
Engineering Biology
Research Article
Debugging experiment machinery through
time-course event sequence analysis
Eng. Biol., 2017, Vol. 1, Iss. 1, pp. 51–54
This is an open access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)
ISSN 2398-6182
Received on 9th March 2017
Revised on 10th May 2017
Accepted on 26th May 2017
doi: 10.1049/enb.2017.0008
www.ietdl.org
Christopher R. Reynolds ✉, Kealan Exley, Matthieu A. Bultelle, Inaki Sainz deMurieta, Richard I. Kitney
Centre for Synthetic Biology and Innovation and the Department of Bioengineering, Imperial College London, London, UK
✉ E-mail: cr308@imperial.ac.uk

Abstract: This application note describes an open-source web application software package for viewing and analysing
time-course event sequences in the form of log files containing timestamps. Web pages allow the visualisation of time-
course event sequences as time curves and the comparison of sequences against each other to visualise deviations
between the timings of the sequences. A feature allows the analysis of the sequences by parsing selected sections
with a support vector machine model that heuristically calculates a value for the likelihood of an error occurring based
on the textual output in the log files. This allows quick analysis for errors in files with large numbers of log events. The
software is written in ASP.NET with Visual Basic code-behind to allow it to be hosted on servers and integrated into
web application frameworks.
1 Introduction

Synthetic biology uses a lot of different equipments (e.g. in the
context of automation) that produces output which is logged. The
size and number of log files produced by typical laboratory
equipment (e.g. liquid handling robots) often become so large that
the files are difficult to search by human operators. In the field of
synthetic biology, the consistent replication of a workflow is
crucial for the reliable characterisation of parts [1]. Enforcing
consistency between workflows, detecting deviations from normal
operation and identifying the root cause of deviations is important
to ensure good data. The use case is intended to be the
comparison and error analysis of large time-course event log files
of the kind that are generated by machine hardware. This has
applications in many fields of engineering that involve machinery,
but synthetic biology introduces the additional problem of
biological material, which can introduce unpredictable occurrences
and effects into the system. This requires a flexible analysis tool
which assists the user both in comparing sequences for differences
and detecting errors using a non-deterministic method.
2 Time-course event sequences

A time-course event sequence (also referred to as a point event
sequence, temporal event sequence or a categorical time series) is a
sequence of discrete temporal events, each represented by a status
and a timestamp. These sequences are generated across data
analytics, particularly in the field of engineering and existing
analytics platforms exist to analyse them [2, 3]. This paper
describes a set of analytics (sequence comparison, error detection
and time log averager) used to analyse time-course event sequences
of outputs from synthetic biology experiments, specifically the
characterisation of constitutive promoters. Four of our time logs
have been included as example data in the github directory. The
time log files can be thought of as time-course event sequences,
with each event associated with a text description of the events.

In an ideal situation, each time-course event sequence for an
experiment controlled by the same set of instructions would be
identical with each event occurring at the same point in time from
the start of the run. By comparing the deviation between where
events have occurred in log files generated by the same set of
instructions, deviations between the timings can be detected. These
can provide a useful indication of where potential errors are
occurring.

Detecting deviation between time-course event sequences can be
useful for asynchronous workflows because of the way such
workflows try to force all events to a pre-set timeline. The
approach is also useful for synchronous workflows, where it can
be used in the early debugging stage of workflows, by identifying
where major deviations between runs are occurring.
3 Materials and methods

The time-course event software is written in ASP.NET with VB.NET
code-behind. ASP.NET was used because it is a widely used
open-source web application framework, which allows it to be
hosted on a server and made available to a wide number of users
on a network through any standard web browser interface.

The code utilises Microsoft Chart Controls for Microsoft.NET
Framework 3.5, which can be downloaded [4], if not already
installed.

The examples used in this paper relate to real characterisation
experiments for constitutive promoters using a standard protocol
[5]. The data shown in the plots is real data from a laboratory
robot set-up that includes incubators, plate readers, a robot arm
and a benchtop liquid handling device. However, it should be
noted that the software can be applied to any equipment that
produces text log files.

The programme accepts as input any plain text file that consists of
a series of timestamps each followed by text. The text can be over
multiple lines, but must not be on the same line as the timestamp.
4 Sequence comparison

The software is centred around two pages: (i) one page to view and
compare time-course event sequences, and view the plots and (ii) the
other page shows the combined time logs to produce a reference
time-course event sequence.

