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Abstract 
 

Evolutionary computation (EC) has been recently recognized as a research field, which 
studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process 
populations of solutions as opposed to most traditional approaches which improve a single solution. 
All these algorithms share common features:  reproduction,  random variation,  competition and 
selection of individuals. During our research it was evident that some components of EAs should be 
re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, 
multiplicity of parents and crossovers and their application to single and multiple criteria 
optimization problems, adaptability, and parallel genetic algorithms, were proposed and 
investigated carefully. This paper show the most relevant and recent enhancements on 
recombination for a genetic-algorithm-based EA and migration control strategies for parallel 
genetic algorithms.  Details of implementation and results are discussed. 
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1. INTRODUCTION 
In evolutionary algorithms all conventional approaches apply the crossover operator only 

once on the selected parents. But in nature when the mating process is carried out, crossover is 
applied many times and the consequence is a multiple and variable number of offspring. The 
question arising is: how would the performance of an EA be affected by the use of a multiple 
crossovers per couple (MCPC) operation? Exploration and exploitation of solutions in the searching 
space are distinctive characteristics of an evolutionary algorithm, and are responsible for the success 
or failure of the search process. Extreme exploitation can lead to premature convergence and 
intense exploration can make the search ineffective. To find a balance between these two factors is 
of paramount importance for the EA performance when speed of the search and quality of results 
are involved. Many researchers focus on the balancing problem studying the effect of selection 
mechanisms, because selective pressure can adjust exploration and exploitation. On its own, 
recombination can also participate on this respect but depending on how it is applied it can aid or 
disrupt the search process. For example, a low rate for recombination can impede schema 
processing permitting super-individuals to replenish the population, thus leading to premature 
convergence. On the other hand a high rate can be, in some cases, extremely disruptive allowing 
good genetic material to be lost, slowing down the search. 

 
Parallel implementations of  Genetic Algorithms (GAs) also aim at improvements on 

performance. The main purpose of this approach is to  enhance the quality of the results. The island 
model [2], [3], [18], [19], a well known distributed approach, where separate subpopulations evolve 
in parallel is a realistic model of natural evolution which is appropriate for a distributed 
environment running a Single Program Multiple Data (SPMD) scheme.  

 
The following sections discuss new approaches to enhance EAs performance via 

multirecombination and parallelism, and show some results. 
 

2. A MULTIPLICITY FEATURE OF EVOLUTIONARY ALGORITHMS 
 

This is the main contribution of this work in the theoretical field of Evolutionary 
Computation. The multiplicity feature is related to new proposed multi-recombination methods: 
 MCPC: Multiple Crossovers per Couple which reinforces the exploitation of features of 

previously found (good) solutions. 
 MCMP: Multiple Crossovers on Multiple Parents which provides a balance in exploitation and 

exploration because the searching space is efficiently exploited (by the multiple application of 
crossovers) and explored (by a greater number of samples provided by multiple parents). 

 
The multiplicity feature was tested in the optimization of hard testing functions: Griewank’s, 

Schaffer´s F6, and F7

 

, Shubert´s (highly multimodal functions), Easom’s and the Volcano [4] 
(difficult unimodal functions).  

2.1. MCPC AND ITS ENHANCEMENTS 
 

The crossover operator provides a major contribution to the process of exchanging genetic 
material during the execution of an EA. Conventional crossover combines the features of two parent 
chromosomes to form two similar offspring by swapping corresponding segments of the parents. 
The intuition behind the applicability of the crossover operator is information exchange between 
different potential solutions. The common approach to crossover is to operate once on each mating 



pair after selection. From now on such procedure will be called the single crossover per couple 
(SCPC) approach. We devised a different approach to allow multiple offspring per couple, to 
explore the recombination possibilities of previously found solutions. In our earlier works [6], [7], a 
simplified version of MCPC was used. During those first studies of the MCPC approach it was 
observed that: 
• In some cases this simple MCPC method found results that were better than those found by the 

SCPC method. 
• Running time improved as long as the number of crossover per couple increased. 
• Best quality results were obtained allowing between 2 and 4 crossovers per couple. 
• In some cases, the method increased the risk of premature convergence due to a loss of genetic 

diversity. 
These effects were a consequence of saving computational effort and of a greater exploitation of the 
recombination of good, previously found solutions. To overcome the premature convergence 
problem, further successful approaches were undertaken by combining MCPC with an alternative 
selection method: fitness proportional couple selection (FPCS) [8], by using self-adaptation of 
MCPC parameters [9], by binding MCPC to alternative selection mechanisms [10] or by allowing 
multiple parents and crossovers [11]. All these approaches outperformed the original MCPC 
approach, at higher but no sensitive computational cost. They are briefly described now. 
 
