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Abstract 18 

 19 

Learning occurs when an outcome differs from expectations, generating a reward prediction 20 

error signal (RPE). The RPE signal has been hypothesized to simultaneously embody the 21 

valence of an outcome (better or worse than expected) and its surprise (how far from 22 

expectations). Nonetheless, growing evidence suggests that separate representations of the 23 

two RPE components exist in the human brain. Meta-analyses provide an opportunity to test 24 

this hypothesis and directly probe the extent to which the valence and surprise of the error 25 

signal are encoded in separate or overlapping networks. We carried out several meta-26 

analyses on a large set of fMRI studies investigating the neural basis of RPE, locked at 27 

decision outcome. We identified two valence learning systems by pooling studies searching 28 

for differential neural activity in response to categorical positive-vs-negative outcomes. The 29 

first valence network (negative > positive) involved areas regulating alertness and switching 30 

behaviors such as the midcingulate cortex, the thalamus and the dorsolateral prefrontal 31 

cortex whereas the second valence network (positive > negative) encompassed regions of 32 

the human reward circuitry such as the ventral striatum and the ventromedial prefrontal 33 

cortex. We also found evidence of a largely distinct surprise-encoding network including the 34 

anterior cingulate cortex, anterior insula and dorsal striatum. Together with recent animal 35 

and electrophysiological evidence this meta-analysis points to a sequential and distributed 36 

encoding of different components of the RPE signal, with potentially distinct functional roles. 37 
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Introduction 39 

 40 

Effective decision-making depends upon accurate outcome representations associated with 41 

potential choices. These representations can be defined through reinforcement learning (RL) 42 

[Rescorla and Wagner, 1972; Sutton, 1998], a modelling framework that uses the reward 43 

prediction error (RPE), the difference between actual and expected outcomes, as a learning 44 

signal to update future outcome expectations. In this framework, RPE is a signed quantity 45 

and learning is driven by two separate components of the RPE signal: its valence (i.e. the 46 

sign of the RPE, representing whether an outcome is better [+] or worse [-] than expected) 47 

and its surprise (i.e. the modulus of the RPE, representing the degree [high or low] of 48 

deviation from expectations). Whereas the valence informs an agent whether to reinforce or 49 

extinguish a certain behaviour [Fouragnan et al., 2015; Fouragnan et al., 2017; Frank et al., 50 

2004], the surprise component determines the extent to which the strength of association 51 

between outcome and expectations needs to be adjusted [Collins and Frank, 2016; Niv et 52 

al., 2015; den Ouden et al., 2012].  53 

 54 

This modelling framework has received considerable attention in neuroscience since the 55 

early 90’s when animal neurophysiological studies identified dopaminergic neurons in the 56 

midbrain, in particular in the ventral tegmental area (VTA), the substantia nigra pars 57 

compacta (SNc) and reticulata (SNr), whose tonic response profile appears to 58 

simultaneously capture both components of the RPE signal outlined above [Montague et al., 59 

1996; Schultz et al., 1993; Schultz et al., 1997]. Specifically, these neurons show 60 

anticipatory increase and suppression of their tonic activity in response to positive and 61 

negative RPE respectively. While the anticipatory increase is proportional to the magnitude 62 

of positive RPE, the magnitude of negative RPE is encoded by the duration of the basal 63 

tonic suppression.  64 

  65 
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This discovery was a breakthrough in the field of learning and decision making and has 66 

continued to be influential in the field over the past two and half decades (see [Schultz, 67 

2016a; Schultz, 2016b] for a review). As a result, this neurophysiological work has strongly 68 

motivated human functional magnetic resonance imaging (fMRI) research to identify the 69 

corresponding macroscopic Blood-Oxygen-Level-Dependent (BOLD) pattern of the signed 70 

RPE. This pattern of activity was expected to be such that the strength of the BOLD would 71 

proceed from high positive RPEs > low positive RPEs > low negative RPEs > high negative 72 

RPEs. More specifically, studies have employed a model-based fMRI approach, whereby 73 

different types of reinforcement-learning models are first fitted to subjects’ behavior to yield 74 

parametric predictors for signed RPE against which fMRI data are subsequently regressed 75 

[Daw et al., 2011; Fouragnan et al., 2013; Gläscher et al., 2010; O’Doherty et al., 2004; 76 

O’doherty et al., 2007; Queirazza et al., 2017].  77 

 78 

These fMRI studies have employed different algorithms to derive the signed RPE, ranging 79 

from the simple formulation of the temporal difference learning algorithm to incorporating 80 

action learning, notably using the Q-learning and SARSA (‘state, action, reward, state, and 81 

action’) algorithms [Schonberg et al., 2010; Seymour et al., 2007; Tanaka et al., 2006]. 82 

According to qualitative reviews of this previous findings [O’doherty et al., 2007] as well as 83 

quantitative, coordinate-based meta-analyses of these studies, the regions correlating with 84 

the different formulations of signed RPE have been found to be predominantly subcortical, 85 

including the striatum and amygdala, with some cortical regions, such as the ventromedial 86 

prefrontal cortex and the cingulate cortex also reported [Bartra et al., 2013; Garrison et al., 87 

2013; Liu et al., 2011]. Additionally, substantial effort has been undertaken to identify how 88 

different types of outcomes (primary reward such as food, or secondary reward such as 89 

monetary outcomes) can modulate signed RPE in the same regions and the extent to which 90 

it can be considered a domain-general, common currency signal [Sescousse et al., 2013].  91 

 92 
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While using trial-by-trial estimates of signed RPE from reinforcement-learning models has 93 

provided an enormously productive framework for understanding learning and decision-94 

making, a growing number of studies have also discussed the complementary role of 95 

surprise, namely the unsigned RPE, which can also be estimated at the single-trial level. 96 

These include, but are not limited to, the use of trial-by-trial estimates of the modulus of RPE 97 

or Bayesian surprise according to Bayesian learning theory [Hayden et al., 2011; Iglesias et 98 

al., 2013]. Additionally, human electroencephalography (EEG) studies, attempting to offer a 99 

temporal account of the cortical dynamics associated with RPE processing, did not find a 100 

systematic monotonic response profile consistent with a single RPE representation but 101 

instead offered evidence suggestive of separate representations for valence and surprise at 102 

the macroscopic level of responses recorded on the scalp. Specifically, multiple recent EEG 103 

studies combining model-based RPE estimates with single-trial analysis of the EEG revealed 104 

an early outcome stage reflecting a purely categorical valence signal and a later processing 105 

stage reflecting separate representations for valence and surprise [Fouragnan et al., 2015; 106 

Fouragnan et al., 2017; Philiastides et al., 2010b]. These later valence and surprise signals 107 

appeared in spatially distinct but temporally overlapping EEG signatures.  108 

 109 

These findings suggest that, in addition to the fully monotonic firing pattern of midbrain 110 

neurons, there exist individual representations for valence and surprise, potentially 111 

subserving different functional roles during reward-based learning (e.g. approach-avoidance 112 

behavior and the speed of learning via varying degrees of attentional engagement, 113 

respectively). Here, we conducted an fMRI meta-analysis to explore the possibility that there 114 

exist separate neuronal representations encoding valence and surprise promoting reward 115 

learning in humans. We discuss the findings of our work in the context of recent reports from 116 

animal neurophysiology and human neuroimaging experiments that provide evidence 117 

towards a distributed coding of the different facets of the RPE signal [Brischoux et al., 2009; 118 

Fouragnan et al., 2015; Fouragnan et al., 2017; Matsumoto and Hikosaka, 2009].  119 

