−1 − iζ2n
transform the quadratic form QW,2n into the form

(4.7) QW,2n−2(ζ1, . . . , ζ2n) +XnYn.
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4.2. The Grothendieck class. The Grothendieck ring of varieties K0(VF ) is gen-
erated by isomorphism classes [X] of varieties over F with the inclusion-exclusion
relation [X] = [Y ]+ [XrY ] for closed subvarieties Y ↪→ X, and the product relation
[X] · [Y ] = [X × Y ]. In order to compute the Grothedieck class (4.4), we use the
following facts, which are a variant of Lemma 4.1 of [10].

Lemma 4.1. Let Z ⊂ P2n+1 is a projective hypersurface and let C2Z ⊂ P2n+3,

Ẑ ⊂ A2n+2 and Ĉ2Z ⊂ A2n+4 be the projective and affine cones as above. Also let

H± be two hyperplanes in A2n+4 with H+ ∩H− = ∅ and with intersections H± ∩ Ĉ2Z
given by sections of the cone. Then the Grothendieck classes satisfy

• [A2n+4 r Ĉ2Z] = L2n+4 − L3[Z] + L2([Z]− 1),

• [A2n+4r(Ĉ2Z∪H+∪H−)] = L2n+4−2L2n+3−L3[Z]+3L2[Z]−2L[Z]−L2+2L.

Proof. Let L = [A1] be the Lefschetz motive, the Grothendieck class of the affine line.

We have [A2n+2 r Ẑ] = (L− 1)[P2n+1 r Z] since [Ẑ] = (L− 1)[Z] + 1. Moreover, we
have [CZ] = L[Z] + 1, since the projective cone is the union of a copy of Z and a

copy of the affine cone Ẑ. Similary, we have [C2Z] = L[CZ] + 1 = L2[Z] +L+ 1. We
then have

[A2n+4 r Ĉ2Z] = (L− 1)[P2n+3 r C2Z] = L2n+4 − 1− (L− 1)[C2Z] =

L2n+4 − 1− (L− 1)(L2[Z] + L + 1) = L2n+4 − L3[Z] + L2([Z]− 1).

By inclusion-exclusion we have

[Ĉ2Z∪H+∪H−] = [Ĉ2Z]+[H−∪H+]− [Ĉ2Z∩(H+∪H−)] = [Ĉ2Z]+2L2n+3−2[ĈZ],

where [Ĉ2Z] = (L − 1)[C2Z] + 1 = L3[Z] + L2 − L2[Z] = L3[Z] − L2([Z] − 1) and

[ĈZ] = (L− 1)[CZ] + 1 = L2[Z]− L([Z]− 1), so that we obtain

[Ĉ2Z ∪H+ ∪H−] = L3[Z]− L2([Z]− 1) + 2L2n+3 − 2(L2[Z]− L([Z]− 1))

= 2L2n+3 + L3[Z]− 3L2[Z] + 2L[Z] + L2 − 2L.
�

Proposition 4.2. Let QW,2n be the quadratic form (4.1) and ZW,2n ⊂ P2n+1 the

projective quadric defined by the vanishing of QW,2n. Let C2n = [A2n+2r ẐW,2n] be the
Grothendieck class in K0(VF ) of the affine hypersurface complement. This is given
by

(4.8) C2n = L2n+2 − L2n+1 − Ln+1 + Ln.
Similarly, we have [ZW,2n] = 1 + L + · · ·+ Ln−1 + 2Ln + Ln+1 + · · ·+ L2n and

(4.9) [A2n+4 r Ĉ2ZW,2n] = L2n+4 − L2n+3 − Ln+3 + Ln+2.

(4.10)

[A2n+4 r (Ĉ2ZW,2n ∪H+ ∪H−)] = L2n+4− 3L2n+3 + 2L2n+2−Ln+3 + 3Ln+2− 2Ln+1.

for H± = {µ2 = ±1} ⊂ A2n+4.
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Proof. We first show that the classes C2n satisfy the recursive formula

(4.11) C2n = L2n+2 − 2L2n+1 + L2n + LC2n−2.

To see this, consider the condition that QW,2n 6= 0. By (4.7), using the change of
variables (4.6) over F , this is equivalent to

QW,2n−2(ζ1, . . . ζ2n) +XnYn 6= 0.

