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In this paper, we derive from the principle of least action the equation of motion for a continuous medium with regularized
density field in the context of measures. The eventual equation of motion depends on the order in which regularization
and the principle of least action are applied. We obtain two different equations, whose discrete counterparts coincide
with the scheme used traditionally in the Smoothed Particle Hydrodynamics (SPH) numerical method [27], and with the
equation treated by Di Lisio et al. in [9], respectively. Additionally, we prove the convergence in the Wasserstein distance
of the corresponding measure-valued evolutions, moreover providing the order of convergence of the SPH method. The
convergence holds for a general class of force fields, including external and internal conservative forces, friction and non-
local interactions. The proof of convergence is illustrated numerically by means of one and two-dimensional examples.
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1 Introduction

The Smoothed Particle Hydrodynamics (SPH) numerical method was initially introduced to solve the equations of astro-
physical flows. In the course of time it found application to equations describing a plethora of physical processes (for its
diverse applications, see [28]). These processes predominantly involve continua and the equations refer to systems with
infinite degrees of freedom. The central idea of the SPH method is to set up a relation between the continuum and a particle
system, in which the continuum is loosely considered to be the limit case in which the number of particles tends to infinity.
Here, a ‘particle’ should not be interpreted as a physical object of any scale (like an atom, molecule or grain) but rather as
a numerical entity attributed with mass, position, velocity and other properties of the medium it represents.

It is well-established that the classical SPH scheme can be derived formally by applying the principle of least action to
the particle system, where the SPH density approximation acts as a constraint; see e.g. [27, 30, 39]. The importance of the
particle system’s Lagrangian function was already recognized in the first articles describing SPH; cf. [21]. A subtlety lies
in the fact that in the derivation of the SPH equations, the action of the particle system is minimized rather than the action
of the continuum. The minimization of the action at the continuum level and the subsequent discretization of the motion
equation in terms of particles do not necessarily yield the same equation (at the discrete level).

The main achievement of this paper is twofold:

• We introduce a systematic procedure for deriving measure-valued and particle formulations of continuum mechan-
ics equations. We obtain two different schemes depending on the stage at which a regularization of the density is
introduced. See Sect. 2.

• We prove the convergence of both schemes using the Wasserstein distance on the space of probability measures;
cf. Sect. 3.
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We now describe the two parts of our paper in more detail.

In the first part (Sect. 2), we aim at clarifying the exact difference in outcome between minimizing the action of the
particle system and minimizing the action at the continuum level. To achieve this, we introduce a systematic procedure
consisting of the following three steps:

A formulation in terms of measures and, simultaneously, the regularization1 of the density;

B introduction of a particle formulation;

C application of the principle of least action.

These three steps are introduced in more detail in Sect. 2.2. It turns out that the order in which these steps are executed
determines what the resulting equation is. To be more precise, the classical SPH scheme (as described e.g. in [27]) is
obtained, whenever the regularization of the density takes place before applying the principle of least action. That is, when-
ever the steps are executed in the order A-B-C or A-C-B. Both procedures are presented here; see Sect. 2.3 and 2.4. If
we apply the principle of least action (to the action at the continuum mechanics level) before regularizing the density then
we obtain a scheme that appears in Di Lisio et al. [9] and in the recent paper [7]. However, this variant of the scheme is
studied far less in literature. The procedure to obtain this scheme follows the order C-A-B. Its distinct characteristic is
that it requires the gradient of the pressure field to be expressed analytically, while the pressure itself does not appear in
the numerical scheme, in contrast to the commonly used SPH schemes. We emphasize that although both schemes arrive
from the principle of least action, the latter can also be derived directly from Newtonian mechanics and introduction of the
density regularization. The details of our rational derivation and the mutual relation between the two schemes have, to our
knowledge, not been described in literature before.

In any case, regularization of the density practically means that the original problem is deliberately turned into a regu-
larized one, which is afterwards solved by means of some variant of an SPH scheme. Hence, by choosing SPH as the
solution method one is automatically bound to studying a different problem than the original one at the continuum level.
Thus, two questions naturally arise:

• Does the solution of the regularized problem converge to the solution of the original problem?

• Does the particle solution of the regularized problem converge (in a certain sense) to the solution of the regularized
continuum problem?

The former is out of the scope of the present study ( [10] has dealt with it), while the latter is the topic of the current work’s
second part.

Measure theory provides a framework to study the limiting behaviour as the number of particles goes to infinity (cf. also
e.g. [26]). Both the particle system, and the limiting continuum setting can be formulated in terms of measures. Hence, a
distance between measures is a natural tool to characterize convergence; in this work we take the Wasserstein distance on
the space of probability measures. This particular distance has the advantage that it can be formulated as the infimum over
a set of joint representations (more details follow in Definitions 3.2 and 3.3). This is convenient, since one can thus obtain
an upper bound (needed to prove convergence!) by choosing any admissible joint representation. See also [36], Chapter 6,
for more discussion.

We prove the convergence of measure-valued solutions, as the initial measure is approximated; cf. Sect. 3. The line of
arguments is similar to the one followed by Di Lisio et al. in [9], who first employed measures in combination with the
Wasserstein distance to prove the convergence of the SPH method, but the result obtained in the present work is more
general. It should be mentioned that in the earlier work [29] convergence of the empirical measure representing the particle
system was proven, but using a different technique. Moreover, the only forces considered were mutual interactions between
particles. Other approaches to obtain convergence are given e.g. by [2] using maximum local entropy estimates, [31] em-
ploying estimates for the truncation error, and [23,32]. In [37,38] the author establishes (weak) convergence for continuum
models in fluid dynamics.
Nonetheless, the scheme treated in [9] is not the aforementioned traditional scheme. Our proof applies both to traditional
SPH and to the scheme covered by [9]. Moreover, we allow for a much more general class of force fields. Apart from

1 The regularization of equations is an old concept, introduced by Friedrichs in 1944 [19]. Additionally, notice that the regularization kernels used in
SPH are a special subclass of the mollifier functions used by Friedrichs [19]; the SPH kernels are symmetric positive mollifiers.
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external and internal conservative forces, we can deal with nonconservative forces such as viscosity of fluids and plastic-
ity of solids; cf. [3, 14]. Finally, our results are valid in the presence of certain non-local interactions, that may arise in
applications such as surface tension [34], defects in metal crystals (dislocations) [20, 26], pedestrian dynamics [8, 18] and
swarming [5].
Previous work in the framework of measures by the authors of the current paper can be found in [13], where apart from
the aforementioned force terms also random noise is treated. In [16,17] measure-valued evolutions are treated in the scope
of equations of motion that are first-order in time. The link between first-order and second-order models is discussed in [15].

The theoretical result of this paper regarding the order of convergence is supported numerically in Sect. 3.6 for one and
two-dimensional illustrative examples, which involve different force fields.

In Sect. 4 concluding remarks are given about Sect. 2 and 3. Also, some attention is given to possible future research
directions.

2 Systematic derivation of the equations of motion

In this section we derive equations of motion from Hamilton’s principle of least action, which involves the Lagrangian
function posed in a continuum mechanics setting. We describe an explicit ‘recipe’, hence avoiding the need to introduce
approximations in an ad hoc manner. This ‘recipe’ consists of three building blocks (coined A, B and C; see Sect. 2.2).
The order in which these blocks are executed, influences the final outcome. As such, the systematic procedure we describe
here also shows exactly how different formulations/schemes arise from the same basic principles.