Page 5 of 52

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   6 

 120 

Materials and Methods 121 

 122 

Literature search. We selected fMRI studies using the Pubmed database 123 

(http://www.ncbi.nlm.nih.gov/pubmed) with the following search keywords: “(fMRI OR 124 

neuroimaging) AND (prediction error OR reward OR surprise)” along with three initial filters 125 

preselecting studies in which participants were human adults of over 19 years of age and 126 

excluding reviews. This initial selection resulted in 724 candidates for inclusion to which a 127 

further twenty papers were added from existing in-house reference libraries. Note that 128 

previous meta-analyses used the terms "prediction error" or "reward" but we are the first to 129 

include "surprise" in our systematic search for relevant papers [Bartra et al., 2013; Garrison 130 

et al., 2013; Sescousse et al., 2013]. 131 

 132 

Abstracts from the 788 candidate-papers identified were then evaluated for inclusion in the 133 

corpus according to the following criteria. We required studies of healthy human adults, 134 

reporting changes in BOLD as a function of three different components of RPE: the 135 

categorical valence, surprise and signed RPE, including statistical comparisons either in the 136 

form of binary contrasts or continuous parametric analyses. Because the main objective of 137 

the present meta-analysis is to examine the neural coding of RPE processing at decision 138 

outcome, we also imposed the restriction that fMRI analyses were time-locked to the 139 

presentation of outcomes (feedback). We used studies involving outcomes consisting of 140 

abstract points, monetary payoffs, consumable liquids and arousing pictures but excluded 141 

papers in which outcomes consisted of social feedback. We also required that studies used 142 

functional brain imaging and did not use pharmacological interventions and ensured that the 143 

reported coordinates were either in Montreal Neurological Institute (MNI) or Talairach space. 144 

Finally, we excluded papers in which results were derived from region of interest (ROI) since 145 

our meta-analytic statistical methods assume that foci are randomly distributed in the whole 146 

brain under the null hypothesis. After applying these constraints our meta-analysis 147 
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comprised 102 publications with a total of 2316 participants, 144 contrasts, and 991 148 

activation foci. The number of participants per study ranged from 8 to 66 (median = 24, 149 

interquartile range [IQR] = 7).  150 

 151 

Study categorization. The goal of this meta-analysis was to separately categorize studies 152 

along the three components of RPE, locked at time of outcome, in order to: 1) identify the 153 

extent to which there exist distinct neural representations for valence and surprise and 2) 154 

identify whether the neural correlates of the signed RPE simply intersect those of valence 155 

and surprise (possibly due to colinearities across these components) or appear as unique 156 

clusters of activation reflecting the true combined influence of the two measures.      157 

 158 

To group the relevant papers according to the three main RPE components we used the 159 

following definitions: 1) valence represents the sign of the RPE and as such it is positive 160 

when an outcome is better than expected and negative when worse than expected, 2) 161 

surprise represents the absolute degree of deviation from expectations and is treated as an 162 

unsigned quantity and 3) signed RPE simultaneously reflects the influence of both valence 163 

and surprise and appears as a fully signed parametric signal. According to these definitions, 164 

we identified several fMRI statistical analyses conducted in the original studies that fall under 165 

each of the three RPE components (Table 1). The main assumptions of these fMRI 166 

analyses, with regard to the BOLD signal as a function of each RPE component, are 167 

presented schematically in Figure 1.  168 

 169 

[Figure 1] 170 

  171 

For the valence components, the literature has looked at neural responses which vary 172 

categorically along positive-negative axes, as represented in patterns A (i) and (ii) of Figure 173 

1. We therefore extracted activations exhibiting a relative BOLD signal increase for negative 174 

relative to positive outcomes (NEG > POS: pattern A (i)) and greater BOLD for positive 175 
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relative to negative outcomes (POS > NEG: pattern A (ii)), respectively. We considered six 176 

types of fMRI statistical comparisons which reported coordinate results from either: (1) a 177 

contrast associated with negative > positive outcomes, (2) a contrast associated with 178 

negative > no outcomes, (3) a negative correlation with a trial-by-trial regressor modulated 179 

by [+1] for positive outcomes and [-1] for negative outcomes, (4) the positive correlation with 180 

the regressor described in (3), (5) a contrast associated with positive > negative outcomes 181 

and (6) a contrast associated with positive > no outcomes. We grouped results from 182 

contrasts 1-3 (i.e. NEG > POS) and contrasts 3-6 (i.e. POS > NEG) to capture regions 183 

yielding greater BOLD activity for negative relative to positive outcomes and a greater 184 

activity for positive relative to negative outcomes respectively (Table 1).  185 

 186 

While the fMRI literature on RPE processing has produced a large amount of theoretical and 187 

empirical evidence for the valence and the signed RPE components, comparatively little has 188 

been done to directly investigate surprise as a separate component. Fewer studies have 189 

used fMRI regressors that were parametrically modulated by trial-to-trial changes in surprise 190 

using the unsigned RPE [Fouragnan et al., 2017; Hayden et al., 2011; Iglesias et al., 2013]. 191 

These studies used the terms "surprise", "unsigned RPE", or outcome "salience" to refer to 192 

the mathematical modulus of RPE from computational learning models. In addition to these 193 

papers, our literature search has revealed a number of other measures (see below), which 194 

are highly correlated with outcome surprise, as defined by learning theory. We therefore 195 

used these measures as proxies of surprise to gain insights into the spatial extent of the 196 

relevant neural responses and the degree to which they overlap with those associated with 197 

valence.  198 

 199 

Specifically, a recent line of research has investigated the neural basis of “Bayesian 200 

surprise” or “volatility”, computed as the direct modulus of Bayesian predictive error [Ide et 201 

al., 2013; Iglesias et al., 2013; Mathys et al., 2014; O’Reilly et al., 2013] which correspond to 202 

the absolute difference between categorical outcomes and the probabilistic expectation of 203 
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these outcomes, estimated using Bayesian inference. In the framework of Bayesian learning, 204 

the absolute Bayesian RPE plays an important role in learning from rapid changes in 205 

behavioral exploration [Courville et al., 2006]. Finally, other studies used the term 206 

“associability” which is a parameter in the Pearce-Hall model [Hall and Pearce, 1979; Pearce 207 

and Hall, 1980] defined as the degree of divergence between an actual outcome and the 208 

original expectation (e.g., the associative strength between a choice and an outcome). We 209 

note however, that in the RL framework, associability can also refer to the learning rate. It is 210 

clear from these reports that there is a lack of consistent terminology to refer to unsigned 211 

RPE, which emphasizes the need for a more unified framework for studying RPE 212 

processing.  213 

 214 

To test for consistencies in the neuronal responses across these different reports, and 215 

provide initial support for a unified representation of surprise, we grouped fMRI analyses 216 

which reported outcome-locked activations resulting from: (1) a positive correlation with a 217 

trial-by-trial regressor of the modulus (unsigned) RPE resulting from RL models across both 218 

positive and negative outcomes ("surprise" or "unsigned RPE"), (2) a positive correlation 219 

with a trial-by-trial regressor of the unsigned RPE resulting from Bayesian modelling 220 

("Bayesian Surprise" or "volatility"), (3) a positive correlation with a trial-by-trial regressor of 221 

the free parameter of the Pearce-Hall model ("associability" term), (4) a contrast associated 222 

with (high positive outcomes and high negative outcomes) > (low positive outcomes and low 223 

negative outcomes OR no outcomes, (5) a positive correlation with a parametric regressor of 224 

surprising positive RPE alone and (6) a positive correlation with a parametric regressor of 225 

surprising negative RPE alone (Table 1). Figure 1 illustrates the hypothesized pattern of 226 

BOLD signal predicted by these contrasts (pattern B), exhibiting a V shaped response profile 227 

that is maximal for both highly surprising negative and positive RPEs. Despite possible 228 

subtle differences in the definition of these measures we expected that only foci consistently 229 

correlating with deviations from reward expectations would be revealed in this analysis. 230 

 231 
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One reason the surprise component has not been looked at closely in isolation is because 232 

the literature has focused primarily on signed RPE representations instead. This approach 233 

was motivated by neurophysiology experiments showing monotonic responses as a function 234 

of both valence and surprise and by a theoretical framework suggesting that learning is 235 

driven by a single signed RPE representation. To identify the spatial extent of these 236 

representations we also looked at fMRI data reporting positive correlations with signed RPE 237 

