MANCHESTER

1824
The University of Manchester

The University of Manchester Research

Reverse Engineering Encapsulated Components from
Object-Oriented Legacy Code

DOl:
10.18293/seke2018-111

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Arshad, R., & Lau, K-K. (2018). Reverse Engineering Encapsulated Components from Object-Oriented Legacy
Code. In Proceedings of 30th International Conference on Software Engineering & Knowledge Engineering
https://doi.org/10.18293/seke2018-111

Published in:
Proceedings of 30th International Conference on Software Engineering & Knowledge Engineering

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

OPEN ACCESS

Download date:30. Jun. 2022

https://doi.org/10.18293/seke2018-111
https://www.research.manchester.ac.uk/portal/en/publications/reverse-engineering-encapsulated-components-from-objectoriented-legacy-code(cd8152e0-5261-4a7d-84bb-b537fc739bbb).html
https://doi.org/10.18293/seke2018-111

Reverse Engineering Encapsulated Components from Object-Oriented Legacy
Code

Rehman Arshad, Kung-Kiu Lau

rehman.arshad, kung-kiu.lau @manchester.ac.uk

School of Computer Science, University of Manchester

M13 9PL, United Kingdom

Abstract

Current component-based reverse engineering ap-
proaches usually extract ADL-based components from
legacy systems. ADL-based components need to be con-
figured at code level for reuse, they cannot provide re-
deposition of composed components for future reuse and
they cannot provide flexible re-usability as one has to bind
all the ports in order to compose them. This paper pro-
poses a solution to these issues by extracting X-MAN com-
ponents from legacy systems. In this paper, we explain our
component model and mapping from object-oriented code
to X-MAN clusters using basic scenarios of our rule base.

Key Words —Reverse Engineering, Static Analysis, Component
Based Development

1. Introduction

The term legacy systems usually refers to such software
systems that are outdated, lack proper documentation and
cannot support a new feature without breaking another logic
yet they are vital to an organisation [9]. Unfortunately, most
legacy code was designed with non-modular approach that
cannot exploit the luxury of re-usability. For many com-
panies, maintenance or comprehension of legacy code is
crucial because some of their functions are too valuable to
be discarded and too expensive to reproduce from scratch.
Studies show that 50-60 percent of software engineering ef-
fort is spent trying to understand source code [8].

Component based development is a domain that revolves

around the construction of systems from pre-built software
units i.e., re-usability. Instead of extracting semantics, like
general reverse engineering for analysing a system, compo-
nents extraction can reconstruct a legacy system as modu-
lar executable architectural units that can be reused across
many systems. Component based reverse engineering con-
sists of following steps: 1) Capture the source code in ap-
propriate notation (can be graph nodes or source code met-
rics). 2) Define a rule base to map the extracted notation
to abstraction model. 3) Formation of clusters from ab-
straction model, based on algorithms 4) Map the clusters
to output notation (semantics of the selected component
model). Output of component based reverse engineering
is dependent on the definition of component each approach
uses. Most approaches use loose definition of component.
For them, a component is consisted of methods that be-
long together as they offer a specific functionality of the
system. Such components can be giant classes, clusters or
re-formation of the source code to get better cohesion and
loose coupling. These approaches neither defines the ex-
traction of explicit interfaces nor the composition mecha-
nism of the extracted components (e.g., [13]). Such compo-
nents are not feasible for reuse as lack of comprehension of
legacy systems and non-explicit architecture cannot help in
achieving a good re-usability.

Few like us, follow the szyperski's definition of compo-
nents. This definition defines component as ”A unit of com-
position with contractually specified interfaces and explicit
context dependencies only” [20]. These approaches like us,
extract explicit architecture (components with well-defined
composition and interfaces).