2.1 Derivation of the action in a continuous setting

Assume that for fixed time t a mass density ρt on a spatial domain Ωt is given. We define the Lagrangian density of our
system as

L(ρ; y, u) :=

(
1

2
|u|2 − e(ρ(y), y)

)
ρ(y),

where y and u are independent Eulerian coordinates, and e denotes the internal energy density. To obtain the Lagrangian
L, we integrate L over the spatial domain Ωt:

L(t) :=

∫
Ωt

L(ρt; y, u) dy. (1)

For this integration to make sense, we assume now that u is actually a velocity field, defined as a function of t and y:
u := u(t, y). Let there be a coordinate transform Φt such that Ωt = Φt(Ω0) for some initial domain Ω0. We call the family
of transformations (Φt)t>0 a motion mapping and transform the integral above according to y = Φt(x) with x ∈ Ω0:

L[Φ](t) =

∫
Ω0

(
1

2
|u(t,Φt(x))|2 − e(ρt(Φt(x)),Φt(x))

)
ρt(Φt(x)) |JΦt(x)| dx. (2)

The functional dependence of L on the motion mapping is indicated by explicitly including Φ in square brackets. The
expression |JΦt| denotes the determinant of the Jacobian matrix of the transformation, consisting of the derivatives of
the components of Φt with respect to the components of x. Now we assume that the density ρt relates to the density ρ0

defined on the original domain Ω0 by the same transformation Φt, which is mathematically described by a push-forward,
ρt = Φt#ρ0 (cf. Definition 3.1). In particular, the densities relate in the following way (see e.g. [6], p. 90):

ρ0(x) = ρt(Φt(x)) |JΦt(x)| . (3)

Combined, (2) and (3) yield

L[Φ](t) =

∫
Ω0

(
1

2
|u(t,Φt(x))|2 − e(ρt(Φt(x)),Φt(x))

)
ρ0(x) dx.

In the above we fixed t, but obviously all arguments can be repeated for every t in some interval [0, T ]. In particular, we
are interested in those motion mappings that are continuous and differentiable in time, and we wish to obtain their equation
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of motion. The introduction of the motion mapping (Φt)t∈[0,T ] has taken us from pure Eulerian coordinates in (1) towards
Lagrangian (material) coordinates in (2). The crucial and final step to complete this procedure is now to specify what the
velocity field u is. In order to remain consistent with the motion mapping we introduced, we postulate the relation:

u(t,Φt(x)) = Φ̇t(x) for all x ∈ Ω0. (4)

The velocity u(t,Φt(x)) is the velocity at time t of a material point that started in x at time 0, and – in words – (4) means that
this velocity is equal to the time derivative at time t of the position Φt(x) of that particular material point. By connecting
the Eulerian velocity u to the Lagrangian velocity Φ̇t, we obtain the Lagrangian functional

L[Φ](t) =

∫
Ω0

(
1

2
|Φ̇t(x))|2 − e(ρt(Φt(x)),Φt(x))

)
ρ0(x) dx. (5)

We define the action of our system by

S[Φ] :=

∫ T

0

L[Φ](t) dt. (6)

2.2 Three procedures

The aim of this part of our paper is to derive equations of motion from the action (6), by means of the Euler-Lagrange
equations (we will see that these appear in different shapes). Moreover, we wish to derive these equations of motion for a
particle system, which naturally induces a numerical scheme. A methodological way to go from the continuum (Sect. 2.1)
to a particle system, is via a measure-valued formulation. Our motivation to do so is the fact that we need a framework that
incorporates the ‘real physics’, i.c. the density ρt, and an approximating particle system to establish the convergence of the
particle scheme to the continuum.

To get the transition from the continuous action (6) to equations of motion for the particle positions, three steps are neces-
sary:

A introduction of measures: replace ρt(x)dx by µt(dx) and, wherever necessary, approximate ρt by some ρ̃t that de-
pends on µt;

B substituting for µt a discrete measure µ̄nt =
∑
imiδxi(t);

C Derive the Euler-Lagrange equations (either classically or in variational sense).

The steps are here described in a somewhat simplistic and unprecise way; their true meaning will become clear in Sect. 2.3,
2.4 and 2.5. Step A takes us to a regularized version of the problem, which is a problem different from the original one.
Step B cannot happen before A, but we have the freedom to choose the further ordering. This gives rise to three different
derivations:

ABC : this procedure discretizes the Lagrangian and derives the corresponding equations of motion afterwards; see Sect.
2.3.

ACB : this procedure derives the equations of motion from the measure-valued Lagrangian and discretizes these equations
afterwards; see Sect. 2.4.

CAB : this procedure derives the equations of motion from the continuum Lagrangian, writes them in measure-valued
form and discretizes afterwards; see Sect. 2.5.

Procedures ABC and ACB eventually yield the same particle scheme. This is the scheme traditionally used in the SPH
community (cf. [27]). Procedure CAB is the one that yields the equations used in [9] and [7].

2.2.1 Preview of the resulting particle schemes

We anticipate here concisely the resulting schemes and the crucial difference between them. To facilitate the exposition
here, we assume that e depends only on the density and not explicitly on the spatial coordinate (we assume here also that no
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nonconservative forces are present); the essence of the difference between the schemes lies in the remaining contributions.
The ODEs governing the particle positions xk = xk(t), with k ∈ {1, . . . , n}, turn out to be

d2xk
dt2

=


−

n∑
i=1

mi∇Wh(xk − xi)
[
∂e

∂ρ
(ρ̃t(xk)) +

∂e

∂ρ
(ρ̃t(xi))

]
for route ABC and ACB ;

−
[
2
∂e

∂ρ
(ρ̃t(xk)) + ρ̃t(xk)

∂2e

∂ρ2
(ρ̃t(xk)

] n∑
i=1

mi∇Wh(xk − xi) for route CAB ,

where ρ̃t is the aforementioned particle-based approximation of the density.
The full ODEs (including spatial dependence of e and nonconservative forces) are given in (13) and (24), and we present
the details of the derivations in the sequel of this section; see Sect. 2.3, 2.4 and 2.5. The precise connection between the
two schemes is elaborated on in Sect. 2.6.

2.3 Equations of motion via the route ABC

2.3.1 Step A

In Sect. 2.1 we introduced (for each t) the density ρt as the push-forward of the initial density ρ0 under the mapping Φt. In
this section we lift the evolution of ρt to the space of (time-dependent) measures. Let µ0 and µt be the measures associated
to the densities ρ0 and ρt. Hence, µt = Φt#µ0. In (5)–(6) we can substitute ρ0(x)dx by µ0(dx). Afterwards, there is
one more aspect that we need to ‘repair’ before we are completely in a measure formulation. The internal energy density
e depends on ρt itself, via pointwise evaluation at Φt(x). An approximation of ρt is needed to obtain a general expression
that is even well-defined for measures that have no density (w.r.t. the Lebesgue measure). We propose to introduce a
regularization via convolution

ρ̃t(ξ) := (Wh ∗ µt) (ξ) =

∫
Ωt

Wh(ξ − y)µt(dy), (7)

for all ξ ∈ Rd. Here, the smoothing function Wh is nonnegative and even (so that it has an odd gradient, a property which
is used later in the derivation of the equations), h is a small parameter, and Wh ⇀ δ0 in the narrow topology as h → 0
(i.e. tested against bounded continuous functions). A typical example is the Gaussian with zero mean and variance h2/2. If
µt has a density ρt then the convergence ρ̃t → ρt holds in some sense and under certain mathematical conditions. E.g. if ρt
is continuous and bounded, then by definition of Wh ⇀ δ0, ρ̃t(ξ) converges to ρt(ξ) for all ξ. In any case, the convolution
regularizes the solution, introducing an artificial ‘density’ ρ̃t, such that pointwise evaluation and the gradient are defined
even when ρt does not exist or is not differentiable. Note that, ρ̃t also depends on h, but in this work we do not consider
the limit h → 0, therefore for simplicity of notation, we leave out h in ρ̃t. However, we stick to the subscript h in Wh in
agreement with the common notation in SPH literature.

Note that ρ̃t can also be written as

ρ̃t(ξ) =

∫
Ω0

Wh(ξ − Φt(x))µ0(dx), (8)

by definition of the push-forward. Hence, we should keep in mind that ρ̃ has either a functional dependence on µt, or an
extra dependence on Φt(·), depending on which formulation we choose, but we do not write this dependence explicitly.