(negative correlation were discarded). Specifically, we combined four types of fMRI 238 

analyses, which estimated trial-by-trial signed RPE from different computational models. We 239 

used fMRI reports from (1) model-free and (2) model-based RL methods. Model-free 240 

methods include Markov Chain Monte Carlo and temporal difference methods [Samson et 241 

al., 2010; Seymour et al., 2007]. Model-based methods include dynamic programming and 242 

certainty equivalent methods [Daw et al., 2005; Doya et al., 2002]. More on these algorithms 243 

can be found in the review by [Kaelbling et al., 1996]. We also included continuous 244 

parametric analyses using trial-by-trial signed RPE from (3) Bayesian RL framework 245 

described above [Iglesias et al., 2013; Mathys et al., 2014; den Ouden et al., 2012]. Finally, 246 

our analysis for signed RPE also contained one type of parametric analysis that employed 247 

fixed RPE values (not estimated from RL models) ranked on a scale such that (4) high 248 

positive RPEs > low positive RPEs > low negative RPEs > high negative RPEs (Table 1). 249 

Figure 1 illustrates the hypothesized pattern of BOLD signal predicted by these contrasts 250 

(pattern C) and it is assumed to increase linearly as a function of signed RPE.  251 

 252 

Crucially, we note that an issue requiring closer scrutiny pertains to the difficulty in 253 

disambiguating the signed RPE pattern of activity from those associated with valence and 254 

surprise. Specifically, pattern C (signed RPE) is generally highly correlated with pattern A (ii), 255 

(POS > NEG valence) and in studies in which only positive RPEs are considered, pattern C 256 

(signed RPE) and pattern B (surprise) are perfectly correlated. Nonetheless, comparing 257 

clusters of activations across the three RPE components could potentially reveal whether or 258 

not there exist unique clusters of activations associated with signed RPE. 259 
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 260 

[Table 1] 261 

 262 

2.1. Activation Likelihood Estimation (ALE) analysis 263 

 264 

We conducted the meta-analysis using the GingerALE software (version 2.3.6) [Eickhoff et 265 

al., 2009] that employs a revised (and rectified [Eickhoff et al., 2017]) version of the 266 

activation likelihood estimation (ALE) algorithm [Laird et al., 2005; Turkeltaub et al., 2002], 267 

which identifies common areas of activation across studies. This method performs 268 

coordinate based meta-analysis which considers each reported foci as a 3D Gaussian 269 

probability distribution, centred at the coordinates provided by each study reflecting the 270 

spatial uncertainty associated with each reported set of coordinates. Note that each contrast 271 

provided to the ALE algorithm is treated as a separate experiment. The probabilities 272 

distributions are then combined to create a modelled activation map, namely an ALE map for 273 

that contrast. Studies are weighted according to the number of subjects they contain by 274 

adjusting the full width at half maximum of the Gaussian distributions. The convergence of 275 

results across the whole brain is obtained by computing the union of all resulting voxel-wise 276 

ALE scores. To distinguish meaningful convergence from random noise, statistics are 277 

computed by comparing ALE scores with an empirical null-distribution representing a 278 

random spatial association between studies. To infer true convergence, a random-effect 279 

inference is applied to capitalize on the differences between studies rather than between foci 280 

within a particular study. The null-hypothesis is modelled by randomly sampling voxels from 281 

each of the ALE maps from which the union is obtained. The ALE maps are assessed 282 

against the null distribution using a cluster level threshold of specific p-values. Contrast 283 

analyses between categories of the entire dataset are determined by ALE subtraction 284 

method, including a correction for differences in sample size between the categories. 285 

 286 
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Here, we manually extracted all coordinates from the studies shown in Table 1 and entered 287 

them into separate files for each of the three RPE components in preparation for the ALE 288 

analyses. Any studies that provided coordinates in Talairach space were converted into MNI 289 

space by the Matlab (MathWorks, Natick, Massachusetts) function tal2mni in the fieldtrip 290 

toolbox [Oostenveld et al., 2011]. We conducted ALE analyses for each of the three 291 

components of RPE individually. Along the valence component, we looked at both patterns A 292 

(i) and A (ii) in Figure 1 (i.e. to identify activations for negative > positive RPE and vice 293 

versa, respectively). Accordingly, we ran separate ALE analyses for each of the two 294 

patterns. In addition, we performed two conjunction analyses – one between the valence and 295 

surprise components to investigate our hypothesis of largely separate neural representations 296 

and another between all three RPE components to identify regions that simultaneously 297 

encode these representations. Subsequently, we also performed all possible pairwise 298 

contrast analyses between the three patterns (A, B and C), using the individual maps 299 

associated with each pattern. 300 

A total of 402 foci from 66 contrasts were used with 262 foci from 31 contrasts for Pattern A 301 

(i) revealing BOLD patterns greater for negative than positive outcomes and 205 from 35 302 

contrasts for Pattern A (ii) (e.g. the opposite contrast). For the surprise (Pattern B) and 303 

signed RPE (Pattern C) analyses, we applied individual ALE analyses, with 284 foci from 40 304 

contrasts for surprise and 240 foci from 38 contrasts for signed RPE. Overall, the number of 305 

contrasts used for each separate outcome component was large enough (> 30) to allow 306 

sufficient power for the required statistical tests [Eickhoff and Etkin, 2016]. Finally, we 307 

transformed the resulting ALE maps from the Colins MNI individual brain space 308 

(Colin27_T1_seg_MNI) to the MNI normalized brain space (MNI ICBM152 template) by 309 

applying an affine transformation using the FSL flirt program [Jenkinson et al., 2002], prior to 310 

overlaying onto the canonical MNI template for visualization.  311 

 312 

3. Results 313 
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 314 

All coordinates used for the following ALE analyses were collated from fMRI studies in which 315 

the components of RPE have been regressed onto BOLD activity time-locked to outcome 316 

presentation. We report ALE maps with clusters surviving the False Discovery Rate (FDR) 317 

yielding two p-value thresholds. The most conservative FDR correction yields a p-value with 318 

no assumptions about how the data is correlated (FRN), and the least conservative FDR 319 

correction assumes independence or positive dependence (FID) with p < 0.05 and a 320 

minimum volume clustering value of 50 mm3. Note that, using a cluster-level family-wise 321 

error (FWE) correction implemented with a cluster-extent threshold of p < 0.05 and a cluster-322 

forming threshold of p < 0.001 revealed virtually identical results (compared with FRN) 323 

[Eickhoff et al., 2017] as per previous reports [R Garrison et al., 2017]. For all tables 324 

presenting ALE cluster results, the size of each cluster is provided in mm3 along with the 325 

associated MNI coordinates and maximum ALE score. The ALE score indicates the relative 326 

effect size for each peak voxel within each ALE analysis.  327 

 328 

3.1. Outcome Valence 329 

 330 

The first two ALE analyses were conducted to identify regions in which BOLD signals 331 

correlate with outcome valence. Specifically, we looked at activations that yielded greater 332 

BOLD for negative relative to positive outcomes (NEG > POS; pattern A (i) in Figure 1) and 333 

greater BOLD for negative relative to positive outcomes (POS > NEG; pattern A (ii) in Figure 334 

1), respectively. Accordingly, we considered all fMRI studies, which assumed BOLD 335 

responses varying categorically along a positive-negative axis for outcome valence. 336 

  337 

The findings of the two valence ALE analyses are shown in Figure 2. The resulting maps 338 

revealed a highly distributed network of brain activations encompassing several cortical 339 

regions and sub-cortical structures. More precisely, NEG > POS valence clusters were found 340 
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in a network encompassing the anterior and dorsal part of the mid-cingulate cortex (aMCC 341 

and dMCC) including the pre supplementary motor area (pre-SMA), the bilateral anterior and 342 

middle insular cortex (aINS, mINS), the bilateral dorsolateral prefrontal cortex (dlPFC), the 343 

bilateral thalamus, right amygdala, left inferior parietal lobule (IPL) and the habenula.  344 

 345 

POS > NEG valence clusters were found in the bilateral ventral striatum (vSTR), the 346 

ventromedial prefrontal cortex (vmPFC), the posterior part of the cingulate cortex (PCC), as 347 

well as the ventrolateral orbitofrontal cortex (vlOFC). At a lower threshold (uncorrected p-348 

value of 0.001), we also found the midbrain as part of this network, encompassing the VTA, 349 

which is commonly associated with the delivery of reward [D’Ardenne et al., 2008]. Table 2 350 

contains the complete list of regions, coordinates, and statistics of these two ALE analyses.  351 