The graph viewer has two modes. The first is to visualise a single
point sequence from a time log, plotting the number of events against
time. Regular expressions are used to parse a log file and extract all
timestamps, together with associated text. Multiple selected
sequences are plotted on the same graph, so that they can be
51

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


compared (Fig. 1) (a maximum of five sequences can be plotted on
the same graph).

In Fig. 1, three protocols are visualised. The magenta and teal
plots use the same protocol, the navy plot is for a protocol running
at a faster pace. The plots show an initial steep curve representing
a high number of events over time as the equipment initialises,
then a period of no events as the samples are incubated. At around
6000 s, the cyclical phases of plate reading, dilution and
incubation start. There is a further high number of events over
time as the reader and distillation machine initialise, and then a
characteristic stepped line as the reading and distillation events
occur between longer incubation periods. The differences between
protocols and the phases of the process can be clearly visualised
from the graph including possible deviations from consistency in
the protocol such as a delay in events around 20,000 s on the
magenta plot.

The second graph viewer mode measures and displays the
cumulative deviation between graph plots (Fig. 2) and then plots
Fig. 1 Time-course events versus time plots for three time logs, all for
experiments characterising constitutive promoters

Fig. 2 Calculation of the time deviation between two event sequences. The
plots compare two time-course event sequences for the same experimental
protocol characterising constitutive promoters. The area of cumulative
deviation (shaded in cyan) is calculated

52 This is an open
the cumulative deviation against time (Fig. 3). This mode is limited
to comparing two time-course event sequences against each other.

The deviation comparison of time-course event sequences is
performed by the following method:

(i) The user selects two time-course event sequences: a
comparison sequence and a reference sequence.
(ii) The start of both of the two time-course event sequences is
synchronised.
(iii) The algorithm moves through the time-course events in both
sequences chronologically.
(iv) If the time-course events are out of sequence, the cumulative
time deviation is increased by the time difference between this
event and the previous chronological event (in either sequence).
This is equivalent to multiplying time difference on the x-axis by
event number difference on the y-axis, and gives the area
highlighted in cyan in Fig. 2.
(v) The cumulative time deviation is calculated up to the end of one
of the sequences.
(vi) Cumulative deviation between the sequences is plotted against
time, following synchronisation.

An example plot of a comparison is shown in Fig. 3.
Fig. 3 Plot displaying cumulative deviation between a reference sequence
and a comparison sequence for an experiment that ended in failure after
400 s

Fig. 4 Area of the graph selected by a user becomes highlighted in red to
indicate the area that the error likelihood analysis has been performed on

Eng. Biol., 2017, Vol. 1, Iss. 1, pp. 51–54
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



Fig. 5 Machine learning analyses topics from the generated log file within the analysed time period. The algorithm computes a measure of error likelihood and
displays the top ranked topics from the log file in a table

Fig. 6 Screenshot of the ProcessMachineData.aspx page
5 Error detection

The output graph of the deviation comparison (Fig. 3) can be
analysed by an error detection algorithm. This allows the user to
receive visual feedback from the cumulative deviation graph and
then advantage of a machine learning approach that can ‘drill
down’ into an area identified as problematic and sort the many
events occurring in that area by their likelihood of being an error.
Use of the error detection algorithm is intended to speedup the
search for errors. Rather than having the user check through the
messages in the log files around a time point, which usually
involves thousands of messages, the algorithm uses a model to
identify the most likely source of error.

A support vector machine (SVM) was used to analyse error
likelihood. The training data for the error likelihood model was a
set of 200 text sentences, a mix of system error messages and
common normal system status messages. Error messages were
compiled from a set of 15 log files generated by the equipment,
with the addition of Linux system error messages. Normal system
status messages were compiled from the most common messages
that appeared within those same log files. Each sentence was
assigned a heuristic weighting between zero and one based on
how much the message looked like a crucial error. The plain
text training data is included in the github repository as
TrainingData.csv.

The words in each error message were tokenised and stemmed
(stripped of suffixes [6]). The stemmed words become feature
vectors, and the assigned values vector magnitudes, to form a
kernel for an SVM. SVM-Light [7] was used to generate an SV
model from this data. An ‘error likelihood’ value can then be
produced for any sentence by tokenising and stemming the words
and analysing them with the computed model. Common
differences between British and American English spellings are
standardised to American English before being analysed.