In e, we substitute ρ̃t for ρt in the sequel and redefine the Lagrangian (in a measure-formulation) such that the action
becomes

S[Φ] =

∫ T

0

L[Φ](t) dt =

∫ T

0

∫
Ω0

(
1

2
|Φ̇t(x)|2 − e(ρ̃t(Φt(x)),Φt(x))

)
µ0(dx) dt. (9)

The new, generalized formulation in terms of measures allows us to consider more types of solutions, simply by allowing
for more general initial conditions. This is exactly what we exploit in the following step via a particle approximation.
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2.3.2 Step B

In this step, we substitute for µ0 a discrete measure of the form µ̄n0 =
∑n
i=1miδxi,0 . Under push-forward, the measure

remains a discrete measure with positions of the Diracs {xi(t)} evolving under the motion mapping: xi(t) = Φt(xi,0). We
emphasize that the equation for Φt is yet unknown and is to be derived in the next step.

The Lagrangian takes the form

L(t) =

n∑
i=1

mi

(
1

2
|ẋi(t)|2 − e(ρ̃t(xi(t)), xi(t))

)
, (10)

with

ρ̃t(xi(t)) =

n∑
j=1

mjWh(xi(t)− xj(t)).

In the literature of SPH, particles of the same mass are employed for the modeling of the flow of a single fluid. In that
case, the term mi corresponds to 1/n. On the other hand, multiphase media of piecewise continuous mass density can be
modeled with the use of particles of different masses [27, 39]. For that reason, we adopt the general case of (in principle)
unequal masses mi.

2.3.3 Step C

The equations of motion are obtained via the ‘classical’ Euler-Lagrange equations, see (1.57) in [22], applied to the La-
grangian

L(t) =

n∑
i=1

mi

1

2
|ui|2 − e

 n∑
j=1

mjWh(yi − yj), yi

 ,

cf. (10). In the presence of nonconservative forces (cf. p. 23 in [22]) the corresponding Euler-Lagrange equations are

d

dt

(
∇ukL

∣∣∣(yi,ui)=(Φt(xi,0),Φ̇t(xi,0))

)
−∇ykL

∣∣∣
(yi,ui)=(Φt(xi,0),Φ̇t(xi,0))

= mk q[µ̄
n
t ](Φt(xk,0), Φ̇t(xk,0)),

(11)

for each k ∈ {1, . . . , n}, where q is the force density (per unit mass) of nonconservative forces. The functional dependence
in square brackets denotes that q incorporates a nonlocal interaction term. More details will follow later; cf. (28). The
subscript “(yi, ui) = (Φt(xi,0), Φ̇t(xi,0))” should be read as performing this substitution for all i ∈ {1, . . . , n}.

After calculating the derivatives∇uk and ∇yk in (11), we obtain

mk
d

dt
Φ̇t(xk,0) =

−mk
∂e

∂ρ

 n∑
j=1

mjWh(Φt(xk,0)− Φt(xj,0)),Φt(xk,0)

 n∑
j=1

mj ∇Wh(Φt(xk,0)− Φt(xj,0))

+

n∑
i=1

mi
∂e

∂ρ

 n∑
j=1

mjWh(Φt(xi,0)− Φt(xj,0)),Φt(xi,0)

mk∇Wh(Φt(xi,0)− Φt(xk,0))

−mk∇ye

 n∑
j=1

mjWh(Φt(xk,0)− Φt(xj,0)),Φt(xk,0)

+mk q[µ̄
n
t ](Φt(xk,0), Φ̇t(xk,0)). (12)

We denote by ∇ye the gradient of e only in the explicit spatial coordinate; that is, the second variable of e. We divide all
terms by mk (which is nonzero without loss of generality). If in the second line we take ∂e/∂ρ inside the sum and we use
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in the third line that∇Wh is an odd function, then the corresponding terms in (12) can be combined, and we obtain

Φ̈t(xk,0) =

−
n∑
i=1

mi∇Wh(Φt(xk,0)− Φt(xi,0))

[
∂e

∂ρ
(ρ̃t(Φt(xk,0)),Φt(xk,0)) +

∂e

∂ρ
(ρ̃t(Φt(xi,0)),Φt(xi,0))

]
−∇ye (ρ̃t(Φt(xk,0)),Φt(xk,0)) + q[µ̄nt ](Φt(xk,0), Φ̇t(xk,0)), (13)

for each k ∈ {1, . . . , n}. For brevity of notation, we use ρ̃ again in the argument of e.

2.4 Equations of motion via the route ACB

2.4.1 Step A

This step is exactly the same as in Sect. 2.3.1.

2.4.2 Step C

We start from the action given in (6). Instead of using the classical Euler-Lagrange equations, we employ here a generalized
form of the principle of least action (see p. 127 and Sect. 4.4 of [3]):

S′[Φ](Ψ) = −Q[Φ](Ψ), (14)

for all test functions Ψ ∈ C∞c ((0, T );C∞c (Ω0;Rd)). Here, S′[Φ](Ψ) denotes the variational derivative of S in the direction
of Ψ, and Q[Φ](Ψ) is the work done along Ψ. It is defined as

Q[Φ](Ψ) :=

∫ T

0

∫
Ω0

q[µt](Φt(x), Φ̇t(x)) ·Ψt(x)µ0(dx) dt, (15)

where q is the force density as in (11). For S′ we have:

S′[Φ](Ψ) :=
d

dε
S[Φ + εΨ]

∣∣∣∣
ε=0

. (16)

Note that

d

dε

[
e

(∫
Ω0

Wh(Φt(x) + εΨt(x)− Φt(y)− εΨt(y))µ0(dy),Φt(x) + εΨt(x)

)]
ε=0

=
∂e

∂ρ

(∫
Ω0

Wh(Φt(x)− Φt(y)µ0(dy),Φt(x)

)∫
Ω0

∇Wh(Φt(x)− Φt(y)) · (Ψt(x)−Ψt(y))µ0(dy)

+∇ye
(∫

Ω0

Wh(Φt(x)− Φt(y)µ0(dy),Φt(x)

)
· Ψt(x). (17)

To avoid lengthy notation, we denote here by e′[Φ](Ψ)(x) the expression in (17). The variational derivative of S can be
expressed as:

S′[Φ](Ψ) =

∫ T

0

∫
Ω0

(
Φ̇t(x) · Ψ̇t(x)− e′[Φ](Ψ)(x)

)
µ0(dx) dt

=

∫ T

0

∫
Ω0

(
−Φ̈t(x) ·Ψt(x)− e′[Φ](Ψ)(x)

)
µ0(dx) dt, (18)

where the last step follows from integration by parts with respect to the time variable. The boundary terms disappear be-
cause Ψ has compact support within (0, T ).

