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Abstract

In the last few years, neural networks have found interesting applications in the field
of time series modeling and forecasting. Some recent results show the ability of these
models to approximate the dynamical behavior of nonlinear chaotic systems, leading
to similar dimensions and Lyapunov exponents. In this paper we analyze further
the dynamical properties of neural networks when comparted with chaotic systems.
In particular, we show that the possibility of synchronizing chaotic systems gives a
natural criterion for determining similar dynamical behavior between these systems
and neural approximate models. In particular we show that a neural model obtained
from an experimental scalar laser-intensity time series can be synchronized to the time
series, indicating that it captures the dynamical behavior of the system underlying the
data.
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1 Introduction

Time series analysis is an important discipline which deals with the modeling, control and

forecast of real-world systems from a set of measured observations. Several methods for

obtaining linear approximate models have been developed for this purpose, including the

well-known ARMA models (see [1] for a introduction to linear time series analysis). The

main goal of these methods is, first, fitting an appropriate model to the data and, then, using

the obtained model for predicting the future, or for controlling the system’s state. These

ideas have been applied in a great variety of domains, going from Economics to Physics or

from Engineering to Social Sciences, resulting in the identification of linear deterministic

models underlying many time series associated with interesting problems.

However, in the last two decades a great deal of attention has been focused in nonlin-

ear systems, which can exhibit a complex seemingly stochastic behavior known as deter-

ministic chaos. This interest was mainly motivated by the discovering of chaos in simple

low-dimensional nonlinear models, and in a great variety of experimental time series (stock

markets [2], electronic circuits [3], biology [4], etc.). Although at first sight a chaotic system

may seem unpredictable and unmanageable, its deterministic low-dimensional nature allows

distinguishing it from noise and makes feasible reconstructing its functional structure from

a time series using appropriate nonlinear techniques.

In recent years new approaches for nonlinear time series modeling have emerged (local

and global prediction [5], neural networks [6], delay reconstruction space [7], wavelets [8],

functional networks [9], etc.), providing more powerful methods and giving new insight into

the dynamics of these systems (see [10] and references therein for an updated survey of this

topic). Among these techniques, artificial Neural Networks (NNs) have been successfully

applied in many practical situations [11, 12, 13]. Moreover, it has been shown that under

some circumstances a neural approximate model resemble the original system, in the sense

that both the original and neural models can exhibit similar unstable periodic orbits [14], or

even similar Lyapunov exponents or fractal dimension [15] (see [16] for more details about

these topics).

However, there is no general quantitative criterion for deciding whether a reconstructed

model can be considered a dynamical approximation of the original system. This problem is

specially important when there is no knowledge about the functional form of the system and

the only information available is a scalar time series sampled from the system (note that this

is always the situation in many experimental problems). In most cases, the residual error

between the predicted and real values is used as a quantitative criterion for this purpose.

However, in some cases low-error models can be overfitted to the data, leading to a wrong

reconstruction of the system dynamics.

In this paper we show that the possibility of synchronizing chaotic systems gives a nat-

ural criterion for determining similar dynamical behavior among different systems. Chaos

synchronization was first shown by Pecora and Carroll by linking exact replicas of a given

system with common signals, in such a way that they converge to the same orbit [17]. Syn-



chronization was also found to be robust to small perturbations on the system parameters,

so slightly different systems could also be synchronized. Therefore, the robustness of chaotic

synchronization can be used as a natural criterion for determining similar dynamical be-

havior among different systems. In particular, this criterion can be applied to check the

performance of different neural models obtained from a time series when compared with the

underlying dynamical system. To illustrate the ideas presented in the paper, we shall analyze

both computer-generated times series obtained by simulating simple deterministic dynamical

systems (such as the Lorenz model), and an experimental scalar time series obtained from a

NH3 infrared laser.

This paper is structured as follows. In Section 2 we present some basic results about NNs

and their application to time series modeling. In Section 3 we describe chaos synchroniza-

tion and show the possibility of synchronizing neural models with chaotic systems; we also

describe the application for characterizing similar dynamical behaviors. Finally, Section 4

describes a real-world application of the technique using an experimental scalar time series.

2 Modeling Chaotic Systems with Neural Networks

It is now generally recognized that seemingly random time series may be the result of some

stochastic process, but they may also be produced by some simple nonlinear system. In either

case, a long-term prediction is possible only in probabilistic terms. However, in the short

term, low-dimensional chaotic systems can be predicted by fitting an appropriate functional

model to the available data for reconstructing its underlying functional structure.

Suppose we are given a time series un, obtained from a dynamical system given by a

flow u̇(t) = F (u(t)), sampled at equally spaced intervals tn = n τ , n = 0, 1, 2, . . .. We are

interested in approximating the functional model which characteries the short-term evolution

of the time series, un+p = f(un), where f is given in terms of F , the sampling time τ , and

the prediction horizon p.

To this aim we shall consider simple feed-forward NNs with sigmoidal σ(x) = 1
1+e−x

and linear activation functions for hidden and output layers, respectively. This type of

network has shown to be an universal approximator for continuous (one hidden layer) or

arbitrary (more than one hidden layer) functions [18]. The training process is carried out by

considering input–output couples of the form (un,un+p), where p is the prediction horizon.