 352 

[Figure 2], [Table 2] 353 

 354 

3.2. Surprise 355 

 356 

FMRI investigations of RPE have focused primarily on the valence components while 357 

neglecting potential contributions from possible separate representations along the surprise 358 

component, defined as the degree by which outcomes deviate from expectations and 359 

mathematically expressed as the modulus of RPE. A major goal of this work was to explore 360 

the possibility that there exist largely separate neuronal representations encoding surprise. 361 

To this end, we conducted a new ALE analysis in which the few empirical fMRI studies 362 

making use of the surprise from RL models were combined with other fMRI measures 363 

correlated with the surprise as defined by RL models (Table 1).  364 

 365 

Figure 3 shows the areas in which BOLD signal correlated with surprise. We found evidence 366 

for activations in a distributed network encompassing the aMCC, dMCC, the pre-SMA the 367 

bilateral dorsal striatum (dSTR), the bilateral aINS, the MTG and the midbrain. Crucially, this 368 
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activation map shows that the neural network associated with surprise is largely distinct from 369 

that of valence. This finding provides initial support for the notion that these two RPE 370 

components are encoded in separate brain areas and, as such, they might be contributing 371 

individually to promote learning. The full results of the surprise ALE analysis are also 372 

summarized in Table 3. 373 

 374 

[Figure 3], [Table 3] 375 

 376 

3.3. Valence and surprise conjunction and contrast analyses 377 

 378 

The activation maps for valence (NEG > POS and POS > NEG) and surprise ALE analyses 379 

conducted above revealed little overlap between the spatial representations of these two 380 

RPE components. To formally quantify the degree of overlap between the valence and 381 

surprise networks, we next ran a conjunction analysis between the two components. The 382 

statistical map resulting from this conjunction analysis and the two separate statistical maps 383 

of valence and surprise (as already reported in Figures 2 and 3) are overlaid in Figure 4.  384 

 385 

[Figure 4], [Table 4] 386 

 387 

Contrast analyses were conducted for each possible pairing between any dimensions of 388 

valence (POS > NEG [positive]; NEG > POS [negative] and POS + NEG [all valence]) and 389 

surprise. These analyses allowed us to identify the areas that were unique and specific to 390 

each individual outcome and RPE-related component. The positive valence (pattern A (ii)) 391 

minus surprise (pattern B) contrast revealed two main clusters in the vSTR and vmPFC 392 

whereas the reverse contrast revealed a network of clusters including preSMA, aINS, and 393 

MTG. Contrasting negative valence (pattern A (i)) and surprise also exposed separate 394 

networks of areas for each subtraction. Specifically, this contrast revealed a network 395 

encompassing the thalamus, the habenula, the right mINS and the dMCC, whereas the 396 
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reverse contrast showed clusters in the dorsal portion of the STR and the dlPFC. The 397 

statistical maps resulting from these contrast analyses are presented in Figure 5.  398 

 399 

[Figure 5], [Table 5] 400 

 401 

3.4. Signed RPE 402 

 403 

A major goal of this work was to investigate the spatial profile of the signed RPE component 404 

and to scrutinise more closely the extent to which it overlaps with the separate 405 

representations identified for valence (NEG > POS and POS > NEG) and surprise. The 406 

fMRI-RPE literature has focused on this component largely due to neurophysiological 407 

evidence suggesting that RPE-like learning is driven by a single, theoretically unified 408 

representation of both POS > NEG valence and surprise (Table 1).  409 

 410 

Results from this ALE analysis revealed very few unique activations for signed RPE 411 

compared to valence and surprise. Instead, brain areas identified in this analysis overlapped 412 

mostly with areas appearing in the POS > NEG valence component and, to a lesser extent, 413 

surprise (Figure 6). Specifically, a large overlap between signed RPE and the POS > NEG 414 

valence component was found in the STR and a smaller one in the vmPFC. Similarly, areas 415 

appearing in the singed RPE analysis that overlapped with the surprise component were 416 

also found, albeit only in small clusters comprising the aMCC and dorsal STR. Taken 417 

together, these findings emphasize the potential collinearities between the BOLD predictors 418 

used to identify neural representations associated with the three RPE components and 419 

highlight the need for developing a methodology for properly disentangling their individual 420 

contributions.  421 

 422 

[Figure 6], [Table 6] 423 

 424 
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3.5. Putting it all together 425 

 426 

Subsequently, to formally test for the overlap between all three RPE components and 427 

identify potential regions integrating valence and surprise either into a signed RPE 428 

representation or a linear superposition of the two signals [Fouragnan et al., 2017], we 429 

performed a conjunction analysis between the valence (pattern A), the surprise (pattern B) 430 

and signed RPE (pattern C) signals. We summarize our conjunction results in Figure 7, 431 

which revealed a major overlap between all activations associated with signed RPE and 432 

each of the other two RPE representations in the central part of the STR. Thus, one 433 

possibility is that the STR meets the requirement that a full monotonic representation of the 434 

error signal also simultaneously encodes valence and surprise, as per our last ALE analysis. 435 

 436 

[Figure 7] 437 

 438 

Another possibility is that the overlap between all components of outcomes in the STR is 439 

arising, at least in part, due to collinearities across the different outcome representations, 440 

particularly between the positive categorical nature of outcome valence (pattern A (ii)) and 441 

the signed RPE. To formally test this hypothesis, we performed a new series of contrast 442 

analyses between signed RPE and all dimensions of categorical valence and surprise. 443 

Particularly, we performed contrast analyses between patterns C-A(i), C-A(ii), C-A and C-B 444 

(and vice versa). The results are summarized in Figure 8. Particularly, we did not find any 445 

area unique to signed RPE when looking at each of the individual comparisons of signed 446 

RPE with the other three patterns. In fact, when comparing signed RPE to positive valence 447 

(pattern A (ii)), no clusters were found to be significantly different than those found with the 448 

categorical outcome valence (POS > NEG). Conversely, the STR was found for all the other 449 

signed RPE comparisons (signed RPE > negative; signed RPE > surprise). Finally, the 450 

unique network related to negative valence (pattern A (i)) was found in the dMCC, thalamus 451 
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and mINS, the unique cluster related to positive valence was found in the vmPFC and the 452 

unique network related to surprise was found in the aMCC, preSMA and the aINS.   453 

 454 

[Figure 8], [table 7] 455 

 456 

Discussion 457 

 458 

In this fMRI meta-analysis work, we demonstrated that reward learning in humans involves 459 

separate neuronal signatures of RPE, comprising distinct representations for valence and 460 

surprise. Together with recent neurophysiological and EEG evidence (including studies 461 

using simultaneous EEG and fMRI), these findings point to a potentially sequential and 462 

distributed encoding of different RPE components with potentially functionally distinct roles. 463 

 464 

Valence networks 465 

 466 

The ALE analyses related to valence revealed two distributed set of activations correlating 467 

with both pattern A (i) and (ii) in Figure 1. Foci for which the BOLD signal was greater for 468 

negative than positive outcomes showed significant clustering in a large network of areas 469 

including the thalamus, the aMCC and dMCC, the aINS, mINS and the dlPFC. Conversely, 470 

foci for which the BOLD signal was greater for positive than negative outcomes showed 471 

significant clusters in a separate network including vmPFC, vSTR, PCC, and vlOFC. These 472 

findings clearly suggest the presence of multiple systems responding to the categorical 473 

nature of valence which supports the notion that separate valuation systems shape learning 474 

in the human brain [Fiorillo, 2013; Fouragnan et al., 2013], although their functional role 475 

remain debated. More specifically, the debate focuses on the number and exact nature of 476 

the neural systems assigning value to decision outcomes and driving behaviors that are 477 

evolutionarily appropriate in response to changes in the environment.  478 

 479 
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A first theory describes two distinct valence systems invoking two orthogonal axes of 480 

decision-making: alertness (involving the implementation of action) and learning (including 481 

the updates of value expectations for future avoidance and approach behaviors). In this 482 

framework, the first system is thought to monitor on-going activity and interrupt it when 483 

needed to trigger switching behaviors (e.g. following negative RPEs). In contrast, the second 484 

system uses both negative and positive RPE values for decreasing or increasing internal 485 

value representations associated with decisions to ultimately drive avoidance and approach 486 

learning, respectively [Boureau and Dayan, 2011; Cools et al., 2011; Elliot, 2006; Fiorillo, 487 