Almost all the current reverse engineering approaches

that extract explicit components are based on ADLs!
(e.g.,[3]). ADLs define required and provided services as
ports (composition mechanism of ADLs). Ports use (indi-
rect) method calls at code level [6, 7] to compose compo-
nents together. ADL-based components have three major
shortcomings from re-usability point of view: 1) In ADL-
based components, one cannot select/de-select/alter ports
without changing the code manually at all required places
to re-compose the components after retrieval. Each differ-
ent integration of components demands different configura-
tion to reuse the components. Especially, in case of legacy
systems, where adequate comprehension of implementation
is not expected, re-configuration at code level is much more
complex and time-consuming. 2) ADL-based components
can only be retrieved to use as is. One has to bind all the
ports in order to use an ADL component. Therefore, ADL-
based components provide non-flexible re-usability. 3) It is
impossible to re-deposit> a configured integration of com-
ponents for reuse (e.g., composite component). Compo-
nents have to be retrieved and configured as many times as
the same integration is required for every reuse in different
systems.

To the best of our knowledge, no such component based
reverse engineering approach exists that can:

1) Re-compose the reverse engineered components without
changing the code at all required places.

2) Allow to reuse the components without binding all re-
quired and provided services.

3) Support the re-deposition of re-composed components
for future reuse of the same integrated configuration.

This paper presents a reverse engineering approach that
can resolve the above stated issues. The mapping from ex-
tracted clusters to meta-model of our component model X-
MAN [14] and working of our tool has already been ex-
plained in [4][5] (white boxes in Figure. 1). In this paper,
we explain how we: 1) Capture the object oriented source
code. 2) Map the captured notation to X-MAN clusters
based on our rule base, by stating basic scenarios (red boxes
in Figure. 1). Section II of this paper compares our ap-
proach with other approaches that extract explicit architec-
ture. Section III explains X-MAN component model. Sec-
tion I'V presents our approach using an example. Section V
include conclusion and future work.

2. Related Work

There are quite a few approaches that follow szyperski's
definition of components for reverse engineering.

JAVACompExt [3] is a heuristic based approach that ex-
tracts Abstract Data Type (ADT) components. The purpose

'Components based on architecture description languages
2The term re-deposit-ability means ability to re-deposit the composed
components after retrieval for future reuse.

Capturing the Code Base

Source Nodes Woles obj:cipop:—?n::;nzgrgode
i ™ Structurin >
Code Extraction 9 To Clusters

Component Validation Mapping From

& Deposit < Clusters
X-MAN Meta Model

Component Retrieval
& Re-composition

Figure 1: RX-MAN

of this research is to avoid the system corrosion by mak-
ing architecture explicit in the source code. The approach
by Antoun et al. [1] re-engineers Java code into ArchJava
components [2]. Chouambe et al. [10] produces compos-
ite components from Java source code. Pattern-based Re-
verse Engineering of Design Components [16] extracts de-
sign components based on the structural descriptions of de-
sign patterns. A Reverse Engineering Approach to Sub-
system Structure Identification [19] is another approach
that re-structures the system into a hierarchy of subsystems
along with their high-level abstract representation as com-
ponents. Washizaki [21] detects reusable part of object-
oriented classes and transforms classes into JavaBeans com-
ponents automatically. Archimetrix [11] is an approach that
can reconstruct architecture in form of components from
the source code after removing design deficiencies. Quality
centric approach [15] focuses on quality of explicit inter-
faces by following a semantic-correctness model. Compo-
nents extraction in memory-constrained environments [21]
is an approach that identifies reusable part of an object ori-
ented code and refactor the relative or surrounded code to
reuse the identified part. This approach follows the Jav-
aBeans component model [12]. L2CBD [17] stands for
legacy systems to component based development and this
approach is different from others because it is a methodol-
ogy rather than a concrete approach itself. Any proposed
approach can use L2ZCBD methodology to transform legacy
code into components. This methodology consists of plan-
ning phase, re-engineering phase, componentization phase
and component testing.

Few major shortcomings with these approaches are lack
of automation, inability to retrieve from repository and in-
ability to achieve re-composition or code independent re-
usability of the extracted components after retrieval. These
approaches however, extract components with defined re-
quired and provided services based on the semantics of a
component model.