To illustrate the concepts we shall use the well known Lorenz model, given by the set of

differential equations [19]:

(ẋ, ẏ, ż) = (σ(y − x),−x z + r x− y, x y − b z) (1)

which we study for the parameter values σ = 10, b = 8/3, and r = 28. Considering the initial

conditions (x0, y0, z0) = (−10,−5, 35) and using a fourth-order Runge-Kutta algorithm with

a fixed time step τ = 10−2, we recorded a time series consisting of 2000 sample points. This
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set was divided in two parts; the first one was used for training whereas the second one was

reserved for testing the models.

Figure 1: Time series of the Lorenz system obtained with a sample time τ = 10−2.

Since we are dealing with a continuous system, we have considered different NNs with

three input neurons (xn, yn, zn), three output neurons (xn+1, yn+1, zn+1), and a single hidden

layer containing from one to twenty neurons (this type of architecture is usually referred to as

a 3 : a : 3 feedforward network, where a is the number of hidden neurons). For each of these

network structures, ten experiments were performed with different initial network weighs,

using the Levenberg-Marquardt method as training algorithm; the best solution in each case

was considered as the representative neural approximate model. For instance, Figure 2(a)

shows the errors obtained for predicting x variable with the best six hidden neurons NN

obtained:

x̂n+1 = −3768.18− 0.34
1 + e9.31+0.53xn−0.68 yn−0.21 zn

+
0.92

1 + e7.64−0.121xn−0.149 yn−0.13 zn
−

2.75
1 + e6.19+0.15xn+0.0451 yn−0.09 zn

− 2.04
1 + e1.13+0.06xn+0.0119 yn−0.06 zn

+ (2)

7164.31
1 + e−0.12+0.00021xn−0.0002 yn+0.000021 zn

− 63.52
1 + e−0.24+0.08xn−0.016 yn+0.0049 zn

,
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Figure 2: Residuals xn − x̂n for two neural models with (a) six and (b) fifteen hidden units.
The neural nets are trained with the first 500 points and a cross validation is performed with
the last 500 points. No overfitting can be appreciated in the models.

which gives a Root Mean Square Error (RMSE) 0.133 for the training process, that is less

than 0.5% the range of the corresponding variable, and 0.149 for the test data. These results

clearly indicate a good performance of the neural model, since no overfitting is detected.

However, although the above analysis indicates a good accuracy in one-step ahead pre-

diction using a six neuron NN, it is not clear that the obtained neural model can reproduce

the dynamics of the Lorenz system. Figure 3 illustrates this fact by showing the evolution of

two different NNs; in the first case, the neural system converges to a periodic trajectory (Fig.

3(a)), whereas in the second case it converges to a fixed point (Fig. 3(b)), neither of them

resembling the chaotic behavior of the lorenz model. As we have seen in this example, an

interesting result obtained when training NNs with a low number of parameters is that the

resulting orbits may not behave as the original chaotic system, but resemble some unstable

periodic orbits embedded in the chaotic system. This fact may be caused by the simpler

dynamics associated with unstable periodic orbits, and will be the scope of a future paper

(see [16] for an introduction to unstable periodic orbits and their role in the topology of

chaotic attractors).

When increasing the number of hidden neurons above ten, we found that the error de-

creases and the dynamical behavior of the obtained neural models resemble the original

chaotic system. For instance, Figure 2(b) shows the training and test errors associated with

a 15-neuron NN (note that this error is an order of magnitude lower that the one associated

with the 6-neuron model shown in plate (a)). The training and test RMSE were 0.0221 and
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Figure 3: Phase space of two different 3 : 6 : 3 neural models trained with the same method,
but starting from different initial weight configurations. The shadow in the background
corresponds to the original chaotic orbit and is shown for illustrative purposes.

0.0237, respectively, which indicates that no overfitting occurs. Figure 4 shows the evolutions

of the original and neural systems, starting at the same initial condition. The point where

both systems start splitting away (≈ t = 3) is approximately the threshold value imposed by

the chaotic behavior in the numerical precision of the performed computations; therefore, it

can be qualitatively stated that both systems behave similarly.
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Figure 4: Phase and evolution spaces of (a) the Lorenz model and (b) an approximate neural
model with 15 hidden neurons.

Finally, if we increase the number of hidden neurons above twenty, the training error

continues decreasing but the neural models start overfitting the data. As a consequence,

the behavior of these models present significative differences with the original system (we



have seen that most of the times the neural models asymptotically diverge to infinity). As a

conclusion, a commitment between error minimization and dynamical reconstruction leads

to optimal neural models ranging from 10 to 20 hidden neurons.

From the above experiments we have seen that the residual training or test errors do not

provide a general criterion for determining a similar dynamical behavior between a given

dynamical system and a neural approximate model. In the following sections we shall give

such a criterion based on chaos synchronization; in this case we do not compare the prediction

error, but the synchronization error between the systems.