2.1.1.  MCPC WITH FPCS 
 
Depicted in figure 1, the method can be sketched as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.2. SELF ADAPTATION OF MCPC PARAMETERS 
 

This approach attempts to self-adapt the number of crossovers per couple in MCPC. 
Because we are using a binary representation of chromosomes, the number of crossovers allowed 
for an individual is codified in a field at the rightmost positions of the bit string. Let us call it the 
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• A number of individuals are initially selected by 
proportional selection to build the intermediate 
population of parents, which are grouped randomly 
into pairs. 

• A couple fitness value, computed in accordance to 
the couple fitness criterion, is assigned to each 
mating pair. 

• Couples are selected for reproduction by 
proportional selection (according to couple fitness). 
The process of producing offspring is controlled, for 
each mating pair, in order not to exceed the 
population size. 

• The number of offspring per couple is assigned by 
means of a mapping between the couple fitness 
values in the current population (which are grouped 
into as many ranges as number of crossovers are 
there to be applied) and the possible number of 
crossovers (which ranges from one to the maximum 
number allowed). 

 



ncross_field. In some experiments we allowed a maximum of three and in others a maximum of 
seven crossovers per couple. So, two or three extra bits were enough for that purpose. More 
generally the last ( )1max_crosslog2 +  bits of each individual are used to find an expected optimum 
number of crossovers. In that way we have two searching spaces: one corresponding to the 
objective function and other associated to the number of crossovers to apply. 
 

Our attempt is that the individuals preserve the information about the number of crossovers 
originally applied to their parents. In this way it is expected that, based on the survival-of-the-fittest 
principle, good solutions carry information about the number of crossover applied to their ancestors 
and that this number would be an appropriate one. According to Spears [17] we used a local 
adaptive technique. Once the couple was selected we check the corresponding number of crossover 
carried by each parent and; 
• If they match, then we apply the recombination operator a number of times specified by the 

ncross_field. This value is inherited by each children. 
• Otherwise we choose a random number in the permitted range and preservation of information 

is done according to strategy  S1 or S2 where, 
• S1, preserves parent’s information, enforcing population diversity in the parameter searching 

space, because most of the time one child inherits characteristics (ncross_field) from one of 
the parent and the other child inherits features from the other parent. (See Fig. 2). 

• S2, preserves individual information (number of crossovers applied when the child was 
created). This strategy generates more similar individuals (same ncross_field) in the 
parameter searching space and increases loss of genetic diversity. (See Fig. 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Experimental test showed that the behaviour of the self adaptive parameter control 
mechanism is clear: when genetic diversity in the parameter searching space is low then lesser 
number of crossovers are allowed and vice versa. This behaviour favours the evolutionary process. 
 

Fig. 2. Strategy S1, three crossover operations applied on parents, children carry parent´s information. 
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Fig. 3. Strategy S2, three crossover operations applied on parents, children carry their own information. 



2.1.3. BINDING MCPC TO ALTERNATIVE SELECTION MECHANISMS 
 

In this work we studied the effect of MCPC when it was jointly applied to deterministic 
dynamic ranking selection (DDRS) in order to moderate the combined effect of selection (PS) and 
MCPC. Baker introduced the first approach to ranking, called linear ranking, in 1985. By means of 
linear ranking the selective pressure can be controlled by the user. The Baker’s original linear 
ranking method assigns a selection probability that is proportional to the individual’s rank. Here, 
according to Bäck [1] the mapping rank: I→{1,...,µ}  is given by: 
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where ≤ ≥ denotes the ≤ relation or the ≥ relation for minimization or maximization problems res-
pectively.  Consequently the index i of an individual ai denotes its rank. Hence, individuals are sorted 
according to their fitness resulting a1 the best individual and aµ the worst one. Assuming that the 
expected value for the number of offspring to be allocated to the best individual is ηmax =µP(a1) and 
that to be allocated to  the worst one is  ηmin =µP(aµ
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it is required that: 

maxminmax ηηη −=≤≤ 2 and 21  
The selective pressure can be adjusted by varying ηmax . As remarked by Baker if ηmax = 2.0 then the 
population is driven to convergence during every generation. To restrain selective pressure, Baker 
recommended a value of ηmax =1.1. This value for ηmax close to 1 leads to Psel (ai

 

) ≅ 1/µ , almost the 
case of random selection. 

