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Abstract

In previous works the aility of CPSMCPC (an evolutionary, co-operative, population search method
with multiple crossovers per coude) to build well delineated Pareto fronts in diverse multiobjedive
optimizaion problems (MOOPs) was demonstrated. To test the potential of the novel method when
deding with the bb Shop Scheduling Problem (JSSB, regular and na-regular objectives functions
were chasen. They were the makegpan and the mean absolute deviation (of job completion timesfrom
a ommon die date, an earlinesgtardiness related problem). Diverserepresentations sich aspriority list
representation (PLR), job-based representation (JBR) and operation-basel representation (OBR) among
others were implemented and teded. The latter showed to be the best one. As agood @rameter setting
can enhance the behaviour of an evolutionary algorithm distinct parameters cmbinations were imple-
mented and their influence studied. Multiple aossovers on multi ple parents (MCMP), a powerful mul-
tirecombination method showed some enhancement in single objective optimizaion when compared
with MCPC.

This paper shows the influence of diff erent recombination schemeswhen bulding the Pareto front un-
der OBR and wsing the best parameter sdtings determined in previous works on a %t of demonstrative
Lawrence sinstances Details of implementation and reaults are disaussed.

Keywords. Evolutionary Computation, Job shop scheduli ng, multi objedive optimization, multirecom-
bination.
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1 INTRODUCTION

In a MOORP, a lution has anumber of objedive values ore per eat optimizing criterion (attributes).
As many o these citeria can be in conflict it is imposgble to optimize ay of the objedive functions
withou degrading some of the remaining criteria. This leads to a dedsion-making problem for choos-
ing a gitable solution (or set of solutions) according to higher-level organization gals|[23].

Vilfredo Pareto [25] edablished that there eists apartial ordering in the seaching spaceof a
MOORP basal ona domination relationship. For instance, in a maximization problem given two solu-

tions x =(xg, X9, Xn) aNd y=(yq,Y5,.nYn), the Pareto criterion says that, x dominaes y iff
X; = y; Ui and Uj such thab(j > Y-

In the problem space sme lutions will not be dominated by any ather solution and they conform the
Pareto front, also knavn asthe acceptable s, the efficient points and the Pareto optimal set. Knowl-
edge of the Pareto front is of utmost importance when search is gplied before decision making. This
information providesto the judgement of a human deasion-maker with the trade-off s to establish inter-
adions anong dfferent criteria, hence simplifying the decision processto choase an acceptable range
of solutions for a multicriteria problem. Implemented first by Schaffer [26], [27], Fourman [16] and
then by Kursawe, [20], [21] and ahers, cooperative population searches (CPS) with criterion sdection
[19] wasusel to buld the Pareto front in selected multicriteria problems. The central ideain CPS isto
make aparallel single aiterion seach, where al members of the popuation d an evolutionary algo-
rithm are involved in a cooperative sarch to build the Pareto front.

Complexity of scheduling problems [17] and their econamicd impad motivated extensive research [1],
[2], [28], [29]. The job shop scheduling problem (JSSP is related to the al ocaion of limited resources
(madhineg to jobs over time. Thisis adecison making processthat has asa goal the optimization o
one or more objedives The model considered here asaimesthat the s/stem consists of a number of
different machines ad orly ore job may exeaute on a machine & atime. All schedules and jobs ae
nonpreemptive. Jobs can have distinct priorities and all of them are available at production initiating
time. Eadh job vsits al madines ony once, following a predetermined sequence of machines called
aroute.

Due to their implicit parall el search, evolutionary algorithms (EAS) are siitably fitted to ded with JSSP
[7], [14], [24] aswell as geking solutions in multiobjedive optimization [3], [4], [5], [6], [10], [15].
The present work investigatesthe aility of the CPSMCMP method, a @-operative population search
approach alowing multiple aossovers gplied onmultiple (2 or more) parents, to find nan-dominated
points and contrads its performance ajainst other recombination schemes when bulding the Pareto
front.