All the above approaches have same predefined order of
steps. Every approach starts with capturing the code base in
some notation. Based on a set of rules, formation of clusters
is the second step (by using graph dependencies, directed
graphs, code metrics etc.). The last step is the mapping from
extracted structure to semantics of a component model. In
Table 1, attribute Repository Deposit means whether an ap-

n i izati Component]
Approach |Re-Composition b e%sf',ts?try Cﬁ,’g@ﬁggﬂggﬁﬂ;’” Automated| Mgde|
JAVACompExt X X X v UML
Antoun et al. X X v X Archjava
Design
Compor?ents X X v 4 uML
Subsystem
Structure X X v v ADL
Identification
Choumbe et al/| X v X v EJB
Washizaki X v v v JavaBeans
Archimetrix X X v X ADL
L2CBD X X v X Not Defined
Qualit_y X X v v ADL
Centric
Memory
Constrained.. X v 4 v JavaBeans
RX-MAN v v v 4 X-MAN

Table 1: Approaches based on Explicit Architecture (Com-
ponents)

proach is based on a component model that supports repos-
itory or not. JAVACompext, Antoun's approach and Design
Components are based on component models that do not
support repository whereas, Subsystem Structure Identifi-
cation, Archimetrix, L2BCD and Quality centric approach
do not define or discuss the deposition of components via
a repository. Lack of repository decreases re-usability as
components cannot be configured and preserved for future
retrieval. The attribute Automated shows whether an ap-
proach is automated or needs manual assistance. Compo-
nent Model shows the component model that is followed for
extraction of components. Componentization independency
shows whether an approach is only applicable on source
systems that are designed as separate packages.

Out of all the explicit approaches, our approach (that we
call RX-MAN) is the only one that: supports component
repository as part of its implementation, does not need code-
level configurations for reuse, is automated, does not restrict
to bind all the ports of a component being reused and sup-
ports re-composition of extracted components.

3. X-MAN Component Model

Unlike ADL-based components, X-MAN component
model is based on encapsulation i.e., an X-MAN compo-
nent only has provided methods and no required ones. An
atomic component consists of a computation unit that has
the implementation of methods, exposed functionality of
specific methods (services that are used to send/receive data
elements) and an invocation connector. Methods are ex-
posed as services by invocation connector (lollipop in Fig-
ure 2). Computation only takes place in a computation unit,
which is why this component model is encapsulated [18].

In case of a composite component, encapsulation is pre-
served by composition because a composite component
consists of two or more atomic components composed to-
gether by composition connectors. All such atomic com-
ponents can only provide methods by their invocation con-

Composition connector

Control#

I

. Sequencer Selector
Computation—»
p SEQ SEL

IU = Invocati t
U = Computation unit A .. oA LA LA

(a) Atomic component

(b) Composition connectors

Q

Control——>§ CcC)
Q' ‘O

Atomic_,.I B
component [B]

S

CC = Composition connector

(c) Composite component

Figure 2: X-MAN: Components and composition connec-
tors.

public class A{

public int provideSpeed(int speed)

{speed=100; this .returnSpeed (speed);}

public int returnSpeed(int topSpeed){ this .savelnLog(topSpeed); return
topSpeed; }

private void saveInLog(int value){ System.out. println ("Value is
saved”);}}

Figure 3: Scenario 1: Single Non-Interactive Class

nectors and co-ordinate with one another using composition
connectors. Composition connectors in X-MAN are con-
trol structures that direct the route of execution. Sequencer
(SEQ) composition connector provides sequencing of exe-
cution between two or more than two components and Se-
lector (SEL) provides branching based on specific condi-
tions>. Basic semantics of X-MAN component model are
shown in Figure 2. One computation unit cannot interact
with other directly but only via composition connectors.
Control of the components exists outside of computation
units and that is why one does not need code-level configu-
rations to reuse the components* (control mechanism does
not exist at code level). Any component can be reused by in-
tegrating it with others using appropriate composition con-
nectors [18].