We rewrite the part involving Ψt(y) in (17) as follows:∫ T

0

∫
Ω0

−∂e
∂ρ

(ρ̃t(Φt(x)),Φt(x))

∫
Ω0

∇Wh(Φt(x)− Φt(y)) ·Ψt(y)µ0(dy)µ0(dx) dt

=

∫ T

0

∫
Ω0

∫
Ω0

∂e

∂ρ
(ρ̃t(Φt(y)),Φt(y)) ∇Wh(Φt(x)− Φt(y))µ0(dy) ·Ψt(x)µ0(dx) dt, (19)
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by subsequently interchanging the order of integration, using that the function ∇W is odd, and replacing x by y and vice
versa. A combination of (14), (15), (17), (18) and (19) yields for S′[Φ](Ψ) +Q[Φ](Ψ) an integral of the form∫ T

0

∫
Ω0

[. . .] ·Ψt(x)µ0(dx) dt,

where we deliberately do not explicitly write the integrand in square brackets. Since this integral equals 0 for all Ψ ∈
C∞c ((0, T );C∞c (Ω0;Rd)) – cf. (14) – the theorem of du Bois-Reymond yields that the integrand should vanish for almost
all t ∈ [0, T ] and for µ0-almost every x. Hence, we obtain

Φ̈t(x) = −
∫

Ω0

∇Wh(Φt(x)− Φt(y))

[
∂e

∂ρ
(ρ̃t(Φt(x)),Φt(x)) +

∂e

∂ρ
(ρ̃t(Φt(y)),Φt(y))

]
µ0(dy)

− ∇ye (ρ̃t(Φt(x)),Φt(x)) + q[µt](Φt(x), Φ̇t(x)). (20)

2.4.3 Step B

The transition to a particle system takes place by substitution of µ̄n0 =
∑n
i=1mi δxi,0 for µ0 in (20). Moreover, in ρ̃t and q

we replace µt by µ̄nt := Φt#µ̄
n
0 . Note that, after substitution, (20) holds µ̄n0 -a.e. and should therefore (only) be evaluated

at x = xk,0 for all k ∈ {1, . . . , n}. We obtain exactly (13).

2.5 Equations of motion via the route CAB

2.5.1 Step C

At the continuum level, deriving the Euler-Lagrange equations resembles considerably what was done in Sect. 2.4.2. Note
however that the action as defined in (5)–(6) is used. In (5) ρt(Φt(x)) occurs. The dependence on Φt that is explicitly
written down, corresponds to the position at which ρt is evaluated. In addition however, if Φt is varied, also the function
ρt itself changes. This is somewhat confusing, as this is an implicit, ‘hidden’ dependence of ρt on the motion mapping Φt.
However, the exact relation is given by (3), which we therefore substitute in (5). The variational derivative becomes

S′[Φ](Ψ) =

d

dε

(∫ T

0

∫
Ω0

(
1

2
|Φ̇t(x) + ε Ψ̇t(x)|2 − e

(
ρ0(x)

|J(Φt + εΨt)(x)| ,Φt(x) + εΨt(x)

))
ρ0(x) dx dt

)∣∣∣∣∣
ε=0

,

cf. (16). Some effort is needed to deal with the ε-dependence in the Jacobian matrix. We refer here to Sect. 2 of [33], where
the equation of motion is derived from the action, for the case where e has no explicit dependence on the spatial coordinate;
i.e. e = e(ρ). The determinant of the Jacobian matrix is a polynomial of the entries of that matrix. The basic idea in [33]
is that the chain rule has to be applied with respect to every element of the Jacobian matrix. To avoid having to introduce a
considerable amount of extra notation, we only state the result of [33] here:

Φ̈t(x) = − 1

ρt
∇
(
ρ2
t

∂e

∂ρ

)∣∣∣∣
Φt(x)

= −
(

2
∂e

∂ρ
(ρt(Φt(x))) + ρt(Φt(x))

∂2e

∂ρ2
(ρt(Φt(x)))

)
∇ρt(Φt(x)). (21)

On the right-hand side the gradient of the pressure P appears, due to the thermodynamic relation ∂e/∂ρ = P/ρ2. The
reader should note that the notation used in [33] differs substantially from ours, but that the philosophy of deriving the
equations of motion is the same.2

If e = e(ρ, y), and moreover, we include nonconservative forces, then instead of (21) we obtain

Φ̈t(x) = −
(

2
∂e

∂ρ
(ρt(Φt(x)),Φt(x)) + ρt(Φt(x))

∂2e

∂ρ2
(ρt(Φt(x)),Φt(x))

)
∇ρt(Φt(x))

− ∇ye (ρt(Φt(x)),Φt(x)) + q[ρt](Φt(x), Φ̇t(x)). (22)

The additional terms follow from similar steps as the ones leading to (20). We omit further details. Note that, in corre-
spondence with q as introduced before, the dependence on ρt in square brackets indicates the presence of a nonlocal term;
cf. (28). In the next step, this will become a dependence on the measure µt like before.

2 Another interesting observation in [33] is that the Lagrangian density – when formulated in terms of Eulerian coordinates – is just the pressure P .
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2.5.2 Step A

In this step, we formulate (22) in terms of measures. The only place where the measure µt can be incorporated directly, is in
the nonconservative force density. We write q[µt](Φt(x), Φ̇t(x)) instead of q[ρt](Φt(x), Φ̇t(x)). All the other occurrences
of ρt in (22) we approximate by ρ̃t as defined in (7). We obtain

Φ̈t(x) = −
(

2
∂e

∂ρ
(ρ̃t(Φt(x)),Φt(x)) + ρ̃t(Φt(x))

∂2e

∂ρ2
(ρ̃t(Φt(x)),Φt(x))

)
∇ρ̃t(Φt(x))

− ∇ye (ρ̃t(Φt(x)),Φt(x)) + q[µt](Φt(x), Φ̇t(x)). (23)

2.5.3 Step B

We take µ̄n0 :=
∑n
i=1mi δxi,0 and replace µt by µ̄nt := Φt#µ̄

n
0 in ρ̃t and q that appear in (23). We evaluate the resulting

equation at x = xk,0 for all k ∈ {1, . . . , n} to obtain

Φ̈t(xk,0) = −
(

2
∂e

∂ρ
(ρ̃t(Φt(xk,0)),Φt(xk,0)) + ρ̃t(Φt(xk,0))

∂2e

∂ρ2
(ρ̃t(Φt(xk,0)),Φt(xk,0))

)
∇ρ̃t(Φt(xk,0))

−∇ye (ρ̃t(Φt(xk,0)),Φt(xk,0)) + q[µ̄nt ](Φt(xk,0), Φ̇t(xk,0)), (24)

where each appearance of ρ̃t denotes a sum over all particle positions. Namely,

ρ̃t(Φt(xk,0)) =

n∑
j=1

mjWh(Φt(xk,0)− Φt(xj,0)), and

∇ρ̃t(Φt(xk,0)) =

n∑
j=1

mj ∇Wh(Φt(xk,0)− Φt(xj,0)).

2.6 Comparison of the resulting equations (13) and (24)

Procedures ABC and ACB yield the same equations of motion, namely (13). As anticipated already in Sect. 2.2, the equa-
tion resulting from Procedure CAB is different; see (24). This difference between the two final equations arose because
we introduced the regularization via ρ̃ at different stages. In fact, (13) contains an extra regularization in space, as we will
show now.

Note that only the term involving ∂e/∂ρ and ∂2e/∂ρ2 is different. In (13), we have

−
n∑
i=1

mi∇Wh(Φt(xk,0)− Φt(xi,0))

[
∂e

∂ρ
(ρ̃t(Φt(xk,0)),Φt(xk,0)) +

∂e

∂ρ
(ρ̃t(Φt(xi,0)),Φt(xi,0))

]
,

while the corresponding part in (24) is

−
(

2
∂e

∂ρ
(ρ̃t(Φt(xk,0)),Φt(xk,0)) + ρ̃t(Φt(xk,0))

∂2e

∂ρ2
(ρ̃t(Φt(xk,0)),Φt(xk,0))

)
∇ρ̃t(Φt(xk,0)).