3 Chaos Synchronization

In their seminal contribution Pecora and Carroll [17] showed that chaotic systems can be

synchronized by linking them with common signals. At first sight, this is not an obvious

result, since these systems are very sensitive to small perturbations on the initial conditions

and, therefore, close orbits of the system quickly become uncorrelated. They consider the

situation of unidirectional driving in which one has a couple of master-slave systems, and

synchronization is achieved by injecting a signal from the master system into the slave.

Given a couple of identical autonomous chaotic systems, u̇1 = f(u1) and u̇2 = f(u2),

the basic idea of the Pecora-Carroll scheme is decomposing the first system (the master) into

two subsystems,
v̇1 = g(v1,w1)
ẇ1 = h(v1,w1)

}
master, (3)

where u = (v,w), and considering one of the decomposed subsystems as master signal,

say v1, to be injected into the slave system. This reduces the dimensionality of the slave

becoming

ẇ2 = h(v1,w2)} response, (4)

where v1 is the set of connecting variables. Note that the system (3) is independent of the

response system, whereas (4) is driven by v1(t) (unidirectional driving). Then, the question is

whether or not the subsystems u1 and u2 will synchronize, i.e., whether ‖u1(t)−u2(t)‖ → 0,

as t→∞. The answer to this question is given by the Lyapunov exponents of the difference

system, ˙δw = h(v1,w1)−h(v1,w2), since they indicate if small displacements of trajectories

are along stable or unstable directions. In the case of the Lorenz system these exponents are

all negative when using x or y variables as driving signals, indicating that synchronization

occurs.

This method is illustrated in Figure 5(a), which shows the evolution of the x variable

for a couple of identical master and slave systems (1). They start at different initial points

and evolve independently the first 500 iterations; afterwards both systems are connected by

using y variable as driving signal and they quickly become synchronized, as indicated by the

zero value difference shown in Figure 5(b).
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Figure 5: (a) Evolution of x variable for master mn and slave sn systems before and after syn-
chronization; (b) synchronization error with two identical systems; (c) synchronization error
with a perturbed slave system s̄n; and (d) synchronization error with a neural approximate
slave model ŝn.



Pecora and Carroll also showed that synchronization is robust to small perturbations on

the system parameters (this situation is usually referred to as inhomogeneous driving); in this

case the trajectories do not exactly match each other, but there is a residual error associated

with the differences between the systems’ parameters. For instance, Figure 5(c) shows the

synchronization error resulting when considering a slave which is a slighted perturbed copy

of the master system (the slave parameters have been randomly perturbed a 5% of their

magnitude). From this figure we can see that the synchronization error is two orders of

magnitude lower than the range of the corresponding x variable.

Finally, Figure 5(d) shows the synchronization error when considering as slave system the

15-neuron NN described in the previous section, obtained for approximating the dynamical

behavior of the master system (1). The synchronization error is similar to the obtained in the

previous case, when synchronizing the 5% perturbed slave system. Therefore, if we consider

the residual synchronization error as a quantitative dynamic-similarity measure, we may

argue that both the neural and perturbed systems are similar dynamical approximations of

the original driving system.

4 Dealing with Experimental Time Series

The above ideas can be applied in a great variety of domains where nonlinear time series

associated with problems of interest are available. However, a common problem with many

of these time series is that they only represent a single scalar measurement of the system.

For instance, Figure 6 shows a time series corresponding to a single scalar measurement

(the intensity) of a NH3 infrared laser (this time series was used in the Santa Fe time series

prediction competition [20]).

When the time series is obtained by sampling a single coordinate, say x, one can still

obtain a faithful phase-state representation of the dynamics by considering, for example,

the delay reconstruction space method [7] and taking as new coordinates the values xi,

xi−τ , xi−2 τ , . . . , xi−d τ , where the parameters τ (the delay factor) and d (the dimension of

the delay embedding space) can be obtained from the time series. Using the mutual in-

formation of the time series we obtained a value τ = 10 and applying the method of false

neighbors we obtained a value d = 6. Therefore, we considered a NN with 6 input neurons,

(xn−10, xn−20, . . . , xn−60), and a single output neuron xn for approximating the dynamical sys-

tem underlying the time series. Figure 6 shows the training errors obtained with a 6 : 5 : 5 : 1

neural network.

In order to check the similarity of the obtained neural model with the original dynamical

system associated with the evolution of the time series, we consider the synchronization

criterion given in the previous section. Since a single variable is available, we consider a

modified synchronization algorithm [21] which injects a convex combination εv1 + (1− ε)v2

of the master and slave systems as driving signal, thus keeping the dimensionality of the

slave system (this method reduces to Pecora-Carroll when ε = 0).
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Figure 7: Synchronization of the laser time series and the neural model; the dashed line
indicates the point where the synchronization algorithm is switched on.



Figure 7 shows the result obtained when applying the above algorithm using the laser

time series as master system and the neural model as slave. This figure clearly shows that

synchronization is quickly achieved, indicating that the neural model is a good approximation

of the dynamical system underlying the data.
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