In ADL-based component models, control cannot be
separated from computation and therefore, one needs code-
level configurations to recompose required and provided
services (control mechanism i.e., ports exist at code level).
X-MAN component model also supports re-deposition of
components after composition and composed integrations

3With SEQ (sequencing), SEL (branching) and LOOP (looping), X-
MAN is Turing complete.

4Encapsulation in X-MAN does not mean code hiding, it means no
computation goes outside of computation unit.

package com.A.scenario;

import java. util .x;

public interface A {

public int provideSpeed (int speed);
public int returnSpeed (int topSpeed);}

package com.A.scenario;

import java. util .x;

public class AImpl implements A {public AImpl() {}

public int provideSpeed (int speed) {

speed = 100; return speed;}

public int returnSpeed (int
topSpeed){ this .saveInLog(topSpeed);

return topSpeed; }

private void savelnLog(int value){ System.out. println (”Value
is saved”);}}

Figure 4: Mapped Code from Scenario 1

I-=A 53

returnSpeed provide Speed

@ speed
® returnSpee

@ topSpeed
@® returnTopSpee

Figure 5: Atomic Component in X-MAN Tool
of components can be retrieved for future reuse [5]. One
does not need to bind all the provided methods at code level
like ports but only need to use services and compose com-
ponents by appropriate composition connectors.

4. Our Approach: RX-MAN

This section uses an example of Brake Control System to
demonstrate the code capturing and mapping of code from
object-oriented classes to X-MAN clusters. We used the
same example in [5] to demonstrate the working of our tool
and repository deposition (and re-deposition after composi-
tion). Before showing the mapping in terms of an example,
section below demonstrates few basic scenarios to show the
rules of mapping.

4.1. Mapping from Object-Oriented code to X-
MAN clusters

In RX-MAN, each input is a class, bunch of classes or a
program (object-oriented code base). The input is mapped
using a rule base against defined scenarios and output is one
or more than one X-MAN components. The mapping is
based on interactions and invocations of methods. Below
are few basic scenarios to show the mapping rule base.

* Single Class with no interaction: A single non-
interactive class is the most trivial scenario in RX-
MAN. In this scenario, all the methods that call each
other belong to the same class. Output of this scenario
would be one X-MAN component with all the meth-
ods of the class mapped to computation unit. Only

Speed|i]provideSpeed [0]Speed
[i] returnSpeed [0] Top

. Speed [i] input
[o] output

Top
Speed

Figure 6: X-MAN component mapped from Scenario 1

public class A{

B obj= new B();

public void provideSpeed(int speed){speed=100;
obj . evaluateSpeed (speed); } }

public class B{
public int evaluateSpeed (int topSpeed){int maxSpeed=200; return
maxSpeed—topSpeed; } }

Figure 7: Scenario 2: Two classes with public-public inter-
actions
public methods of the class are flagged as possible ser-
vices. Figure 3 is showing a non interactive single Java
class. In Figure 3, methods provideSpeed and return-
Speed are marked as services. Method savelnLog is
in computation unit along with other two methods but
it cannot be a service because its modifier is private.
The services of this component are mapped as an in-
terface and computation unit has implementation of all
the methods. Figure 4 shows the notation of mapped
code of scenario 1 (inside X-MAN component) and
Figure 5 shows the extracted atomic component in our
tool. Figure 6 shows the notation of X-MAN compo-
nent mapped from this scenario. Red boxes in Figure
6 shows the exposed functionality of this component
i.e. services. This atomic component can be composed
with others via composition connectors and can pro-
vide methods via invocation connector.
e Two Classes with public-public methods interaction:
Next possible scenario is the interaction of two Java

|i]provideSpeed [0]Speed
[i BvaluateSpeedo] Top

. Speed [i] input
(o] output

Speed

Top

Figure 8: X-MAN component mapped from Scenario 2

classes in a code base. As our approach is based on
interaction and invocation of methods, modifiers of
methods play an important role in defining a scenario.
Figure 7 is showing an example of two Java classes
that interact with each other via methods with public
modifiers. In this scenario, output would be just one
X-MAN component. All the callers would be placed
in one computation unit along with the methods they
called. If a method M is in invocation list of more
than one methods, it would be placed in the computa-
tion unit only once to avoid redundancy. This scenario
assumes that all the interactions are between public
methods and no method is neither invoking any pri-
vate method nor dealing with any private class level
variable. Figure 8 is showing the X-MAN component
mapped for two Java classes of scenario 2.