2 SELECTED OBJECTIVES, REPRESENTATION AND OPERATORSFOR THE JSSP-MOOP

For multiobjedive optimization d a 5SPwe séeded f; asthe makegpan and f, asthe mean alsolute
deviation (MAD) of job completion times from a common dwe date d, asthe @niflicting criteria to
minimize. When minimizing function f1, schedulestend to be dortened, usualy implying high utili za-
tion d machines When minimizing function f, ealiness ad tardiness ae penalized at the same rate
for al jobs and schedules ae built so that d isin the midde of the job completion times which usually



derivesin lower inventory costs. Conseguently, for the B5SPand gven a due date d, common to all
jobs, our multi objective optimizaion problem can be formulated asfoll ows:
Minimizef, (o) and f,(c) where ought solutions o are feasble shedules ad

0 =M {ma. (C) (O  LE=13[c-d @

In expression (1) Cik stands for the completion time of the lag operation d job i in macine k, and in
expression (2) C; indicatesthe completiontime of the lag operation d jobj.

Regarding representation, a particular encoding d solutions impaosesli mitations on the genetic opera-
tors to be usad. This isaue is mainly addresse by the creaion d valid of spring avoiding the use of
penalties or repair algorithms. In ou previous experiments operation-basel representation provided
bed results. Conseguently, we aloped this encoding technique for the work described here. Under
OBR a sdedule is encoded in the diromosome as asequence of operations. Due to the existence of
precalence onstraints anong operations of a particular job, the asignment of natural numbers to
identify operations and the use of a permutation representation can leal to infeasble schedules. To
avoid this problem Gen, Tsujimura and Kubaa [18] propcsed a represeantation where each operationis
identified by the job number to whom it belongs and the order of occurrencein the sequence. For an n-
job mrmadhine problem, a caromosome wnsists of n X m genes where eat gene has gob identifier as
the dlele value and valuesare repeaed exactly mtimesin the chromosome.

Regarding operators, ou proposd is modified order crossover (MOX). To buld a valid offspring a
sub-sequence of one parent is inserted in the same position in the off spring and the rest of allele values
are mpied from the seond parent in the order they are gpearing controlling the number of all ele repe-
titions. For mutation a modified exdhange mutation (MXM) wasimplemented in order to ensure that
the exchange effedively changes the allele values Detailed information and examples on OBR and
MOX can be seain[§]

3 MULTIRECOMBINING COOPERATIVE POPULATION SEARCHES (CPS-MCMP)

Independently of the method keing used, conventional approachesto crossover involve gplying the
operator only once on the seected pair of parents. Such a procedure is known asthe Single Crossover
Per Coupe gproach (SCPC). In earlier works [12] [13], we deviseal a diff erent approacdh to crossover
which allows multiple off spring per couple (MCPC) , asoften it happens in nature. To deeply explore
the recombination pcshbilitiesof previously foundsolutions, the idea of multiple cildren per couple
wasteded on a st of well-known testing functions (De Jong functions F,, F, and F3 , Schaffer Fs and
other functions). A simple genetic agorithm, with conventional operators and parameter values was
the basis of thoseinitial experiments. By combining the Eiben’s sngle crossover multi parent (SCMP)
approach and MCPC further studiesgave raiseto the extension knavn asmulti ple crossovers on multi-
ple parents (MCMP). The latest member of the multirecombinative family showed its alvantagesin
many single and multiobjedive problems [10] [11]. For multiobjedive optimization initial experiments
with CPSMCPC were implemented exeauting exadly n; crossovers, providing 2 my children per cou-
ple (2 < n; < 4). Implementation cetails can be seea in [8]. The method pesented here CPSMCMP
applies n; crosovers on n, parents. Basically this goproadh:



1) Maintains asingle popuation d solutionsthat is searately ranked acarding to ead criterion.

2) Usesranking selectionto select ny/2 parents per criterion.