2013; Fouragnan et al., 2015; Gray and McNaughton, 2003; Guitart-Masip et al., 2012]. 488 

 489 

A second (not mutually exclusive) proposition supports the idea that there are at least two 490 

separate systems responsible for aversive and appetitive reinforcements such that 491 

punishments and rewards are encoded separately (i.e. a punishment space and a reward 492 

space [Morrens, 2014]). This proposition was developed on the basis of neurophysiological 493 

evidence showing that different types of neurons exhibit differential activity in response to 494 

punishing vs. non-punishing outcomes and rewarding vs. non-rewarding outcomes, 495 

respectively [Fiorillo et al., 2003; Fiorillo, 2013; Schultz et al., 1992; Schultz, 1998]. In this 496 

second theory, the punishment space is responsible for avoidance behaviors as well as 497 

avoidance learning and the reward space is responsible for approach behaviors and 498 

approach learning. 499 

 500 

It is noteworthy that our meta-analysis on itself cannot directly distinguish between the two 501 

theories because the results do not reveal whether the relevant activations respond 502 

exclusively to either positive or negative outcomes or are modulated by both outcomes in 503 

opposite directions. This distinction is critical because the former response profile would 504 

suggest the presence of separate approach and avoidance systems that might not 505 

necessarily be linked to the learning processes as such, while the latter might point to both 506 

up- and down-regulation of activity consistent with learning and updating of reward 507 
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expectations. Nonetheless, the meta-analysis results suggest that two main networks 508 

process valence. The network encompassing aINS, aMCC, thalamus and dlPFC could 509 

regulate on-going activity and alertness or could represent the punishment space in 510 

accordance to the first and the second theories respectively. Conversely, the network of 511 

regions encompassing the vmPFC, vSTR, PCC and vlOFC could represent the learning 512 

system depicted in the first theory or could represent the reward space depicted in the 513 

second theory. Further research is required to tease apart the roles of these systems, 514 

especially by investigating their precise response profiles in the appetitive (where rewarding 515 

and non-rewarding outcomes are manipulated) and in a true aversive (where punishing and 516 

non-punishing outcomes are manipulated) domains, respectively.  517 

 518 

Surprise network  519 

 520 

Emerging evidence indicates that the brain encodes the unsigned RPE signal (surprise), 521 

which alerts the organism of relative deviations from expectations, regardless of the outcome 522 

value. However, to date, only few papers have modelled surprise as such to search for 523 

independent neural representations, with the exception of recent neurophysiological 524 

developments [Brischoux et al., 2009; Matsumoto and Hikosaka, 2009], recent EEG work 525 

[Philiastides et al., 2010b; Yeung and Sanfey, 2004] and an increasing number of fMRI 526 

studies [Fouragnan et al., 2017; Gläscher et al., 2010; Li and Daw, 2011; Metereau and 527 

Dreher, 2013]. Nevertheless, other fMRI studies used variables highly correlated with 528 

surprise that can be employed as proxies [Behrens et al., 2007; Iglesias et al., 2013; Nassar 529 

et al., 2012; den Ouden et al., 2012; Yu and Dayan, 2005]. These studies share the 530 

assumption that the corresponding BOLD response profile is maximal for high positive and 531 

high negative RPE and minimal for no RPE, resembling a V-shape, as illustrated with 532 

Pattern B in Figure 1. By combining these fMRI results into a single ALE-analysis, we 533 

expose for the first time the network associated with surprise while stressing the need for a 534 

common lexicon for this learning component to guide subsequent research in the field.  535 
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 536 

The surprise ALE-analysis revealed a large network including cortical and sub-cortical areas 537 

such as aMCC, bilateral aINS, dSTR and midbrain, that differed majoritarily from those of 538 

valence processing although small overlaps were found between the two components at the 539 

junction of ventral and dorsal STR, in left aINS and aMCC. Importantly, the role of surprise is 540 

still a subject of debate. Some studies propose that this network encodes the saliency of an 541 

outcome or how much a stimulus stands out from others [Litt et al., 2011; Zink et al., 2004]. 542 

As such, the surprise system could be considered as a key attentional mechanism that 543 

enables an organism to focus its limited perceptual and cognitive resources on the most 544 

pertinent subset of the available sensory data, similarly to the attentional mechanism used to 545 

guide decisions in the case of salient stimuli [Kahnt and Tobler, 2013]. Consistent with a role 546 

in attention regulation, representations of such signal have been found in lower-level visual 547 

areas [Serences, 2008], lateral intraparietal cortex [Huettel et al., 2006; Kahnt and Tobler, 548 

2013] and areas involved in visual and motor preparation such as the supplementary motor 549 

area [Wunderlich et al., 2009] or the supplementary eye field [Middlebrooks and Sommer, 550 

2012; So and Stuphorn, 2012]. 551 

 552 

In contrast, it has also been suggested that a surprise system can independently monitor 553 

unexpected information and act as a learning signal that allows better predictions of 554 

upcoming events, and help plan appropriate behavioral adjustments [Dayan and Balleine, 555 

2002; Fouragnan et al., 2017; Kolling et al., 2012; Wittmann et al., 2016]. In particular, some 556 

studies suggest that the aINS receives information related to surprise and direct modulation 557 

from the dSTR providing crucial information for behavioral adjustment [Menon and Levitin, 558 

2005]. Along these lines, the surprise signal also captures the essence of a learning signal 559 

that the brain needs to compute to maintain a homeostatic state [Friston et al., 2006; Friston, 560 

2009]. Practically, this means that the brain elaborates internal predictions about sensory 561 

input and updates them according to surprise, a process that can be formulated as 562 

generalized Bayesian filtering or predictive coding in the brain. Finally, still in the framework 563 
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of learning, some authors argue that surprise can also be considered as a signal predicting 564 

the level of risk associated with a future decision outcome, and thus reflect a risk RPE 565 

[Fiorillo et al., 2003; Preuschoff et al., 2008; Rudorf et al., 2012].  566 

 567 

Neuromodulatory pathways encoding multicomponent RPE signals 568 

 569 

Supporting the idea of separate neural systems for valence and surprise, recent 570 

electrophysiological work has revealed both signals existing in neighbouring groups of 571 

neurons. The first study of this kind observed the response of dopaminergic neurons in 572 

ventral and dorsal areas of the SNc and reported two categories of dopamine neurons 573 

[Matsumoto and Hikosaka, 2009]. Some dopamine neurons increase their phasic firing 574 

activity in response to valence while others responded only to the changes in unsigned RPE, 575 

regardless of the valence component. The latter population of neurons was located more 576 

dorsolaterally in the SNc, whilst the neurons encoding valence were located more 577 

ventromedially, including the VTA. Interestingly, the dorsolateral SNc projects mainly to the 578 

dorsal STR, whereas the ventral SNc and VTA project to the ventral STR, which matches 579 

the results of our last conjunction analysis (Figure 7). We found that the only region that 580 

encodes the full monotonic representation of the RPE as well as the separate valence and 581 

surprise components of RPE seems to be the central part of the STR as shown in Figure 7. 582 

This result aligns with the assumption that this region receives direct projections from the 583 

midbrain dopaminergic neurons encoding a fully monotonic signed RPE signal [Schultz et 584 

al., 1997]. Additionally, the meta-analysis also revealed that both the valence (POS > NEG) 585 

and surprise networks include activity in the midbrain, confirming this hypothesis.  586 

 587 

It is important to note that identifying neural activity associated with valence and surprise 588 

signals is challenging because in many experimental paradigms both components are highly 589 

correlated. For example, when positive RPE are manipulated in isolation, valence (POS > 590 

NEG) strongly correlates with surprise. Additionally, whether positive or negative, an 591 
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unexpected outcome attracts more attention, leads to higher levels of emotional arousal and 592 

involves higher levels of motor preparation compared to no RPE [Matsumoto and Hikosaka, 593 

2009; Maunsell, 2004; Roesch and Olson, 2004]. Consequently, to disentangle these 594 

signals, one needs to design tasks in which the level of valence and surprise can 595 

independently be controlled and decoupled [Kahnt, 2017; Kahnt and Tobler, 2013] or 596 

capitalize on the variability of physiologically-derived responses (i.e. endogenous variability) 597 

associated with valence and surprise [Fouragnan et al., 2015; Fouragnan et al., 2017; 598 