e Two Classes with private-public OR public-private
methods interaction: This scenario has more possible
outcomes than the previous two. If a private or a pub-
lic method in Class A calls a public method in Class B,
there are following possible scenarios.

1. Public method in Class B is neither accessing any
private variable of the class nor it is calling any
private method of B. In this case, such public
method will be placed along with its caller in the
same computation unit.

2. If method in Class B uses private variable of
Class B or it calls some other private method of
B, it cannot be simply placed with its caller. In
this case:

a) If caller is private, the public method of B will
be placed in both components (computation unit
of A and computation unit of B as its dealing with
private entities of both classes).
b) If caller is public, public method of B will only
be part of computation unit of B. Its caller can
access it using composition connector or service
(for data input/output).
Figure 9 shows a scenario of public-private case.
Method provideSpeed of Class A has method evaluate-
Speed of Class B in its invocation list. Method eval-
uateSpeed is accessing private method savelnLog of

5In case of void methods, output of service is boolean that indicates
termination of execution of the service

public class A{

B obj= new B();

public void provideSpeed(int speed){speed=100;
obj . evaluateSpeed (speed); } }

public class B{

public int evaluateSpeed(int topSpeed){int maxSpeed=200; int
recordSpeed=maxSpeed—topSpeed; this.savelnLog(recordSpeed);
return recordSpeed;}

private void saveInLog(int recordValue){system.out. println (" Value
Logged Successfully”); }}

Figure 9: Scenario 3: Two classes with private-public OR
public private interactions

O @,
Speedl provideSpeed [0]Speed ~ Top [iJevaluateSpeed[olRecord

Speed Speed

Componentl Component2

Figure 10: X-MAN components mapped from Scenario 3
Class B. Output of this scenario would be two X-MAN
components. One component would have one method
i.e. provideSpeed. The other component would have
evaluateSpeed and savelnLog in its computation unit
and evaluateSpeed would be the service of second
component. Figure 10 shows two components mapped
from scenario 3.

The purpose of explaining the above scenarios is to provide
comprehension of the basic mapping mechanism. Cluster-
ing of methods based on their invocations and modifiers
provide much better cohesion as only those methods would
belong to same component that are associated and have
loose coupling with rest of the components. Of-course, in
case of legacy code basis, the scenarios would become more
and more complex and number of components are depen-
dent on interactions of methods. We have presented our
algorithms in [4, 5] that cover more complex scenarios. To
apply these scenarios on a full code base, one needs an ap-
propriate notation that can capture the whole legacy code
and preserves the relation and dependencies among all the
entities. To capture the code base, our approach uses a cus-
tomised parser that is written specifically for RX-MAN.

4.2, Capturing the Code Base

The customised parser used in this approach is based on
Abstract Syntax Tree (AST) parser. The designed parser is
more powerful than the default AST parser as it also ex-
tracts and maps invocation nodes from each method node in
the code base. If a method A invokes method B, and method
B invokes method C then our parser extracts and connects
all nodes of the method C to method A as both are indi-

Method 1 Index
Node

Field

Type
Declaration

Declaration

Invoked
Method 2

Method
Body

Parameterl

Method 2 Index SimpleName
Code Base Node
Method N Index
Node
Figure 11: RX-MAN Parser
Speed Monitoring Class Brake Control Class

package vehicle . control . speedcontrol ;

import vehicle . brakecontrol . BrakeControl;

public class SpeedMonitoring {

BrakeControl obj;

public SpeedMonitoring(){}

public double collisionTimeCalculator (double speed, double
distance)