3) Usesmultiple crossoversmultiple parents (MCMP), and the mrrepondng crossover and muta-
tion operators to generate multi ple off spring.

4) After eadr mating nz individuals ae sleded for insertion in the next population. The algorithm
first selects those off spring, which are dassfied so far, asglobally nondominated. If nore ful-
filli ng this condition exists then half of the m newly generated doff spring are inserted, selecting
first those that are non-dominated within the new off spring subsd and completing m/2 insetions
by randam sdedion if necesary. So nz is equal to the number of globally nondominated off-
spring, a it is equal to m/2.

The value of m stands for the sze of the off spring subse andits value is given by:

ny: number of crosovers.

np: number of parents. m = ﬁ'%ﬁ On, 02

Point 4 above mentioned, impliesto maintain the updated se of solutions foundso far asbelongng to
the Pareto front, which is cled Peyrent.

As we previously said a particular representation imposeslimitations on operators. Under OBR an al-
ternative multi- parents and multi- crossovers recombination wasnecessry to be considered:

1. The sane number (n,/2) of parentsis selected under each criterionto conform the mating pod.
2. Eadch parent sdeded under the first criterion mates(only) every other parent sdected under the
seond criterion. Recombination at this stage gplies SCPC or MCPC on ead coude of par-

ents.
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The valuesof n; and n, sdeded for the work reported here (table 1) were chosen to study the influ-
ence of different recombination approachesin a popdation limited to 100individuals, asin previous
experiments.



ny n, Recombination Offspring
method subsd size (m)

1 2 SCPC 2

3 2 MCPC 6

1 4 SCMP 8

2 4 MCMP 16

1 6 SCMP 18

2 6 MCMP 36

Table. 1. Set of considered experiments for diff erent valuesof n; and n,.
4 EXPERIMENTS

The problem of minimizing f:(9)and f2(9) | was used to evaluate the performance of the CPS
MCMP and CPSMCPC approadies Threeinstancesof two types small and medium (size) from the
Lawrence s benchmark se [22], with knovn ogimal makegpan valueswere used. Small i nstancesof
10jobs and 5madiines are identified as |la01 and |a02, while the medium instance of 20 jobs and 10
madinesisidentified asla30.

Beg parameter setting was determined by taking previously foundreaults for this problem presented
elsavhere [9]. For the experiments discussel here parameters were set as foll ows. Crosover and muta-
tion probabilitiesfixed at 0.65and 0.005 regectively. One of the main conclusions from the previous
work is that the dgorithm keeps evolving still i n advanced generations, so a maximum number of gen-
erations wasfixed at 50000.The popuation size wasfixed at 100 individuals. Elitism wasused to re-
tain the best individual found so far under each criterion. As optimal values of the makegan were

known for ead instance of the teg suite, the common de date d to determine f2(9) valueswasfixed at
avalue 40% greater than the corregpording ogimal makegpan.

To compare the diverse dgorithms two performance measireswere proposed:

= Pareto Front Quality (PFQ): A Pareto frontier A is said to have higher quality than another Pareto
frontier B if most of the paintsin A dominate the pointsin B.

= Pareto Front Sze(PFS): indicatesthe total number of globally non-dominated pants aeaed du-
ing the evolutionary process asthe number of generationsisincreased.

S5RESULTS

In the following graphicsthe cations iC-jP-X stands for n; crossovers and n, parents and X efficient
pointsin the frontier. For the disaussion d the cmpared performance of multirecombined methods on
small instances we will show only reallts for 1a01 as demonstrative instance, because 1a02 reveds
similar findings



Figure 2 shows that asthe number of parents is augmented, maintaining fixed at 1 the number of
crosvers, the quality of the frontier (PFRQ) is improved and the sze of the frontier (PFS becomes
larger.