Note that both of them contain a part −∂e
∂ρ

(ρ̃t(Φt(xk,0)),Φt(xk,0))∇ρ̃t(Φt(xk,0)), hence let us consider in (24) only

−
(
∂e

∂ρ
(ρ̃t(Φt(xk,0)),Φt(xk,0)) + ρ̃t(Φt(xk,0))

∂2e

∂ρ2
(ρ̃t(Φt(xk,0)),Φt(xk,0))

)
∇ρ̃t(Φt(xk,0))

= −∇
(
ρ̃t(Φt(xk,0))

∂e

∂ρ
(ρ̃t(Φt(xk,0)),Φt(xk,0))

)
. (25)

To obtain this equality, we have assumed that ∇y∂e/∂ρ ≡ 0; this assumption anticipates the choice we make in (26). Let
us even go back one more step and consider this term before the introduction of ρ̃, i.e. as in (22). To see how this term
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relates to the corresponding one in (13), we take the convolution with Wh, and proceed as follows:

−
∫

Ωt

Wh(ξ − y)∇y
(
ρt(y)

∂e

∂ρ
(ρt(y), y)

)
dy =

∫
Ωt

∇yWh(ξ − y) ρt(y)
∂e

∂ρ
(ρt(y), y) dy

= −
∫

Ω0

∇Wh(ξ − Φt(y))
∂e

∂ρ
(ρt(Φt(y)),Φt(y)) ρt(Φt(y))|JΦt(y)| dy

= −
∫

Ω0

∇Wh(ξ − Φt(y))
∂e

∂ρ
(ρt(Φt(y)),Φt(y)) ρ0(y) dy.

In the first step, we performed integration by parts, with vanishing boundary terms on ∂Ωt. This is because Ωt =
supp ρt and hence ρt vanishes on its boundary. Now replace ρ0(y)dy by µ0(dy) and approximate ρt by ρ̃t. Take
µ0 :=

∑n
i=1mi δxi,0 and evaluate at ξ = Φt(xk,0) and obtain

−
n∑
i=1

mi∇Wh(Φt(xk,0)− Φt(xi,0))
∂e

∂ρ
(ρ̃t(Φt(xi,0)),Φt(xi,0)) .

This expression exactly appears in (13). To summarize: the connection between (13) and (24) is that in the former during
the derivation procedure an extra regularization in space was introduced for a part of the right-hand side.

Note that, if we only consider the part involving ∂e/∂ρ, (13) is the same as Eq. (3.8) in [27]. The notation used therein
shows the direct dependence on the pressure. In Eq. (3.5) of [27], the equivalent of (24) is given. The reason why (13) is
the one traditionally used in the SPH community is given in [27]: it does conserve linear and angular momentum exactly,
as opposed to (24). Having derived the schemes, we are now able also to elaborate on the remark already made in the
introduction: (24) “requires the gradient of the pressure field to be expressed analytically, while the pressure itself does
not appear in the numerical scheme”. The first part on the right-hand side of (24) is – anticipating (27) – of the form

−1

ρ̃

d

dρ

(
ρ̃2F̄ ′(ρ̃)

)
∇ρ̃ = −1

ρ̃

d

dρ
(P (ρ̃))∇ρ̃. Hence we need an analytical expression for

d

dρ
(P (ρ̃)).

2.7 Measure-valued formulation

In Sect. 2.3, 2.4 and 2.5 we derived particle-based schemes. To establish their convergence (as n→∞) we use a measure-
valued formulation. Such formulation incorporates both the limit and the approximating sequence. Hence, we focus on the
measure-formulations (20) and (23), without the specific choice µ0 = µ̄n0 . Our convergence proof is applicable to a class
of approximating measures that is much broader than just sums of Dirac deltas. The SPH-inspired particle approach is a
special case; see Remark 3.13.

Although (20) and (23) are different (cf. Sect. 2.6), we wish to establish the convergence proof for both formulations
simultaneously. Hence, we introduce a switching parameter θ ∈ {0, 1} to unify both variants in a single equation of
motion. First, we assume that e is of the form

e(ρ, y) := V (y) + F̄ (ρ), (26)

in agreement with the remark we already made underneath (25). Note that ∂e/∂ρ = F̄ ′ and ∇ye = ∇V . Here, V ∈
C2
b (Rd;R) describes the portion of potential energy which is due to a gravitational or magnetic field and F̄ ∈ C2(R+;R),

where R+ := (0,∞) the potential energy due to the thermodynamics of the medium under consideration. This decom-
position of e is typical for an ideal medium, such as a compressible inviscid fluid. Note moreover that this is a common
modeling assumption in the derivation of the SPH equations for a system of particles [27]. We introduce two auxiliary
functions defined by

F0(ρ) :=
1

ρ

d

dρ

(
ρ2F̄ ′(ρ)

)
, and F1(ρ) := F̄ ′(ρ). (27)

In the sequel, we use the generic notation Fθ, with θ ∈ {0, 1}, to denote these functions.
We choose q to be of the form

q[µ](y, u) := −η(y)u+ (K ∗ µ)(y), (28)

with η ∈ C1
b (Rd;R+) and K ∈ C1

b (Rd;Rd). The K-term describes non-local interactions within the system, while the
η-term is a viscous term. We use −η · u, which is a simplified version of the usual viscous term in SPH that (also) involves
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∆Wh ∗ u; see [27].

We assign the value θ = 0 to the formulation in (23), and θ = 1 to (20). Both equations are now simultaneously written as:

Φ̈t(x) = −Fθ (ρ̃t(Φt(x)))∇ρ̃t(Φt(x))− θ (∇Wh ∗ [(Fθ ◦ ρ̃t)µt])(Φt(x))

− ∇V (Φt(x)) − η(Φt(x)) Φ̇t(x) + (K ∗ µt)(Φt(x)). (29)

Here we use the shorthand notation

(∇Wh ∗ [(Fθ ◦ ρ̃t)µt])(ξ) =

∫
Ωt

∇Wh(ξ − y)Fθ(ρ̃t(y))µt(dy).

In (29) we slightly abuse notation, and the equation should be read as follows: whenever θ = 0 we disregard the complete
term θ (∇Wh ∗ [(Fθ ◦ ρ̃t)µt])(Φt(x)), irrespective of whether the convolution term is well-defined, bounded etc.

Remark 2.1 We emphasize that F0 and F1 are physically different objects in the sense that F0 contains all contributions
of F̄ to the flow, while F1 only contains part of that influence. Hence, although the notation might suggest so, by setting
θ = 1 we are not adding terms. We use one function Fθ to facilitate the presentation in the sequel. However, F0 and F1 do
have the same physical dimension and e.g. if F̄ is given by F̄ (ρ) ∼ ρκ for some κ ∈ R \ {0}, then both F0, F1 ∼ ρκ−1.

Now we arrive at the central evolution problem we will consider in the rest of this paper. Fix a final time T > 0. Let
P(Rd) be the space of probability measures on Rd. Assume that µ0 ∈ P(Rd) and that there is an r0 > 0 such that

suppµ0 ⊂ B(r0). (30)

Let v0 ∈ C1
b (Rd;Rd) and θ ∈ {0, 1} be fixed. We consider the system

Φ̈t(x) = −Fθ (ρ̃t(Φt(x)))∇ρ̃t(Φt(x))− θ (∇Wh ∗ [(Fθ ◦ ρ̃t)µt])(Φt(x))

−∇V (Φt(x))− η(Φt(x)) Φ̇t(x) + (K ∗ µt)(Φt(x));
ρ̃t := Wh ∗ µt;
µt = Φt#µ0;

Φ0(x) = x, Φ̇0(x) = v0(x),

(31)

for all x ∈ suppµ0 and all t ∈ (0, T ]. We remark that this condition implies the one with (20): that equation is required to
hold for almost all t ∈ [0, T ] and for µ0-almost every x.

3 Convergence

In this section we introduce some preliminary notions, and summarize the required assumptions together with the main
convergence result (see Theorem 3.11 and Corollary 3.12). The theorem and corollary provide a general result, of which
the convergence of SPH schemes is a special case; see Remark 3.13. The proof of Theorem 3.11 is given in Sect. 3.4.

3.1 Preliminaries

Fix a constant integer d ∈ N+ that denotes the spatial dimension.