{speedMonitoring Value(distance /speed) ;

return distance /speed; }

public boolean speedMonitoringValue(double collisionEstimate)

{boolean time="false ;

if (collisionEstimate <15)

{time=true ;

obj. collisionParametersActivation (time);}

else {obj. collisionParametersActivation (time)

3} return time;}}

package vehicle . brakecontrol ;

public class BrakeControl {

public BrakeControl (){}

public boolean collisionParametersActivation (boolean flag){
if (flag==true)

{BrakeSystemActivation(flag);}

else { TimeTriggerValue(flag);}

return flag ;}

private void BrakeSystemActivation(boolean value){
System.out. println ("Brakes Applied”);}

public boolean TimeTriggerValue(boolean value){
return value;}

Figure 12: Brake Control System

rectly connected by method B. AST parser extracts one big
tree of nodes from a code base in which all the nodes are
connected hierarchically e.g., starting node would be com-
pilation unit (class level or package level) connected with its
sub nodes i.e., class declarations, class variables etc. Each
class declaration node is further connected to its method
nodes and each method node is connected with its sub nodes
i.e., method parameters nodes, method return node, method
body node etc. This hierarchy of nodes goes till the last
level which is simple name nodes i.e., name of local vari-
ables etc.

It is impossible to trace and cluster the chain of all possi-
ble method interactions and invocations from this one big

complex tree. Therefore, RX-MAN parser indexes each
method of the code base and connect all associated nodes
with every method. Figure 11 is showing the extraction of
nodes using RX-MAN parser. Each method node index has
information about its parent class, parent package and class
variable this method uses. Along with this information,
each method node index is connected with all the method
it invokes directly or indirectly. This mapping makes sure
that no indirect invocation goes undetected. This kind of
mapping can cause duplication of methods in a cluster as
many methods may invoke same set of methods indirectly,
but such redundancy can be removed before submitting the
mapped components into repository. In short, starting from

File Edit View Navigate Search Project Run Reverse-Engineering Extract Atomic_Components SingleApplicationSystem | X-MAN | Window Help

e B R HE -0~ G~ - LEL. Jr=W R R S + Deposit | | |
= : > Retrieve
| X-MAN Reposito 53 B |2 BrakeControlSystem 32 - dd .
= = & Repository Reconnection
5 s KBS ~|| 4 Sratee
v [BrakeControlSystem (3) Iy Selest [Generate Code
BrakeControlComposite S Execute Architecture
{7} Marquee
vehiclecontrolbrakecontrol + Generate Functional Model
vehiclecontrolspeedcontrol | | (= Connectors @
Demo (2) 7 Guard
Draw.io (11)
N @]
EverNotelavaSDK (9) it Loop
IFreeChart (20) I Sequencer Brake Control SEQ
1Graph ' Aggregator
JabRef < Selectar
TeamMates (34) “ar ivati
5 & Connections) SpeedMonitoring . BrakeControlActivation
ServiceReference
+ Coordination
s Dt Channel collisionTimeCalculator collisionParametersActivstion
SpeedMonitoring.collisi
(= Services P @ speed O sp € 9 @ ean ﬂaﬁ
® onTimeCalculator @ boot”
O Service istance Q) SpeedMonitoring.speec ?99
(D) Service Reference @ double MonitoringValue

__| © BrakeControlActivation

= I?ata © --.collisionParametersActi T
(a) Data Element eedinput
@ Input - Etance\anlt
@® Output ® Ti;e
speedMonitoringValue | @ CollisionTime

@ collisionEstimate

& bool

p® CollisionVal
@ flagValue -
@ FinalValue

Figure 13: Deposition of A Composite Component after Re-composition

each method in a code base, each method node index is con-
nected with whole chain of invocations it causes in a code
base (Figure 11). Therefore, each cluster of RX-MAN is
consisted of restructured associated nodes based on rules of
method's interactions and invocations.