Pisauro et al., 2017].  599 

 600 

It is important to note that since the problem of collinearity and functional specificity of some 601 

brain regions is already present in single studies, it will inevitably be carried over to studies 602 

performing conjunction meta-analyses. Virtually every experimental design engages a large 603 

number of cognitive operations and, thereby, activates functional neural networks that may 604 

be irrelevant to a particular regressor (psychological construct) of interest. For example in 605 

our study, regions related to outcome value and surprise might share variance with outcome 606 

confidence [Gherman and Philiastides, 2015; Gherman and Philiastides, 2017; Lebreton et 607 

al., 2015; Philiastides et al., 2014]. Despite this general limitation and the difficulty of 608 

interpreting conjunction results, aggregating results across a large number of experiments 609 

allows one to expose convergence of findings across studies and increasing the 610 

generalizability of the conclusions. In particular, this meta-analysis, capitalizing on both 611 

individual maps of activations as well as contrasts between different outcome components, 612 

points to a distributed encoding of valence and surprise, with potentially distinct functional 613 

roles. 614 

 615 

Temporally specific components of RPE processing 616 

 617 

The presence of separate RPE-related neural systems raises the question of how these 618 

systems unfold in time. Capitalizing on the high temporal resolution of EEG, three recent 619 
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studies using simultaneous EEG-fMRI have started to shed light on the spatiotemporal 620 

characterisation of the RPE components. First, these studies have revealed two temporally 621 

specific EEG components discriminating between positive and negative RPEs peaking 622 

around 220ms and 300ms respectively, largely consistent with the timing of the feedback-623 

related negativity and feedback-related positivity ERP components [Cohen et al., 2007; 624 

Hajcak et al., 2006; Yeung and Sanfey, 2004]. Additionally, the studies also revealed a late 625 

unsigned RPE component which overlaps temporally with the late valence signal 626 

[Philiastides et al., 2010b] but appears in a largely separate and distributed neural network 627 

[Fouragnan et al., 2017].  628 

 629 

Based on these previous studies and the current meta-analysis, we propose that the early 630 

and late EEG valence components might reflect the separate contributions of the two 631 

networks of areas found for the ALE-valence analyses. This proposal assumes that an early 632 

network processes mainly negative RPEs in order to initiate a fast alertness response in the 633 

presence of negative outcomes. Conversely, a later network – associated with the brain’s 634 

reward circuitry – is modulated by both positive and negative RPEs, consistent with a role in 635 

approach/avoidance learning and value updating [Philiastides et al., 2010a]. We also 636 

propose that the surprise network unfolds near simultaneously with the late valence 637 

component and thus influences learning through largely distinct spatial representations of 638 

the two outcomes signals, which happen to form a composite signal in overlapping areas 639 

[Fouragnan et al., 2017].  640 

 641 

Full representation of a monotonic signed RPE signal 642 

 643 

To examine the spatial profile of a true monotonic signed RPE representation in the human 644 

brain, we pooled results from fMRI studies, which hypothesized that RPE-like learning is 645 

driven by a simultaneous representation of both categorical valence and surprise. These 646 
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fMRI studies are based on the influential assumption that BOLD signal increases 647 

monotonically as a function of signed RPE, as illustrated in pattern C (Fig. 1), equivalent to 648 

the teaching signal that is predicted in the Rescorla–Wagner model of RL [Rescorla and 649 

Wagner, 1972]. Additionally, we combined the valence and surprise networks and 650 

subsequently compared it with the signed RPE to test the requirement that the signed RPE 651 

simultaneous encodes both components. This conjunction analysis revealed that the only 652 

brain region that seems to encode a true monotonic signal is the STR in the basal ganglia, 653 

which could explain why such a signal is not tractable with EEG recordings as highlighted 654 

earlier. This result confirms the long standing view that the BOLD activity in STR mirrors the 655 

dopaminergic signalling of the mesolimbic neurons [Delgado et al., 2000; Haber et al., 1995; 656 

O’Doherty et al., 2004; Pagnoni et al., 2002] that fully encode the RL prediction error signal 657 

of the Rescorla-Wagner rule [Ikemoto, 2007; Schultz et al., 1992].  658 

 659 

Nonetheless, the ALE contrast analyses between valence (the positive correlation with 660 

pattern A (ii)) and signed RPE revealed no significant activation, whereas the reverse 661 

contrast revealed a denser cluster of activity in vmPFC for valence than signed RPE. Given 662 

the evidence presented above that the signed RPE may only be encoded in the STR, we 663 

suggest that this result may arise due to collinearities between valence and signed RPE or 664 

surprise and signed RPE. More precisely, a parametric predictor for signed RPE would be 665 

positively correlated with the contrast positive > negative outcomes whereas the signed RPE 666 

and surprise would be perfectly correlated in the positive (appetitive) domain.  667 

 668 

Conclusion 669 

 670 

In conclusion, the current meta-analysis points to a framework whereby heterogeneous 671 

signals are involved in RPE processing. The proposal of a temporally distinct and spatially 672 

distributed representation of valence and surprise is open to debate and many questions 673 

remain about how these signals interact and how they correspond to the computations made 674 
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in the brain. For example, it is currently unclear whether valence and surprise encoding 675 

occur before the computation of the signed RPE, or whether these three computations are 676 

performed in parallel. Nevertheless the taxonomy proposed is conceptually useful because it 677 

breaks down the learning and valuation processes into testable components and organizes 678 

the RPE literature in terms of the computations that are potentially involved.  It will require 679 

additional experiments to validate the current proposal and to better understand the 680 

complexity of RPE processing.  681 

682 
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 1148 

Table 1. Categorisation of fMRI studies into the three RPE components (valence, surprise, 1149 

signed RPE) and broken down by the relevant fMRI contrast/regressor. 1150 

Statistical comparisons Number Total Reference 

Valence 

Pattern A i (NEG>POS) 

 32 [de Bruijn et al., 2009; Daniel et al., 2011; Demos et al., 2012; van Duijvenvoorde 

et al., 2014; Elward et al., 2015; Ferdinand and Opitz, 2014; Fouragnan et al., 

2015; Gläscher et al., 2009; Haruno et al., 2004; Häusler et al., 2016; Jocham et 

al., 2016; Kahnt et al., 2010; Katahira et al., 2015; Klein-Flügge et al., 2011; Klein-

Flügge et al., 2011; Knutson et al., 2000; Knutson et al., 2001; Koch et al., 2008; 

Leknes et al., 2011; Losecaat Vermeer et al., 2014; Marsh et al., 2010; Mattfeld et 

al., 2011; Noonan et al., 2011; O’Doherty et al., 2001; O’Doherty et al., 2003; 

Rodriguez, 2009; Rolls et al., 2008; Scholl et al., 2015; Seymour et al., 2007; 

Spicer et al., 2007; Spoormaker et al., 2011; Ullsperger and Cramon, 2003; 

Yacubian et al., 2006] 

Negative > Positive 19 

Negative > No outcomes 9 

Negative correlation with a 

regressor defining valence RPE 

(with a binary modulation 

whereby positive RPE = 1, and 

negative RPE = -1) 

4 

Valence 

Pattern A ii (POS>NEG) 

 33 [Amiez et al., 2012; Aron et al., 2004; Bickel et al., 2009; de Bruijn et al., 2009; 

Canessa et al., 2013; Daniel et al., 2011; van Duijvenvoorde et al., 2014; Elliott et 

al., 2000; Ernst et al., 2004; Forster and Brown, 2011; Fouragnan et al., 2015; 

Fujiwara et al., 2009; Häusler et al., 2016; Hester et al., 2008; Hester et al., 2010; 

Jocham et al., 2016; Katahira et al., 2015; Knutson et al., 2000; Knutson et al., 

2001; Knutson et al., 2001; Kurniawan et al., 2013; Losecaat Vermeer et al., 

2014; Luking et al., 2014; Paschke et al., 2015; Sarinopoulos et al., 2010; Scholl 

et al., 2015; Schonberg et al., 2010; Seymour et al., 2007; Späti et al., 2014; 

Spoormaker et al., 2011; Ullsperger and Cramon, 2003] 