Definition 3.1 (Push-forward) The push-forward of a probability measure µ ∈ P(Rd) by a measurable mapping Φ :
Rd → Rd, notation Φ#µ, is defined by

(Φ#µ)(B) := µ(Φ−1(B))

for all measurable B ⊂ Rd, where Φ−1(B) denotes the preimage {x ∈ Rd : Φ(x) ∈ B}. Equivalently, we can define Φ#µ
as the push-forward of µ by Φ if∫

Rd
f(x) (Φ#µ)(dx) =

∫
Rd
f(Φ(x))µ(dx)

for all measurable, bounded functions f on Rd.
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Definition 3.2 (Joint representation) A joint representation of two measures µ1, µ2 ∈ P(Rd) is a measure π on Rd×Rd
such that

π(A× Rd) = µ1(A), and π(Rd ×B) = µ2(B),

for all A and B in the Borel σ-algebra of Rd. We denote by Π(µ1, µ2) the set of all joint representations of µ1 and µ2.
Joint representations are also called couplings.

A useful property of a joint representation π ∈ Π(µ1, µ2) is that for each i ∈ {1, 2}∫
Rd×Rd

f(xi)π(dx1, dx2) =

∫
Rd
f(x)µi(dx) (32)

for all measurable, bounded functions f on Rd. In fact, this is an alternative definition.

Definition 3.3 (Wasserstein distance) The Wasserstein distance between two probability measures µ1, µ2 ∈ P(Rd) is
defined as

W(µ1, µ2) := inf
π∈Π(µ1,µ2)

∫
Rd×Rd

|x− y|π(dx, dy).

Note that, to be more precise, we should call this the 1-Wasserstein distance, as a special case of the p-Wasserstein
distance for which the cost function |x − y|p is used in the integral. The 1-Wasserstein distance is usually written as W1,
but we will stick toW to avoid confusion with the smoothing function Wh. The particular choice p = 1 is made because
it is compatible with the Lipschitz properties of the functions and the motion mapping that we use. This is what Sect. 3
hinges on. For an exposition on the Wasserstein distance and the related concept of optimal transport, we refer to [35]
and [36].

3.2 Assumptions

Throughout the paper, we assume the following:
Assumption 3.4 The functions V , η and K satisfy V ∈ C2

b (Rd;R), η ∈ C1
b (Rd;R+) and K ∈ C1

b (Rd;Rd).
Remark 3.5 Note in particular that the above assumption implies that∇V and K are Lipschitz continuous. We denote

their Lipschitz constants by ‖∇V ‖Lip and ‖K‖Lip, respectively.
For Fθ and Wh we have requirements that depend on the value of θ. Recall that

R+ := (0,∞) and define R+
0 := [0,∞).

Assumption 3.6 The function Wh ∈ C2
b (Rd;R+

0 ) is even and satisfies
∫
RdWh(x) dx = 1.

Assumption 3.7 (The case θ = 0) We require that F0 ∈ C1(R+;R). Moreover, we assume that there is a constant
M1 > 0 such that for all µ ∈ P(Rd)

sup
x∈Rd

|F0 ((Wh ∗ µ)(x))∇(Wh ∗ µ)(x)| 6M1. (33)

Define the quantity r(T ) := r0 + T‖v0‖∞ + 1
2 T

2 (‖∇V ‖∞ +M1 + ‖K‖∞), cf. (43), and the set

UT,Wh
:=

{
u ∈ R+

0 :

(
inf

B(2r(T ))
Wh

)
6 u 6 ‖Wh‖∞

}
.

Ultimately, we assume that there are constants M2,M3 > 0 such that

sup
u∈UT,Wh

|F0(u)| 6M2, and sup
u∈UT,Wh

|F ′0(u)| 6M3. (34)

Remark 3.8 The upper bound in (33) is needed to get an a priori bound on the propagation speed in Lemma 3.14.
Consequently, we can restrict ourselves to measures with bounded support afterwards; cf. Corollary 3.15.
For all t ∈ [0, T ], the measure µt that solves (31) has its support contained in B(r(T )). Since µt is a probability measure,
and ρ̃t = Wh ∗ µt, on [0, T ] the function ρ̃t can only take values in UT,Wh

, cf. (51)–(52). Consequently, to bound |F0(ρ̃t)|
and |F ′0(ρ̃t)| we only need to take the supremum over values in UT,Wh

. This is what we do in (34). Due to this technicality,
an F0 that satisfies Assumption 3.7 may still have singularities at the origin, but only if Wh is strictly positive everywhere
in B(2r(T )). Such F0 and Wh are used in [9]. See also Sect. 3.5 for further discussion.
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If θ = 1 we need the following assumption:
Assumption 3.9 (The case θ = 1) We assume that F1 ∈ C1(R+

0 ;R).

Under Assumption 3.9, there are constants M2,M3 > 0 such that

sup
u∈[0,‖Wh‖∞]

|F1(u)| 6M2, and sup
u∈[0,‖Wh‖∞]

|F ′1(u)| 6M3.

Subsequently, define M1 := 2M2 ‖∇Wh‖∞.

In both cases θ = 0 and θ = 1, we use the same letters M1, M2 and M3 for the constants, to ease notation in the se-
quel.

Remark 3.10 We need Assumption 3.9 to achieve the a priori bound in Lemma 3.14 for θ = 1. However, Assumption
3.9 does not allow for singularities in F1 around zero. We demonstrate now why a weaker assumption for F1, resembling
(33) is not feasible. Assume that F1(ρ) := ρα with α ∈ (−1, 0). This is the case also considered in [9]. To bound the first
term on the right-hand side of (29), in [9] it is assumed that |∇Wh(ξ)| 6 c|Wh(ξ)|−α for some c > 0. We would need an
estimate on

sup
x∈suppµ

|(∇Wh ∗ [(F1 ◦ (Wh ∗ µ)) · µ])(x)| , (35)

for fixed h > 0 and uniformly with respect to µ ∈ P(Rd). Let Wh be strictly positive everywhere. Since Wh ∈
L1(Rd), limξ→∞Wh(ξ) = 0. Let Wh satisfy the aforementioned condition |∇Wh(ξ)| 6 c|Wh(ξ)|−α. Then also
limξ→∞ |∇Wh(ξ)| = 0. Under these (not very strict) conditions one can show that (35) is unbounded; to see this, use
e.g. the sequence of measures (µκ)κ∈N+ defined by µκ := (δ−κe1 + δκe1 + δ(κ+1)e1

)/3, where e1 is the first unit vector in
Rd. Note in particular that (35) is unbounded for a Gaussian Wh. The Gaussian however is one of the standard choices for
Wh that we do want to allow for.

3.3 Main convergence result

Before we can prove the convergence of SPH particle systems, we need to establish the well-posedness of (31); that is, the
existence and uniqueness of solutions, and in particular the continuous dependence on the initial conditions.

For any r > 0, define Pr(Rd) := {µ ∈ P(Rd) : suppµ ⊂ B(r)}. We also define A as

A :=
{

Ψ : B(r0)→ C2([0, T ];Rd) : Ψt(·) ∈ C(B(r0);Rd) for all t ∈ [0, T ]
}
.

Hence, each element of A is a mapping (x, t) 7→ Ψt(x) that for each fixed x is twice continuously differentiable in time,
and for each fixed t is continuous in the spatial variable x.

Theorem 3.11 (Well-posedness of solutions) Let h > 0 be fixed and let θ ∈ {0, 1}. Assume that v0 ∈ C1
b (Rd;Rd), and

that Assumptions 3.4 and 3.6 hold. Let moreover (depending on the value of θ) Assumption 3.7 or 3.9 be satisfied.
Then we have the following results:

1. For each µ0 ∈ Pr0(Rd) there exists a unique pair (µ,Φ) ∈ C([0, T ];Pr(T )(Rd))×A that satisfies (31);

2. Solutions to (31) are continuous with respect to their initial conditions. In particular that is, if for i ∈ {1, 2} the
pairs (µi,Φi) ∈ C([0, T ];Pr(T )(Rd)) × A are the (unique) solutions of (31) corresponding to initial conditions
µi0 ∈ Pr0(Rd), then

sup
t∈[0,T ]

W(µ1
t , µ

2
t ) 6 (1 + T (‖∇v0‖∞ + ‖η‖∞)) exp

(
‖η‖∞ T +

1

2
(M4 +M5)T 2

)
W(µ1

0, µ
2
0), (36)

for some constants M4,M5 > 0 that are independent of µ1
0 and µ2

0.