It is not an easy task to tune ηmax, the expected value for the number of offspring for the best 
individual. This parameter influences selective pressure. Here we propose Deterministic Dynamic 
Ranking selection (DDRS), a deterministic and dynamic method to update this parameter as a function 
of the number of generations reached. In this case ηmax

( )
genmax

genmaxgencurrent
max _#

_#_# +=η

 is given by the following expression: 

 

By using this variant of ranking we attempt to enforce exploration during the earlier stages and 
exploitation during the final stages of the evolution process. At the beginning selective pressure is 
weak and increases smoothly through the iterations reaching the maximum selective pressure allowed 
by ranking at the end of the process. In this way we can expect to slow the convergence rate to prevent 
being trapped in local optima. 
 
 



2.2. MCMP: THE LATEST MULTIRECOMBINATIVE APPROACH 
 

Attempting to build a better Pareto front in multiobjective optimization, MCMP was born by 
combining our previous ideas on multiple crossovers and those from J. Lis and A. Eiben [5] in their 
multisexual genetic algorithm (MSGA). This first version of MCMP: 
 Uses proportional selection 
 Selects multiple parents per sex 
 Uses an extension of MCPC (called MCPMA multiple- crossover per mating action).  
 For insertion in the next population, it gives preference to those offspring which are classified so 

far as globally non-dominated. 
To build the new population, each time the new offspring are created by application of MCPMA, 
we apply the following procedure: 
 
While the new population is created  
  do 
      Select n1
      Apply MCPMA with uniform scanning crossover to obtain n

 parents from each sex, 
2

      By consulting P
 offspring and mutate, 

current determine the subset Onond 
      nondominated, 

of these new offspring that are globally  

      If Onond ≠ Φ then insert Onond
  else insert n

  into the new population 
2

  od 
/2 offspring randomly chosen into the new population 

 

The number n1 of parents and the number n2 
MCMP was tested on a set of selected multiobjective problems. We show here the results when the 
new approach is applied to the  Problem 3: Schaffer function F2 [15] defined as follows: 

of crossovers are parameters of the GA. 
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With the following parameter set, 
Population size  :       100 
Crossover rate   :       0.85 
Mutation rate     :      0.01 

     Chromosome length:  14 
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Fig. 4 – The Pareto front for Problem 3, with 3 
              parents per sex and 3 crossovers. 
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Fig. 5 – The Pareto front for Problem 3, with 4 
              parents per sex and 4 crossovers. 



 
 
2.2.1. MCMP FOR SINGLE OBJECTIVE OPTIMIZATION 
 

After the outstanding results obtained in multiobjective optimization, MCMP was tested on 
single unimodal and multimodal optimization. The following relevant performance variables were  
examined: 
Ebest = ((opt_val - best value)/opt_val)100 
It is the percentile error of the best found individual when compared with the known, or estimated, 
optimum value opt_val. It gives us a measure of how far are we from that opt_val.  
Epop = ((opt_val- pop mean fitness)/opt_val)100 
It is the percentile error of the population mean fitness when compared with opt_val. It tells us how far 
the mean fitness is from that opt_val. 
Gbest: Indicates the generation where the best valued individual (retained by elitism) was found. 
All the values analysed were mean values obtained from twenty series completed for each fixed 
number of crossovers, on each function. Several testing functions were used. We show here results on 
the Griewank´s and the Easom´s functions when contrasting MCMP and MCPC combined with FCPS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The use of multiple crossovers on  multiple parents (MCMP) showed to be efficient in 
optimization of hard unimodal and multimodal testing functions and behaves better than MCPC-FPCS.  
There is an indication that the multiparent approach mitigates the possible loss of diversity generated 
by multiple crossovers per mating (MCPMA) and no extra adjustments, used before, seem to be 
necessary. On the other hand, it was shown that the multiparent approach behaves better when it is 
associated to the multiple crossover approach on both functions selected for optimization. Speed of 
convergence, measured in number of generations, is augmented without increasing the risk of 
premature convergence. Consequently the quality of results are better than previous attained under 
more complex approaches. Additionally, when observing the final population it was detected that all 
individuals are much more centred surrounding the optimum. This property is strongly detected in the 
multimodal optimization. This is an important issue when an application requires provision of multiple 
alternative near-optimal solutions.  