4.3. Example: Brake Control System

Fig 12 shows a simple example of brake control sys-

tem that is reverse engineered using our approach. In the
given example, there are two classes. Class SpeedMoni-
toring has methods collisionTimeCalculator (for calculat-
ing time till collision by using speed of the vehicle and
distance from the next vehicle) and speedMonitoringValue
(for automatic brake mode if time till collision is less than
15 seconds). Method speedMonitoringValue invokes col-
lisionParametersActivation from Class BrakeControl that
belongs to a different class. Depending on the value of
time, method collisionParametersActivation either invokes
BrakeSystemActivation or TimeTriggerValue.
According to our approach, method speedMonitoringValue
has one method node against its invocation node i.e., colli-
sionParametersActivation and method collisionParameters-
Activation has two method nodes against its invocation node
i.e., BrakeSystemActivation and TimeTriggerValue (hence
two indirect invocation nodes against speedMonitoring-
Value via collisionParametersActivation). As the method
BrakeSystemActivation is private (scenario 3) therefore, the
approach will map the whole code to two clusters.

RX-MAN tool maps these clusters to X-MAN meta-
model and extracts two components ®. First cluster has
methods speedMonitoringValue and collisionTimeCalcula-
tor (both will be mapped as services of an X-MAN com-
ponent as these methods are public and do not access any
private variable/method directly). Second cluster has meth-
ods collisionParametersActivation, BrakeSystemActivation
and TimeTriggerValue (from this cluster method BrakeSys-
temActivation cannot be mapped as a service as it is private.

Fig 13 is showing a possible case of re-composition of
RX-MAN. Both the extracted components are composed
using a composition connector (Sequencer). SpeedMoni-
toring component (extracted from first cluster) will be trig-
gered first as this route has 0 (lower number means higher
priority) and component BrakeControlActivation (extracted
from second cluster) will be triggered after that. It is
one valid case of re-composition as the component Brake-
ControlActivation will perform its execution after getting
collisonValue from component SpeedMonitoring. Fig 13
is also showing that this composite component has been
deposited in the BrakeControlSystem (X-MAN repository
at left) and can be instantiated in future to be reused or
re-composed further. We do not need any manual code
changes due to composition connectors of X-MAN and we
can also generate code of this composite component using
RX-MAN tool.

The steps of mapping of clusters to X-MAN meta-model and details
about the tool have been presented in [5]

5. Discussion and Conclusion

This paper presents two important steps of our approach
of reverse engineering: code capturing and mapping from
object-oriented code to X-MAN clusters. We also demon-
strated an example of Brake Control System and show a
valid case of re-composition in our tool. We have already
applied our approach to six large legacy code basis and all
the details of evaluation have been presented in [5].

The biggest threat to validity of RX-MAN is the lack
of consideration to important relations in an object-oriented
language e.g., aggregation, composition and inheritance etc.
These relations, if mapped can provide much better co-
hesion in the extracted components and hence better re-
usability. Future work includes expanding this approach
beyond methods'interactions to map control statements in
the code (if, switch, loops etc.) to composition connec-
tors of X-MAN. To the best of our knowledge, ours is the
only component based reverse engineering approach that
can reuse and re-compose the extracted components with-
out any code-level configurations and supports the reposi-
tory and re-deposition of components.

References

[1] Marwan Abi-Antoun, Jonathan Aldrich, and Wesley Coelho.
A case study in re-engineering to enforce architectural con-
trol flow and data sharing. Journal of Systems and Software,
80(2):240-264, 2007.

Jonathan Aldrich, Craig Chambers, and David Notkin. Arch-

java: connecting software architecture to implementation. In

Proceedings of the 24th international conference on Soft-

ware engineering, pages 187-197. ACM, 2002.

[3] Nicolas Anquetil, Jean-Claude Royer, Pascal Andre, Gilles
Ardourel, Petr Hnetynka, Tomas Poch, Dragos Petrascu, and
Vladiela Petrascu. Javacompext: Extracting architectural
elements from java source code. In Reverse Engineering,
2009. WCRE’09. 16th Working Conference on, pages 317—
318. IEEE, 2009.