The proof is given in Sect. 3.4. The main result of the present paper is a direct consequence of the previous theorem that
roughly reads: if we have a converging sequence of initial conditions (e.g. particle approximations) then the sequence of
corresponding solutions converges. This statement is made precise in the following corollary.
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Corollary 3.12 (Convergence of approximate solutions) Fix θ ∈ {0, 1}. Consider a family of initial conditions
{µn0}n∈N ⊂ Pr0(Rd) such that

W(µn0 , µ0)
n→∞−→ 0, (37)

for some µ0 ∈ Pr0(Rd). Let (µn,Φn) be the solution of (31) with initial distribution µn0 and the same initial velocity v0 for
all n. Let (µ,Φ) be the solution corresponding to the initial distribution µ0 and the initial velocity v0. Then µn converges
to µ in the following sense:

sup
t∈[0,T ]

W(µnt , µt)
n→∞−→ 0.

Remark 3.13 (Convergence of SPH particle approximations) In particular, Corollary 3.12 implies the convergence of
SPH particle approximations. These are the (time-dependent) discrete measures µ̄nt =

∑n
k=1mkδΦt(xk,0) associated to the

particle schemes:

Φ̈t(xk,0) = −
n∑
i=1

mi∇Wh(Φt(xk,0)− Φt(xi,0)) [Fθ (ρ̃t(Φt(xk,0))) + θFθ (ρ̃t(Φt(xi,0)))]

−∇V (Φt(xk,0)) − η(Φt(xk,0)) Φ̇t(xk,0) + (K ∗ µ̄nt )(Φt(xk,0)), (38)

where the initial measures are of the form µ̄n0 :=
∑n
j=1mjδxj,0 ∈ Pr0(Rd) for some {mj}nj=1 ⊂ R+ such that

∑n
j=1mj =

1, and for some {xj,0}nj=1 ⊂ B(r0). The measure-valued trajectories (µ̄nt )06t6T converge, provided that the initial
measures converge.

3.4 Proof of the main convergence theorem

Before proving Theorem 3.11, we need two auxiliary lemmas concerning the properties of the motion mapping Φt. The
first lemma is an upper estimate for Φt.

Lemma 3.14 Let Assumptions 3.4, 3.6 and 3.7 or 3.9 (depending on the value of θ) be satisfied. For any given µ ∈
C([0, T ];P(Rd)) and for any x ∈ Rd assume that the mapping t 7→ Φt is a solution to (29) completed with ρ̃t := Wh ∗µt,
Φ0(x) = x and Φ̇0(x) = v0(x). Then for all t ∈ [0, T ] it holds that

|Φt(x)| 6 |x|+ t‖v0‖∞ +
1

2
t2 (M1 + ‖∇V ‖∞ + ‖K‖∞). (39)

P r o o f. Using an integrating factor H(t) := exp
(∫ t

0
η(Φτ (x)) dτ

)
> 1, we deduce from (29) that

|Φt(x)| 6|Φ0(x)|+
∣∣∣∣∫ t

0

v0(x)

H(s)
ds

∣∣∣∣+

∣∣∣∣∫ t

0

1

H(s)

∫ s

0

H(r)
(

Φ̈r(x) + η(Φr(x)) Φ̇r(x)
)
dr ds

∣∣∣∣
6|x|+ t ‖v0‖∞ +

∫ t

0

∫ s

0

H(r)

H(s)

∣∣∣Φ̈r(x) + η(Φr(x)) Φ̇r(x)
∣∣∣ dr ds.

Since η is a positive function and hence 0 6 H(r)/H(s) 6 1 in the inner integral, it follows that

|Φt(x)| 6 |x|+ t ‖v0‖∞ +

∫ t

0

∫ s

0

∣∣∣∣−∇V (Φr(x)) + (K ∗ µr)(Φr(x))

− Fθ ((Wh ∗ µr)(Φr(x)))∇(Wh ∗ µr)(Φr(x))− θ (∇Wh ∗ [(Fθ ◦ (Wh ∗ µr))µr])(Φr(x)))

∣∣∣∣ dr ds. (40)

In the case θ = 0, the following estimate holds for all x ∈ Rd due to Assumption 3.7:

|Fθ ((Wh ∗ µr)(Φr(x)))∇(Wh ∗ µr)(Φr(x)) + θ (∇Wh ∗ [(Fθ ◦ (Wh ∗ µr))µr])(Φr(x)))|
= |F0 ((Wh ∗ µr)(Φr(x)))∇(Wh ∗ µr)(Φr(x))| 6 M1. (41)
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Note that for any µ ∈ P(Rd) it holds that ‖Wh ∗ µ‖∞ 6 ‖Wh‖∞. Hence, in the case θ = 1:

|Fθ ((Wh ∗ µr)(Φr(x)))∇(Wh ∗ µr)(Φr(x)) + θ (∇Wh ∗ [(Fθ ◦ (Wh ∗ µr))µr])(Φr(x)))|
6 M2 ‖∇Wh‖∞ + ‖∇Wh‖∞M2 = M1, (42)

where the bounds of Assumption 3.9 are used.

A combination of (40), (41) and (42) yields that for each θ ∈ {0, 1}

|Φt(x)| 6 |x|+ t ‖v0‖∞ +

∫ t

0

∫ s

0

(‖∇V ‖∞ + ‖K‖∞ +M1) dr ds

holds for all x ∈ Rd and t ∈ [0, T ], from which the statement of the lemma follows.

Corollary 3.15 Let µ0 ∈ Pr0(Rd), and let Assumptions 3.4, 3.6 and 3.7 or 3.9 (depending on the value of θ) be satisfied.
Then any solution of (31) must satisfy

suppµt ⊂ B(r(t)),

for each t ∈ [0, T ], where

r(t) := r0 + t‖v0‖∞ +
1

2
t2 (M1 + ‖∇V ‖∞ + ‖K‖∞). (43)

The next lemma provides a Lipschitz-like estimate on Φt.

Lemma 3.16 Let ν1, ν2 ∈ C([0, T ];Pr(T )(Rd)) be given, with supp νi0 ⊂ B(r0) for each i ∈ {1, 2}. Consider the
motion mappings corresponding to νi defined by:

Φ̈ν
i

t (ξ) =− Fθ
(

(Wh ∗ νit)(Φν
i

t (ξ))
)
∇(Wh ∗ νit)(Φν

i

t (ξ))− θ (∇Wh ∗ [(Fθ ◦ (Wh ∗ νit))νit ])(Φν
i

t (ξ))

−∇V (Φν
i

t (ξ))− η(Φν
i

t (ξ))Φ̇ν
i

t (ξ) + (K ∗ νit)(Φν
i

t (ξ)) (44)

for all ξ ∈ B(r0) and all t ∈ [0, T ], with initial conditions Φν
i

0 (ξ) = ξ, Φ̇ν
i

0 (ξ) = v0(ξ). Then, for all t ∈ [0, T ] and
x, y ∈ B(r0) it holds that

|Φν1

t (x)− Φν
2

t (y)| 6 (1 + t ‖η‖∞) |x− y|+ t |v0(x)− v0(y)|

+

∫ t

0

[M4 (t− s) + ‖η‖∞] |Φν1

s (x)− Φν
2

s (y)| ds+M5

∫ t

0

(t− s)W(ν1
s , ν

2
s ) ds,

(45)

where

M4 := ‖∇V ‖Lip + (1 + θ)M2 ‖D2Wh‖∞ +M3 ‖∇Wh‖2∞ + ‖K‖Lip , and

M5 := (1 + θ)M2 ‖D2Wh‖∞ + (1 + θ)M3 ‖∇Wh‖2∞ + ‖K‖Lip .