 
3. PARALLEL GENETIC ALGORITHMS 
 

Parallel implementations of Genetic Algorithms (GAs) aim at improvements on 
performance. In his earlier works Holland [12] recognised the parallel nature of the reproductive 
paradigm and the intrinsic efficiency of parallel processing. Parallel genetic algorithms (PGAs), 

        Table 1. Performance variables values for  Griewank’s function 
 

Minimum Value Maximum ValuePerformance
Variable MCPC-FPCS MCMP MCPC-FPCS MCMP

Mean Ebest 0.0124 0.0000 2.5176 0.0415
Mean Epop 44.9970 0.0260 47.6402 12.3149
Mean Gbest 839 45 2340 365

Minimum Value Maximum ValuePerformance
Variable MCPC-FPCS MCMP MCPC-FPCS MCMP

Mean Ebest 0.0381 0.0074 0.0836 0.1634
Mean Epop 7.1384 0.0074 9.8447 0.1635
Mean Gbest 2026 73 4017 491

        Table 2. Performance variables values for Easom´s function 
 



models and implementations [13], [16] are designed to exploit this inherent parallel nature of 
genetic algorithms. When implemented as an island model, on behalf of the evolutionary process, 
migration of individuals allows for a fruitful interaction between subpopulations by exchanging 
selected individuals and improving genetic diversity. This exchange is done by choosing an 
individual from a source subpopulation and exporting it towards a target subpopulation. On arrival, 
it is usual, for the imported string to be accepted and inserted into the target subpopulation without 
exerting any control policy. Our earlier experiments [14]  controlling migration acceptance showed 
an improvement of results when contrasted with those obtained by ordinary migration approaches. 
 

In this work we  describe extended implementations of alternative strategies to control 
migration in asynchronous schemes for an island model. All of them are an effort to decrease the 
risk of premature convergence. A first strategy, Maximum Gap Allowed (MGA), tries to prevent 
unbalanced propagation of genotypes by using an acceptance threshold parameter for incoming 
strings. A second one, Dynamic Arbiter Strategy (DAS), permits independent evolution of 
subpopulations but acts when a possible stagnation is detected. In such  condition an attempt to 
evade falling towards a local optimum is done by inserting an expected dissimilar individual to 
improve genetic diversity. This is done by exchanging data associated with the best and worst 
global individuals and population mean fitness. A third alternative, Combined MGA-DAS Strategy 
(CMGA-DAS), combines both of these strategies. The results presented are those obtained  in the 
functions that proved to be more difficult for the island model using a simple GA. Experiments 
were conducted implementing both, virtual and real nodes. The following sections describe the 
experiments and some results. 
 
3.1. THE STRATEGIES 
 
MGA, was devised to avoid falling towards a local optimum by introduction of high performers. A 
parameter θ, was defined as the maximum difference accepted between the fitness of the best local 
individual and that of the incoming string. Insertion is allowed only when the following condition 
holds:  

Fitnessext - (1+θ  ) Fitnessbestlocal
This strategy was applied with an  interconnectivity scheme of a static logical ring; if the number of 
processors is n then node

  ≤ 0  ( 0 ≤ θ ≤ 1) 

(i+1) mod n is the neighbour of nodei 
DAS, decides by means of a global arbiter if a migrated chromosome should be inserted or not into 
some subpopulation. This decision is based on the knowledge the arbiter has about the evolutionary 
progress of subpopulations, hence exerting a sort of dynamic convergence control. At migration 
time, rather than sending a single chromosome, the process managing the chromosome exchange 
exports a packet to the arbiter containing data about; source node address, best individual 
chromosome, worst individual chromosome, best individual fitness, worst individual fitness, and 
subpopulation mean fitness. On its end, at each migration arrival, the arbiter updates information 
about the best and worst global individuals and subpopulation fitness. Also, information about the 
best individual of the first migration is kept on hand. In more detail, when the arbiter receives a 
packet, from the source, the following actions take place: 

. 