Clicking on a point on a graph allows analysis of the log data in an
area around the click: a period in time set to 5% of the plot width and
Eng. Biol., 2017, Vol. 1, Iss. 1, pp. 51–54
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
centred on the point of the click are taken, and all topics from the log
files that fall within this time period are passed to the error detection
algorithm for analysis. The algorithm is used to compute an ‘error
likelihood’ for all text associated with timestamps in this area of
the graph. Fig. 4 shows the portion of the plot being analysed
highlighted after being clicked on by the user. Fig. 5 shows a
53Commons



Fig. 7 Screenshot of the TimelogAverager.aspx page
typical output of this section of the programme, demonstrating that
an error message indicating an unresponsive port or device and a
message indicating an aborted method are ranked as having the
two highest error likelihoods.
6 Time log averager

Time logs can be compared against each other to compare the
deviation between them. It will be common to compare
54 This is an open
experiments against a ‘reference’ log of an experiment known to
be successful and error free. It is useful to be able to generate a
time log that is averaged from multiple successful time logs to
remove unique random error that may occur in individual
experiments.

This is used to generate a reference sequence by averaging the
timings of events over several time logs. The TimelogAverager.
aspx page allows the selection of successive time logs that are
averaged as they are added. The resultant plot of time-course
events against time is displayed (as shown in Fig. 1), and the user
can download the resultant log as to use as a reference file.
7 File listing

In its initial commit, the software package consists of:

† DateProcessor.vb – a module to read in dates and timestamps
from log files.
† PorterStemmerAlgorithm.vb – a module containing an
implementation of the Porter–Stemmer algorithm [6], written by
Stemmer.
† SVMClassification.vb – a module for applying an SV model file
generated by SVM-Light [7] to a feature vector.
† ProcessMachineData.aspx (see Fig. 6).
† ProcessMachineData.aspx.vb.
† TimelogAverager.aspx (see Fig. 7).
† TimelogAverager.aspx.vb.
† TrainingData.csv – data used for training the SVM.
† svm_model – data file for the SV model.
† words.dat – data file.
† Web.config – configuration file.
† README.md – readme text file.
† Example time logs – a folder containing time logs for four
experiments we have carried out, characterising constitutive
promoters.
8 Acknowledgment

This work was supported by two EPSRC grants: EPL011573/1 and
EPJ02175X/1.
9 References

1 Andrianantoandro, E., Basu, S., Karig, D.K., et al.: ‘Synthetic biology:
new engineering rules for an emerging discipline’, Mol. Syst. Biol., 2006, 2,
p. 2006.0028

2 Gay, D., Guigourès, R., Boullé, M., et al.: ‘TESS: temporal event sequence
summarization’. 2015 IEEE Int. Conf. on Data Science and Advanced Analytics
(DSAA), 2015, pp. 1–10

3 Monroe, M., Lan, R., Lee, H., et al.: ‘Temporal event sequence simplification’, IEEE
Trans. Vis. Comput. Graph., 2013, 19, (12), pp. 2227–2236

4 ‘Microsoft chart controls for Microsoft.NET framework 3.5’, Microsoft download
center. Available at https://www.microsoft.com/en-gb/download/details.aspx?
id=14422, accessed 03 March 2017

5 Hirst, C.D.: ‘Automated BioPart characterisation for synthetic biology’ (Imperial
College London, 2014)

6 Porter, M.F.: ‘An algorithm for suffix stripping’, Program, 1980, 14, (3),
pp. 130–137

7 Joachims, T.: ‘SVM-Light’, University of Dortmund, Informatik, AI-Unit
collaborative research center, 2008
Eng. Biol., 2017, Vol. 1, Iss. 1, pp. 51–54
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

https://www.microsoft.com/en-gb/download/details.aspx?id=14422
https://www.microsoft.com/en-gb/download/details.aspx?id=14422
https://www.microsoft.com/en-gb/download/details.aspx?id=14422
https://www.microsoft.com/en-gb/download/details.aspx?id=14422
https://www.microsoft.com/en-gb/download/details.aspx?id=14422
https://www.microsoft.com/en-gb/download/details.aspx?id=14422
https://www.microsoft.com/en-gb/download/details.aspx?id=14422

	1 Introduction
	2 Time-course event sequences
	3 Materials and methods
	4 Sequence comparison
	5 Error detection
	6 Time log averager
	7 File listing
	8 Acknowledgment
	9 References