Positive > Negative 18 

Positive > No outcomes 9 

Positive correlation with a 

regressor defining valence RPE 

(with a binary modulation 

whereby positive RPE = 1, and 

negative RPE = -1) 

6 

Surprise 

Pattern B 

 41 [Allen et al., 2016; Amado et al., 2016; Amiez et al., 2012; Boll et al., 2013; 

Browning et al., 2010; Chumbley et al., 2014; Daw et al., 2011; Dreher, 2013; 

Ferdinand and Opitz, 2014; Forster and Brown, 2011; Fouragnan et al., 2015; 

Fouragnan et al., 2017; Fujiwara et al., 2009; Ide et al., 2013; Iglesias et al., 2013; 

Jensen et al., 2007; Knutson et al., 2001; Kotz et al., 2015; Leong et al., 2017; 

Losecaat Vermeer et al., 2014; Manza et al., 2016; McClure et al., 2003; 

Metereau and Dreher, 2013; Metereau and Dreher, 2015; Meyniel and Dehaene, 

2017; Nieuwenhuis et al., 2005; O’Reilly et al., 2013; den Ouden et al., 2012; 

Poudel et al., 2013; Rodriguez, 2009; Rohe et al., 2012; Rohe and Noppeney, 

2015; Rohe and Noppeney, 2015; Rolls et al., 2008; Schwartenbeck et al., 2016; 

Silvetti and Verguts, 2012; Tobia et al., 2016; Watanabe et al., 2013; Wunderlich 

et al., 2009; Wunderlich et al., 2011; Yacubian et al., 2006; Zalla et al., 2000; 

Zhang et al., 2016] 

Unsigned RPE ("RL surprise") 12 

Unsigned Bayesian RPE 

("Volatility", "Bayesian surprise") 

13 

Positive and Negative outcomes 

> No or low outcomes 

9 

“Associability” term of the 

Pearce et Hall model 

2 

Parametric changes in 

magnitude of surprising positive 

RPE (unsigned) 

3 

Parametric changes in 

magnitude of surprising 

negative RPE (unsigned) 

2 

Signed RPE 

Pattern C  

 38 [Abler et al., 2006; Behrens et al., 2007; van den Bos et al., 2012; Cohen and 

Ranganath, 2007; Daw et al., 2011; Delgado et al., 2000; Delgado, 2007; 

Diederen et al., 2017; Diuk et al., 2013; Dunne et al., 2016; Gläscher et al., 2010; 

Guo et al., 2016; Hare et al., 2008; Ide et al., 2013; Katahira et al., 2015; Leong et 

al., 2017; Li and Zhang, 2006; Lin et al., 2012; Mattfeld et al., 2011; McClure et 

al., 2003; Metereau and Dreher, 2013; Metereau and Dreher, 2015; O’Doherty et 

al., 2003; Pessiglione et al., 2006; Pessiglione et al., 2008; Ribas-Fernandes et 

al., 2011; Rolls et al., 2008; Schlagenhauf et al., 2013; Schonberg et al., 2010; 

Scimeca et al., 2016; Seymour et al., 2007; Takemura et al., 2011; Tanaka et al., 

2004; Tanaka et al., 2006; Valentin and O’Doherty, 2009; Watanabe et al., 2013; 

Wunderlich et al., 2011] 

Signed RPE (from model-free 

RL models) 

16 

Signed RPE  (from model-based 

RL models) 

8 

Signed Bayesian RPE 10 

High positive RPEs > low 

positive RPEs > low negative 

RPEs > high negative RPEs 

4 
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Table 2. ALE cluster results for the valence analysis: Pattern A (i) and (ii) (FDR-ID P < 0.05, 1153 

with a minimum volume cluster size of 50 mm3. 1154 

Region R/L x y z 
Cluster 
size  

ALE 
score 

Pattern A (i) NEG > POS       

Dorsomedial cingulate cortex (dMCC) R 2 24 36 12712 0.051 

Anterior Insula (aINS) R 32 24 -2 6120 0.062 

- L -32 22 -4 4880 0.056 

Pallidum R 12 8 4 3360 0.04 

- L -14 6 2 2520 0.029 

Middle Frontal Gyrus R 38 4 32 3152 0.029 

- R 30 10 56 488 0.021 

- L -28 12 60 104 0.019 

Inferior Parietal Lobule (IPL) R 40 -48 42 2416 0.039 

- L -38 -48 42 2216 0.043 

Middle Temporal Gyrus (MTG) R 60 -28 -6 1192 0.031 

Amygdala  R 18 -6 -12 704 0.024 

Thalamus L -12 -12 10 624 0.025 

- L -6 -26 8 280 0.023 

Habenula R 2 -20 -18 312 0.022 

Dorsolateral Prefrontal Cortex (dlPFC) L -44 28 32 360 0.020 

- R 40 34 30 344 0.020 

Fusiform Area L -40 -62 -10 272 0.023 

Precentral Cortex L -52 0 34 256 0.021 

Dorsomedial Orbitofrontal Cortex 
(dmOFC) 

R 38 58 -2 192 0.020 

Dorsomedial Prefrontal Cortex 
(dmPFC) 

R 20 50 4 120 0.018 

Superior Temporal Sulcus R 58 -42 22 120 0.017 

Pattern A (ii) (POS > NEG)       

Ventral striatum (vSTR) L -12 8 -4 4880 0.052 

- R 8 8 -2 2880 0.038 

Ventromedial Prefrontal Cortex 
(vmPFC) 

L -2 42 0 3416 0.037 

Posterior Cingulate Cortex (PCC) L 0 -32 36 240 0.016 

- L 0 -36 26 88 0.014 

Ventrolateral OFC (vlOFC) R 32 44 -10 144 0.015 

Dorsomedial Prefrontal Cortex 
(dmPFC) 

L -6 -56 14 96 0.016 

Medial Prefrontal Cortex (mPFC) L -2 46 20 88 0.014 

 1155 

  1156 

Page 38 of 52

John Wiley & Sons, Inc.

Human Brain Mapping

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

   39

Table 3. ALE clusters results for the surprise analysis (FDR-ID P < 0.05, with a minimum 1157 

volume cluster size of 50 mm3). 1158 

Region R/L x y z 
Cluster 
size 

ALE 
score 

Anterior mid-cingulate Cortex (aMCC) R 4 24 34 4072 0.029 

Anterior Insula (aINS) R 32 24 -4 2496 0.050 

- L -32 20 -4 1544 0.038 

Inferior Parietal Lobule (IPL)  R 40 -46 42 1672 0.033 

- L -40 -48 42 568 0.025 

Dorsal Striatum (dSTR) R 12 8 4 1400 0.034 

- L -14 10 2 1216 0.021 

Middle Temporal Gyrus (MTG) R 60 -28 -8 648 0.022 

Lateral Inferior Frontal Cortex  R 52 10 18 488 0.025 

Lateral Central Frontal Gyrus  L -44 26 30 392 0.019 

Precentral Gyrus R 48 12 34 360 0.019 

- L -52 0 34 224 0.020 

Midbrain R 2 -20 -18 304 0.021 

Dorsal mid-cingulate cortex (dMCC) R 12 14 42 224 0.019 

Hippocampus R 20 -6 -10 160 0.018 

Fusiform Gyrus L -40 -60 -10 112 0.017 

Mid Occipital Pole L -16 -90 -6 112 0.016 

Superior Temporal Sulcus R 60 -40 20 64 0.015 

 1159 
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Table 4. ALE cluster results for the conjunction analysis of valence and surprise (FDR-ID p < 1161 

0.05, with a minimum volume cluster size of 50 mm3). 1162 

Region R/L x y z 
Cluster 
size 

ALE 
score 

Striatum (STR) R 12 6 4 1082 0.031 

- L -12 12 4 376 0.021 

Anterior Insula (aINS) L -32 20 -6 453 0.018 
Anterior Mid-cingulate cortex 
(aMCC) R 3 22 37 221 0.014 

Inferior Parietal Lobule L 40 -46 42 327 0.014 

 1163 

Table 5. ALE cluster results for the contrast analyses of valence and surprise (FDR-pN p < 1164 