[4] R. Arshad and K.-K. Lau. Extracting executable architecture
from legacy code using static reverse engineering. In Pro-
ceedings of Twelfth International Conference on Software
Engineering Advances, pages 55-59. IARIA, 2017.

[5] R. Arshad and K.-K. Lau. Reverse engineering re-
composable components from legacy code. In Proceedings
of 7th International Conference on Software and Computing
Technologies. LNSE, 2018.

[6] Timo Asikainen, Timo Soininen, and Tomi Minnisto. A
Koala-Based Approach for Modelling and Deploying Con-
figurable Software Product Families. In Software Product-
Family Engineering, pages 225-249. Springer, 2004.

[7] Rabih Bashroush, T John Brown, Ivor Spence, and Peter Kil-
patrick. Adlars: An architecture description language for
software product lines. In Software Engineering Workshop,
2005. 29th Annual IEEE/NASA, pages 163—173. IEEE, 2005.

[8] Victor R Basili. Evolving and packaging reading technolo-
gies. Journal of Systems and Software, 38(1):3—-12, 1997.

[2

—

[9] K. Bennett. Legacy systems: coping with success. IEEE
Software, 12(1):19-23, Jan 1995.

[10] Landry Chouambe, Benjamin Klatt, and Klaus Krogmann.
Reverse engineering software-models of component-based
systems. In Software Maintenance and Reengineering, 2008.
CSMR 2008. 12th European Conference on, pages 93—102.
IEEE, 2008.

[11] Markus Detten, Marie Christin Platenius, and Steffen
Becker. Reengineering component-based software systems
with archimetrix. Softw. Syst. Model., 13(4):1239-1268, Oc-
tober 2014.

[12] Wolfgang Emmerich and Nima Kaveh. Component tech-
nologies: Java beans, com, corba, rmi, ejb and the corba
component model. In ACM SIGSOFT Software Engineering
Notes, volume 26, pages 311-312. ACM, 2001.

[13] J. M. Favre, F. Duclos, J. Estublier, R. Sanlaville, and J. J.
Auffret. Reverse engineering a large component-based soft-
ware product. In Proceedings Fifth European Conference
on Software Maintenance and Reengineering, pages 95-104,
2001.

[14] Nannan He, Daniel Kroening, Thomas Wahl, Kung-Kiu
Lau, Faris Taweel, C Tran, Philipp Riimmer, and S Sharma.
Component-based design and verification in X-MAN. Proc.
Embedded Real Time Software and Systems, 2012.

[15] S.Kebir, A. D. Seriai, S. Chardigny, and A. Chaoui. Quality-
centric approach for software component identification from
object-oriented code. In 2012 Joint Working IEEE/IFIP Con-
ference on Software Architecture and European Conference
on Software Architecture, pages 181-190, Aug 2012.

[16] Rudolf K Keller, Reinhard Schauer, Sébastien Robitaille, and
Patrick Pagé. Pattern-based reverse-engineering of design
components. In Proceedings of the 21st international confer-
ence on Software engineering, pages 226-235. ACM, 1999.

[17] Haeng-Kon Kim and Youn-Ky Chung. Transforming a
legacy system into components. In Marina Gavrilova, Os-
valdo Gervasi, Vipin Kumar, C. J. Kenneth Tan, David
Taniar, Antonio Lagand, Youngsong Mun, and Hyunseung
Choo, editors, Computational Science and Its Applications
- ICCSA 2006, pages 198-205, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[18] Lau Kung-kiu et al. An Introduction To Component-based
Software Development, volume 3. World Scientific, 2017.

[19] Hausi A Miiller, Mehmet A Orgun, Scott R Tilley, and
James S Uhl. A reverse-engineering approach to subsystem
structure identification. Journal of Software: Evolution and
Process, 5(4):181-204, 1993.

[20] Clemens Szyperski. Component software: beyond object-
oriented programming. Pearson Education, 2002.

[21] Hironori Washizaki and Yoshiaki Fukazawa. Extracting
components from object-oriented programs for reuse in
memory-constrained environments.