PFQ-la01

350
300
250

200

MAD

150
100

50

650 750 850 950 1050

Makespan

Figure 3 shows that asthe number of crossovers is aigmented, maintaining fixed at 4 the number of
parents, PRQ is dlightly improved while PFSbecmmes onsiderably larger and densea. Similar realts
were obseved when contraging 1C-6P versus 2C-6P.
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Under MCMP beg, and similar, reaults in laO1 were obtained with n; = 1 and 2and n, = 6. In previous
works beg results under MCPC were obtained with n;=3. Figure 4 shows better quality frontier and
larger frontier sizeunder greater parents multiplicity.
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Figure 5 shows how the dficient points are acamulated throughthe generations. It is observed here
that PFS after 50000 gnerations, is greaer and dense as longasn; and n, allow better exploration
and exploitation. Bed reallts, reating 116 pants, are obtained with 1C-6P and 2C-6P. The number of
parents has astronger influencethan the number of crosoversin PFS
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Regarding medium size instance 1a30 best quality partial frontier was obtained under 2C-4P for MS
valuesgreder than 1656and MAD valueslesser than 337. Under 2C-6P a dlightly lower quality fron-
tier is obtained but covering a wider range of valuesfor MS and MAD. This latter frontier is mntraged
in figure 7 with the best quality frontier obtained in a previous work under MCPC with n;=3.
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Figure 7 shows that under MCMP (2C-6P) reaults ae better than under MCPC (3C-2P). As it happened
for instance 1a01, reallts are better for PFQ and PFSperformance measires
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Figure 8 shows that aslongasn; and n, are incremented the dgorithm continuesaccumulating pants
throughthe generations. Bed reallts wrregpordsto MCMP (2C-6P).
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Table 2, shows arerage PFSvaluesfor al con-
L 1 Recomb. | Mean PFS | gqered instancesunder different recombination
1 2 SCPC 23,67 approadhes. Here we can seethat a densea Pa-
3 2 MCPC 62,00 reto frortier is built aslong as the multiplicity
i 4 SCMP 56,67 of crosovers and parents is incremented. This
2 4 MCMP 82,33 benefit is obtained at a st of approximately a
1 6 SCMP 92,00 doude of computational effort for the multi-
2 6 MCMP 97,67 plicity approaches when compared against the

Table. 2. Mean_PFSresults for the 3 instances under simpler SCPC recombination method.

different values of n; and n..

6 CONCLUSIONS

In thiswork we show different evolutionary approachesto facemulti objective optimizationin a set of
three selected instances of the bb Shop Scheduling problem. A co-operative population searches
method wasimplemented and dstinct recombination approaches were gplied and contrasted: SCPC,
SCMP, MCPC and MCMP. In all casesOBR, the bed represeantation foundin previous works for the
JSSR wasusdl.

To study the behaviour of the dgorithms under thesedifferent recombination schemes two perform-
ance meagsires were defined: the quality of the Pareto front obtained (PFQ) and the total number of
globally nondominated padnts aeaed duing the evolutionary process asthe maximum number of
generationsisincreased (PFS. This preliminary se of experiments givesthe followingindications:



As long asthe number of parentsis incremented, for a fixed number of crossovers, Pareto frontiers of
better quality and higher density are obtained. On the other hand asthe number of crossoversisincre-
mented, for afixed number of parents, highest density frontiers with a dight better quality are obtained.
This latter effed is clearly detected in medium size instance 1a30. This indicates that exploitation o
good solutions throughrepetitive gplicaion d crossovers provides more non-dominated solutions in
larger search spaces

When compared with conventional SCPC the multiplicity feaure added to these evolutionary ago-
rithms providesnotably better reaults regarding quality (PFQ) and size (PFS of the Pareto fronts dis-
covered throughthe search. Improvements under MCPC and MCMP are obtained by paying an average
cost of abou a double of the computational effort required for SCPC. So, when PRQ and PFS are the
main oljedive of the decision-maker the multiplicity feaure becomes a advisable aternative.

Future work will include experiments with larger popuation size, to alow higher degree of multire-
combination and the study o parallel implementations to reduce mmputational time.
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