• If it is the first migration, then updates its internal data structures.  
• Otherwise, updates its internal data structures and to determine  the progress of the evolutive 

process, compares the current mean fitness value of the source subpopulation with the last 
updated corresponding value and, 
◊ If they remain similar (possible search stagnation) a migration of an individual to the source 

subpopulation will take place. 
◊ Otherwise (search improves results) no action take place. 



 
To determine which individual to migrate the following criterion was adopted: 
 
if the best global individual does not reside in the source subpopulation 
     then migrate the best global individual 
     else migrate the worst global individual. 
 
Giving the arbiter the faculty to migrate (or not) a global individual (originated in any node) to the 
source node, resulted in a dynamic interconnection scheme. 
Finally, Combined MGA-DA Strategy (CMGA-DAS), consisting of the combined application of 
both previous strategies, was also examined by simply adding to DAS the acceptance criteria 
imposed by θ, when determining which individual to migrate. So, the migration criterion applied for 
this strategy was: 
 
if the best global individual resides in the source subpopulation 
  then migrate the worst global individual 
  else if θ test holds for the  best global individual 
             then migrate the best global individual 
             else if θ test holds for the  best first migrated individual 
                          then migrate the best first migrated individual2

                           else migrate the worst global individual 
 

 
3.1.1. EXPERIMENTS AND RESULTS 
 

A set of, at least, twenty runs was performed for our experiments. The island model was run 
on the set of  several test functions, solving optimization problems. Only the results on the f2 
Volcano (hard unimodal) and the f4 Schaffer F7 (hard multimodal) functions are referred here. A 
simple GA for each subpopulation was used, applying: proportional selection (for mating), 
tournament selection (for replacement), elitism, one-point crossover and bit-swap mutation, on a 
population of 70 individuals. Four parameter sets, S1 to S4, with typical values for probabilities of 
crossover and mutation were used. The number of generations was limited to 4000. To achieve 
subpopulation interaction, with and without migration arbitration, sets of 6, 10 and 16 nodes were 
used. After the runs were completed, mean values for Ebest and optimal hits (as below defined) 
were determined: 
Optimal Hits = (# optimal hits / # runs). The hit ratio to find the optimal solution, throughout the 
total number of runs.  
 
The following tables and graphs show a report of experimental results. All the values in the tables are 
mean values obtained from the multiple run series. 
In figures 6 and 7 we observe that those strategies based on the acceptance threshold parameter θ, 
are the best performing ones with this very hard deceptive unimodal function. 
In figure 8 we observe that although the Ebest values are quite small, none of the contrasted 
strategies reached the optimum frequently.  Optimal hits obtained in the best case was of 28%, with 
parameter set S1

 

 and 16 nodes. PGA implementations are notably superior than sequential GA 
implementation. No simple sequential GA can even approach the worst near optimal solution found 
by any strategy in similar tests. 

                                                           
2 The best first migrated individual is a good intermediate value which contributes to genetic diversity. 



 
# 

nodes 

Static MGAS DAS CMGA- 

DAS 

6 7.61E-03 6.92E-04 1.66E-02 2.08E-03 

10 2.08E-03 0.0 6.23E-03 0.0 

16 6.92E-04 0.0 1.04E-03 0.0 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