Suppose Xn = 0. Then Yn ∈ A1 and QW,2n−2(ζ1, . . . ζ2n) 6= 0. Thus, this case
contributes a term L · C2n−2 to the class C2n. The case Xn 6= 0 gives

Yn 6=
QW,2n−2(ζ1, . . . ζ2n)

Xn

,

which gives (ζ1, . . . ζ2n) ∈ A2n and Yn ∈ Gm with Xn ∈ Gm. Thus, this case con-
tributes a term [Gm]2L2n = L2n(L − 1)2. This gives C2n = L2n+2 − 2L2n+1 + L2n +
L · C2n−2. We can then verify (4.8) by induction. When n = 1, we know from §4.1
that the change of variables (4.5) over F transforms the quadric QW,2 into the quadric

X1Y1−X2Y2, hence [ZW,2] = [P1×P1] = L2+2L+1 in K0(VF ). Thus we have [ẐW,2] =
(L−1)[ZW,2]+1 = (L−1)(L2+2L+1)+1 = L3+2L2+L−L2−2L−1+1 = L3+L2−L,
hence C2 = L4 −L3 −L2 + L. Then suppose that C2n−2 = L2n −L2n−1 −Ln + Ln−1.
We obtain C2n = L2n+2 − 2L2n+1 + L2n + L(L2n − L2n−1 − Ln + Ln−1) = L2n+2 −
L2n+1 − Ln+1 + Ln. We also have [ẐW,2n] = L2n+1 + Ln+1 − Ln and [ZW,2n] =

([ẐW,2n]− 1)(L− 1)−1 = (L2n+1 +Ln+1−Ln− 1)(L− 1)−1 = 1 +L+ · · ·+L2n +Ln,
hence

[A2n+4 r Ĉ2ZW,2n] = L2n+4 − L3[ZW,2n] + L2([ZW,2n]− 1)

= L2n+4 − L3(1 + L + · · ·+ L2n + Ln) + L2(1 + L + · · ·+ L2n + Ln)− L2

= L2n+4 − L2n+3 − Ln+3 + Ln+2,

as the other terms cancel in a telescopic sum. Similarly, we have

[A2n+4 r (Ĉ2ZW,2n ∪H+ ∪H−)] = L2n+4 − 2L2n+3 − L3[ZW,2n] + 3L2[ZW,2n]

−2L[ZW,2n]− L2 + 2L = L2n+4 − 2L2n+3 − L3(1 + L + · · ·+ L2n + Ln)

+3L2(1 + L + · · ·+ L2n + Ln)− 2L(1 + L + · · ·+ L2n + Ln)− L2 + 2L

= L2n+4 − 3L2n+3 + 2L2n+2 − Ln+3 + 3Ln+2 − 2Ln+1.

�
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4.3. The mixed motive. The result of Proposition 4.2 shows that the Grothendieck

classes in K0(VF ) of the complements A2n+4r Ĉ2ZW,2n and A2n+4r (Ĉ2ZW,2n∪H+∪
H−) are in the Tate subring Z[L] ⊂ K0(VF ). We now consider the mixed motive
(4.2), as an element in the Voevodsky triangulated category of mixed motives, [25],
and we show that it is in the triangulated subcategory of mixed Tate motives. The
argument is analogous to Theorem 4.3 and Proposition 4.5 of [10]. We present it
here explicitly for completeness. Here, as above, we consider a number field F that
contains the number fields Fi with Wi ∈ Gm(Fi) and also contains Q(

√
−1).

Theorem 4.3. The mixed motive m(A2n+4r(H+∪H−∪Ĉ2ZW,2n),Σ) over the number
field F is a mixed Tate motive.

Proof. Using the change of variables (4.6) we see that, over the field extension F the
quadratic form becomes isotropic, namely QW,2n|F = (n + 1)H, where H = 〈1,−1〉
is the hyperbolic quadratic form. This implies that, over F , the motive m(ZW,2n) is
given by (see [23])

m(ZW,2n) = Z(n)[2n]⊕ Z(n)[2n]⊕
⊕

k=0,...,n−1,n+1,...,2n

Z(k)[2k].

this motivic decomposition of the motive corresponds to the expression [ZW,2n] =
1 + L + · · · + Ln−1 + 2Ln + Ln+1 + · · · + L2n for the Grothendieck class. The Gysin
distinghuished triangle in the Voevodsky category gives

m(P2n+1 r ZW,2n)→ m(P2n+1)→ m(ZW,2n)(1)[2]→ m(P2n+1 r ZW,2n)[1].