0.05, with a minimum volume cluster size of 50 mm3). 1165 

 1166 

Region R/L x y z 
Cluster 
size 

ALE 
score 

Valence vs. Surprise       

Ventral Striatum (vSTR) L -10 8 -10 1096 3.29 
ventromedial prefrontal cortex 
(vmPFC) L -2 44 0 256 3.29 

Positive vs. Surprise       

Ventral Striatum (vSTR) L -12 -8 -8 1872 3.29 
ventromedial prefrontal cortex 
(vmPFC) R 0 46 0 512 3.29 

Ventral Striatum (vSTR) R 8 8 -6 168 3.29 

Negative vs. Surprise       

Middle Insula (mINS) R 40 10 2 544 3.29 

Mid Cingulate Cortex (MCC) R 6 20 42 144 3.29 

Surprise vs. Valence       

Anterior Insula (aINS) R 32 24 -4 1224 3.29 

Anterior Insula (aINS) L -32 20 -2 112 3.29 

Ventral Tegmental Area (VTA) L -6 -16 -10 96 3.29 

Ventral Tegmental Area (VTA) R 2 -20 -16 72 3.29 

Occipital Lobe R 24 -80 -6 72 3.29 

Surprise vs. Positive       

Anterior Insula (aINS) R 32 22 -2 1648 3.29 

Middle Temporal Gyrus (MTG) R 40 -46 42 1184 3.29 

Anterior Insula (aINS) L -32 22 -2 1016 3.29 

Inferior Frontal Gyrus R 52 10 18 184 3.29 

Supplementary Motor Area (SMA) L -2 12 52 160 3.29 

Surprise vs. Negative       

Angular Gyrus R 40 -46 40 248 3.29 

Anterior Insula (aINS) R 32 28 -6 80 3.29 

Dorsal Striatum (dSTR) R 12 10 2 56 3.29 
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Table 6. ALE clusters results for the signed RPE studies (FDR-ID p < 0.05, with a minimum 1167 

volume cluster size of 50 mm3). 1168 

Region R/L x y z 
Cluster 
size 

ALE 
score 

Striatum (STR) (encompasses left and 
right hemispheres) R 12 10 -4 10888 0.053 

Putamen R 30 -6 8 688 0.024 

Anterior Mid-cingulate Cortex (aMCC) R 6 26 46 160 0.018 

- L -2 14 40 120 0.016 

Anterior Cingulate Cortex (ACC)  R 4 36 20 112 0.017 

Ventromedial prefrontal (vmPFC) L 0 34 0 64 0.015 

Lateral Inferior Frontal Gyrus (lIFC) L -46 4 24 64 0.016 

 1169 

Table 7. ALE cluster results for the contrast analyses of signed RPE and valence as well as 1170 

signed RPE and surprise (FDR-pN p < 0.05, with a minimum volume cluster size of 50 mm3). 1171 

Region R/L x y z 
Cluster 
size 

ALE 
score 

Positive – Signed RPE       

Ventromedial Prefrontal Cortex (vmPFC) R 2 44 -15 160 3.29 

Signed RPE - Positive       

No significant        

Negative – Signed RPE       

Middle Insula (mINS) R 40 12 0 528 3.29 

Dorsal Middle Cingulate Cortex (dMCC) R 6 22 36 208 3.29 

Middle Insula (mINS) L -38 18 -4 184 3.29 

Habenula L -2 -26 8 168 2.58 

Thalamus R 8 -10 5 96 2.58 

Signed RPE - Negative       

Ventral Striatum (vSTR) R 10 10 -6 2208 3.29 

Valence – Signed RPE       

Ventromedial Prefrontal Cortex (vmPFC) R 2 44 -12 760 3.29 

Middle Insula (mINS) R 40 12 2 568 2.58 

Dorsal Middle Cingulate Cortex (dMCC) R 6 24 38 480 2.58 

Signed RPE - Valence       

Ventral Striatum (vSTR) R 12 16 -2 184 3.29 

Surprise – Signed RPE       

Anterior Insula (aINS) L -34 22 0 704 3.29 

Anterior Midcingulate Cortex (aMCC) R 0 14 52 136 3.29 

Pre supplementary motor area (preSMA) R 0 14 52 136 3.29 

Anterior Insula (aINS) R 38 18 -2 88 3.29 
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1172 

Signed RPE - Surprise       

Ventral Striatum (vSTR) L -10 8 -10 904 3.29 

Ventral Striatum (vSTR) R 12 14 -3 192 3.29 

Ventral Striatum (vSTR) R 4 6 -6 72 3.29 
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Figure Legends 1173 

 1174 

Figure 1. Hypothesized profiles for BOLD responses as function of the three RPE 1175 

components. Pattern A (i and ii) describe the two categorical valence responses (orange and 1176 

blue colours indicate (i) responses being greater for negative compared to positive outcomes 1177 

[NEG > POS] and (ii) responses being greater for positive compared to negative outcomes 1178 

[POS > NEG]). Pattern B captures surprise effects with greater responses to higher outcome 1179 

deviations from expectations, independent of the sign (valence) of the RPE. Pattern C shows 1180 

a monotonically increasing response profile consistent with a signed RPE representation.  1181 

 1182 

Figure 2. Results of whole-brain ALE analysis along the valence component. Overlays of 1183 

brain areas activated by correlations with NEG > POS (blue) and POS > NEG (orange) 1184 

(Pattern A (i) and (ii), respectively; Fig. 1) (P-values corrected with FDR-ID [FID] and FDR-1185 

pN [FRN] < 0.05 and a minimum cluster volume of 50 mm3). Representative slices are 1186 

shown with MNI coordinates given below each image.  1187 

 1188 

Figure 3. Results of the whole brain ALE analysis for the surprise component of RPE 1189 

(pattern B, Figure 1). Overlay of brain areas activated by all analyses representing direct or 1190 

indirect measures of the surprise component of RPE (P-values corrected with FDR-ID [FID] 1191 

and FDR-pN [FRN] < 0.05 and a minimum cluster volume of 50 mm3). Representative slices 1192 

are shown with MNI coordinates given below each image. 1193 

 1194 

Figure 4. Results of the ALE conjunction analysis between valence and surprise (purple). 1195 

The regions identified earlier with separate ALE analyses along the valence (NEG > POS: 1196 

blue, POS > NEG: orange) and surprise (green) components are shown for comparison 1197 

purposes. P-values were corrected with FDR-pN [FRN] < 0.05 and a minimum cluster 1198 

volume of 50 mm3 for the initial maps. Representative slices are shown with MNI coordinates 1199 

given bellow each image. 1200 
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Figure 5. Results of the ALE contrast analyses for [valence – surprise] (left panel) and 1201 

[surprise – valence]. P-values were corrected with FDR-pN [FRN] < 0.05 and a minimum 1202 

cluster volume of 50 mm3 for the initial maps. Representative slices are shown with MNI 1203 

coordinates given bellow each image. 1204 

 1205 

Figure 6. Results of whole brain ALE analysis for signed RPE. Overlay of brain areas 1206 

activated by positive correlation with signed RPE (P-values corrected with FDR-ID [FID] and 1207 

FDR-pN [FRN] < 0.05 and a minimum cluster volume of 50 mm3). Representative slices are 1208 

shown with MNI coordinates given bellow each image. 1209 

 1210 

Figure 7. Results of the ALE conjunction analysis for all components of RPE. Overlay of 1211 

brain areas individually activated by (1) valence (orange), (2) surprise (green), and (3) 1212 

signed RPE (red), with P-values corrected with FDR-pN [FRN] < 0.05 and a minimum cluster 1213 

volume of 50 mm3 for the initial maps. Importantly, the overlap between the three analyses, 1214 

shown in white, also corresponds to the only cluster found for the ALE conjunction analysis 1215 

between valence/surprise vs. signed RPE. MNI coordinates are given below each image. 1216 

 1217 

Figure 8. Results of the ALE contrast analyses for [signed RPE – positive valence] (left 1218 

panel), [signed RPE – negative valence] (middle panel) and [signed RPE – (positive + 1219 

negative valence)] (right panel). P-values were corrected with FDR-pN [FRN] < 0.05 and a 1220 

minimum cluster volume of 50 mm3 for the initial maps. Representative slices are shown with 1221 

MNI coordinates given bellow each image. 1222 

 1223 
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