# 

nodes 

Static MGAS DAS CMGA- 

DAS 

6 (S1) 7.29E-13 1.28E-12 7.48E-13 7.67E-13 

6 (S2) 6.36E-13 1.62E-12 1.47E-12 1.57E-12 

6 (S3) 4.41E-12 4.28E-12 4.67E-12 1.54E-11 

6 (S4) 2.14E-12 1.52E-12 1.92E-12 4.50E-12 

10 (S1) 2.00E-13 4.32E-13 6.81E-13 3.34E-13 

10 (S2) 3.83E-13 3.11E-13 5.60E-13 9.22E-13 

10 (S3) 1.04E-12 1.54E-12 8.41E-13 9.82E-13 

10 (S4) 5.51E-13 8.75E-13 1.22E-12 8.00E-13 

16 (S1) 1.17E-13 1.73E-13 3.62E-13 2.56E-13 

16 (S2) 1.41E-13 2.34E-13 5.62E-13 4.54E-13 

16 (S3) 5.36E-13 4.82E-13 1.41E-12 1.01E-12 

16 (S4) 3.67E-13 3.50E-13 1.31E-12 7.77E-13 

 

 
 
 
4. CONCLUSIONS 
 

This paper shows two major contributions to the theoretical field of Evolutionary 
Computation. Topics involving different multirecombination schemes, their effect when applied to 
single and multiple criteria optimization problems and parameters adaptability, were investigated 
carefully. Also a set of strategies to control migration in parallel genetic algorithms were 
considered.  

Multiple crossovers per couple (MCPC) showed its benefits and limitations, described in detail 
in previous sections. To overcome these limitations successful approaches were undertaken by 
combining MCPC with FPCS, by using self-adaptation of MCPC parameters or by binding MCPC to 
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# 

nodes 

Static MGAS DAS CMGA- 

DAS 

6 0.81 0.95 0.75 0.95 

10 0.95 1.0 0.916 1.0 

16 0.983 1.0 0.95 1.0 
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Fig 8. Ebest values for f4 function under each strategy over all parameter sets for variable number of nodes. 

 



alternative selection mechanisms. The use of multiple crossovers on  multiple parents (MCMP) proved 
to be efficient in single and multiple objective optimization and behaves better than previous 
improvements. Speed of convergence, measured in number of generations, is augmented without 
increasing the risk of premature convergence. Consequently the quality of results is better than those 
previous attained under more complex approaches. There is indication that the multiparent approach 
mitigates the possible loss of diversity and no extra adjustments seem to be necessary.  Additionally, 
by observing the final population it was found that all individuals are much more centred surrounding 
the optimum on both function optimizations and this is even more so in the multimodal optimization. 
This property was not observed neither with other previous approaches nor with the multiparent 
original approach. This is an important issue when an application requires provision of multiple 
alternative near optimal solutions. On the other hand, it was shown that the multiparent approach 
behaves better in accuracy of results and speed when it is associated to the multiple crossovers 
approach on both functions selected for optimization. Although we cannot be conclusive, we 
conjecture that by means of this association the searching space is efficiently exploited by the multiple 
application of crossovers and efficiently explored by a greater number of samples provided by the 
multiple parents. In view of these promising results new work is currently being developed to study the 
optimal (n1,n2

Three new strategies to control migration in asynchronous Parallel Genetic Algorithms 
distributed in a network of 6, 10 and 16 processors have been discussed. Here, it is worth remarking 
that the base for the evolutionary approach, upon which results were completed, is the weakest one; 
a simple GA. Two kinds of problems were addressed for optimisation: unimodal and multimodal. 
Easom’s and the (hardest) Volcano functions are good representatives of the first class of problems; 
to find a needle in a haystack. For them, MGAS and CMGA-DAS were the strategies showing 
better performance. In every case Optimal Hits increases accordingly with increments in the number 
of processors, arriving at 100% under MGAS and CMGA-DAS for 10 and more nodes. For the 
second class of problem, difficult highly multimodal functions of varied landscapes were chosen. 
Here there cannot be detected a clear preeminence of one strategy over the others and for any 
parameters set Static, MGAS and CMGA-DAS work better. Further studies are needed to ensure the 
utility of the new proposed strategies for these types of functions. Fine tuning of genetic operators 
probabilities and knowledge of the degree of population convergence are prospective issues to 
investigate. We want to remark that PGA implementations are notably superior than sequential GA 
implementations in view of quality of results. No simple sequential GA can even approach the 
worst near optimal solution found by any strategy in similar tests. Finally in the research field of 
Evolutionary Computation future work is addressed to combine the new multirecombinative 
approaches and their parallel implementations. 

) association, the consequences of increasing the number of crossovers, and the effect 
of multiple crossovers on multiple parents under diverse crossover methods. 
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