Since two of the three terms, m(P2n+1) and m(ZW,2n)(1)[2] are mixed Tate, the third
term m(P2n+1 r ZW,2n) is also mixed Tate. Note then that, when taking a projective
cone, the map P2n+2 r CZW,2n → P2n+1 r ZW,2n is an A1-fibration, and so is the
map P2n+3 rC2ZW,2n → P2n+2 rCZW,2n. By homotopy invariance of the Voevodsky
motive, we then have m(P2n+3 r C2ZW,2n) ' m(P2n+1 r ZW,2n). Thus, the motive
m(P2n+3 rC2ZW,2n) is also mixed Tate. The relation between the motive m(P2n+3 r
C2ZW,2n) and the motive m(A2n+4 r Ĉ2ZW,2n) is obtained by considering the Gm-

bundle T = A2n+4 r Ĉ2ZW,2n → P2n+3 r C2ZW,2n and the associated P1-bundle P
and the Gysin distinguished triangle of [25], p.197,

m(T )→ m(P)→ m(P r T )∗(1)[2]→ m(T )[1].

The motive of a P1-bundle over a base X satisfies m(P) = m(X)⊕m(X)(1)[2], hence
it is mixed Tate if m(X) is mixed Tate. The motive m(P rT ) is mixed Tate because
it consists of two copies of X. Thus, in the above triangle both m(P) and m(P r T )

are mixed Tate, hence the third term m(T ) = m(A2n+4 r Ĉ2ZW,2n) is also mixed

Tate. Next we show that the motive m(A2n+4r (Ĉ2ZW,2n ∪H+ ∪H−)) is mixed Tate
as well. We use the Mayer-Vietoris distinguished triangle in the Voevodsky category

m(U ∩ V )→ m(U)⊕m(V )→ m(U ∪ V )→ m(U ∩ V )[1],



MOTIVES AND PERIODS IN BIANCHI IX GRAVITY MODELS 13

applied to the open sets U = A2n+4 r Ĉ2ZW,2n and V = A2n+4 r (H+ ∪ H−), with

U∪V = A2n+4r(Ĉ2ZW,2n∩(H+∪H−)) and U∩V = A2n+4r(Ĉ2ZW,2n∪H+∪H−). We
want to show that m(U ∩V ) is mixed Tate. By the Mayer-Vietoris triangle it suffices
to show that m(U), m(V ), and m(U ∪ V ) are all mixed Tate. We know that m(U) is
mixed Tate by the previous argument. To see that m(V ) is mixed Tate observe that
m(H+ ∪H−) certainly is, hence the Gysin triangle ensures that m(V ) is also mixed

Tate. In the case of m(U ∪ V ), the intersection Ĉ2ZW,2n ∩ (H+ ∪ H−) consists of

two sections of the cone, isomorphic to ĈZW,2n, hence m(Ĉ2ZW,2n ∩ (H+ ∪ H−)) =

m(ĈZW,2n)⊕m(ĈZW,2n). The motive m(ĈZW,2n) is mixed Tate because the motive
of the complement is by the previous argument about homotopy invariants and the

Gysin triangle. Thus, the motive of the complement m(A2n+4r(Ĉ2ZW,2n∩(H+∪H−))
is also mixed Tate, again by an application of the Gysin triangle. Thus, by Mayer-

Vietoris we have obtained that m(A2n+4 r (Ĉ2ZW,2n ∪ H+ ∪ H−)) is mixed Tate.
Finally, the motive (4.2) also fits in a distinguished triangle where two of the terms,

m(A2n+4 r (Ĉ2ZW,2n ∪H+ ∪H−)) and m(Σ) are mixed Tate, hence it is also mixed
Tate. �

Remark 4.4. Assuming for simplicity that Wi ∈ Gm(Q), the motive m(ZW,2n) over
Q, where the quadratic form QW,2n is not isotropic, can be expressed in terms of
“forms of Tate motives”, which become Tate motives after passing to a field extension.
These are the Rost motives of quadrics, see [21], [22], [23], and §4.6 of [10].

Remark 4.5. In [7] we proved that, for Bianchi IX metrics that are gravitational
instantons (Einstein and self-dual), the heat kernel coefficients are vector valued
modular forms. Thus, we see two different arithmetic structures associated to these
heat kernel coefficients: as we have shown here, if one fixes an algebraic value of
the anisotropy coefficients wi (hence of the coefficients Wi), then the corresponding
Seeley-deWitt coefficients are periods of mixed Tate motives; on the other hand, if
one considers the wi and an overall conformal factor F as functions of the cosmo-
logical time µ and the two parameters (p, q) determining the family of solutions of
the gravitational instanton equations, then the Seeley-deWitt coefficients are vector
valued (meromorphic) modular forms in the variable iµ in the upper half plane.
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