P r o o f. Note that, by the Fubini’s theorem, for any integrable function f , we have

∫ t

0

∫ r

0

f(s) ds dr =

∫ t

0

∫ t

s

f(s) dr ds =

∫ t

0

(t− s)f(s) ds. (46)
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Integration of (44) in time together with (46) yields that

|Φν1

t (x)− Φν
2

t (y)| 6|x− y|+ t |v0(x)− v0(y)|+
∫ t

0

(t− s)|∇V (Φν
1

s (x))−∇V (Φν
2

s (y))| ds

+

∣∣∣∣∫ t

0

∫ r

0

η(Φν
1

s (x))Φ̇ν
1

s (x)− η(Φν
2

s (y))Φ̇ν
2

s (y) ds dr

∣∣∣∣
+

∫ t

0

(t− s)
∣∣∣Fθ ((Wh ∗ ν1

s )(Φν
1

s (x))
)
∇(Wh ∗ ν1

s )(Φν
1

s (x))

−Fθ
(

(Wh ∗ ν2
s )(Φν

2

s (y))
)
∇(Wh ∗ ν2

s )(Φν
2

s (y))
∣∣∣ ds

+ θ

∫ t

0

(t− s)
∣∣∣(∇Wh ∗ [(Fθ ◦ (Wh ∗ ν1

s ))ν1
s ])(Φν

1

s (x))

−(∇Wh ∗ [(Fθ ◦ (Wh ∗ ν2
s ))ν2

s ])(Φν
2

s (y))
∣∣∣ ds

+

∫ t

0

(t− s)
∣∣∣(K ∗ ν1

s )(Φν
1

s (x))− (K ∗ ν2
s )(Φν

2

s (y))
∣∣∣ ds. (47)

Furthermore, we have∫ t

0

(t− s)|∇V (Φν
1

s (x))−∇V (Φν
2

s (y))| ds 6 ‖∇V ‖Lip

∫ t

0

(t− s)|Φν1

s (x)− Φν
2

s (y)| ds, (48)

and

∣∣∣∣∫ t

0

∫ r

0

η(Φν
1

s (x))Φ̇ν
1

s (x)− η(Φν
2

s (y))Φ̇ν
2

s (y) ds dr

∣∣∣∣ =

∣∣∣∣∣∣
∫ t

0

∫ r

0

d

ds

∫ Φν
1

s (x)

Φν2s (y)

η(z) dz

 ds dr
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫ t

0

∫ Φν
1

r (x)

Φν2r (y)

η(z) dz −
∫ x

y

η(z) dz

 dr
∣∣∣∣∣∣ 6 ‖η‖∞

∫ t

0

|Φν1

r (x)− Φν
2

r (y)| dr + ‖η‖∞ t |x− y|. (49)

Regarding the term involving Fθ on the third and fourth line of (47), we proceed as follows∣∣Fθ ((Wh ∗ ν1
s )(ξ1)

)
∇(Wh ∗ ν1

s )(ξ1)− Fθ
(
(Wh ∗ ν2

s )(ξ2)
)
∇(Wh ∗ ν2

s )(ξ2)
∣∣

6
∣∣Fθ ((Wh ∗ ν1

s )(ξ1)
)∣∣ ∣∣∇(Wh ∗ ν1

s )(ξ1)−∇(Wh ∗ ν1
s )(ξ2)

∣∣
+
∣∣Fθ ((Wh ∗ ν1

s )(ξ1)
)∣∣ ∣∣∇(Wh ∗ ν1

s )(ξ2)−∇(Wh ∗ ν2
s )(ξ2)

∣∣
+
∣∣Fθ ((Wh ∗ ν1

s )(ξ1)
)
− Fθ

(
(Wh ∗ ν1

s )(ξ2)
)∣∣ ∣∣∇(Wh ∗ ν2

s )(ξ2)
∣∣

+
∣∣Fθ ((Wh ∗ ν1

s )(ξ2)
)
− Fθ

(
(Wh ∗ ν2

s )(ξ2)
)∣∣ ∣∣∇(Wh ∗ ν2

s )(ξ2)
∣∣ . (50)

We only consider ξ1, ξ2 ∈ B(r(T )). For each i, j ∈ {1, 2}, we have the following estimates:

(Wh ∗ νis)(ξj) 6 ‖Wh‖∞, (51)

(since νis is a probability measure), and

(Wh ∗ νis)(ξj) > inf
ξj ,z∈B(r(T ))

Wh(ξj − z) = inf
B(2r(T ))

Wh. (52)

Thus we get (Wh ∗ νis)(ξj) ∈ UT,Wh
. We proceed with the estimation of (50):∣∣Fθ ((Wh ∗ ν1

s )(ξ1)
)
∇(Wh ∗ ν1

s )(ξ1)− Fθ
(
(Wh ∗ ν2

s )(ξ2)
)
∇(Wh ∗ ν2

s )(ξ2)
∣∣

6 M2 ‖D2Wh‖∞ |ξ1 − ξ2|+M2

∣∣∇(Wh ∗ ν1
s )(ξ2)−∇(Wh ∗ ν2

s )(ξ2)
∣∣

+M3 ‖∇Wh‖2∞ |ξ1 − ξ2|+M3 ‖∇Wh‖∞
∣∣(Wh ∗ ν1

s )(ξ2)− (Wh ∗ ν2
s )(ξ2)

∣∣ , (53)
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where we used that ‖∇(Wh ∗ ν2
s )‖∞ 6 ‖∇Wh‖∞, ‖D2(Wh ∗ ν2

s )‖∞ 6 ‖D2Wh‖∞ and the fact that ‖ψ‖Lip = ‖∇ψ‖∞
for any differentiable function ψ. Note that:∣∣(Wh ∗ ν1

s )(ξ2)− (Wh ∗ ν2
s )(ξ2)

∣∣ =

∣∣∣∣∫ Wh(ξ2 − z) ν1
s (dz)−

∫
Wh(ξ2 − w) ν2

s (dw)

∣∣∣∣
=

∣∣∣∣∫ (Wh(ξ2 − z)−Wh(ξ2 − w)) π̃s(dz, dw)

∣∣∣∣
6
∫
|Wh(ξ2 − z)−Wh(ξ2 − w)| π̃s(dz, dw)

6 ‖∇Wh‖∞
∫
|z − w| π̃s(dz, dw),

where π̃s ∈ Π(ν1
s , ν

2
s ) is arbitrary and the second equality follows from (32). By minimizing over all couplings in

Π(ν1
s , ν

2
s ), we obtain∣∣(Wh ∗ ν1

s )(ξ2)− (Wh ∗ ν2
s )(ξ2)

∣∣ 6 ‖∇Wh‖∞W(ν1
s , ν

2
s ). (54)

We stress that the bound (54) is independent of the choice of ξ1, ξ2. Analogously, we have∣∣∇(Wh ∗ ν1
s )(ξ2)−∇(Wh ∗ ν2

s )(ξ2)
∣∣ 6 ‖D2Wh‖∞W(ν1

s , ν
2
s ). (55)

It follows that∣∣Fθ ((Wh ∗ ν1
s )(ξ1)

)
∇(Wh ∗ ν1

s )(ξ1)− Fθ
(
(Wh ∗ ν2

s )(ξ2)
)
∇(Wh ∗ ν2

s )(ξ2)
∣∣

6
(
M2 ‖D2Wh‖∞ +M3 ‖∇Wh‖2∞

) (
|ξ1 − ξ2|+W(ν1

s , ν
2
s )
)
. (56)

If θ = 1, similar estimates as in the first term on the right-hand side of (53), and as in (54) and (55) yield∣∣(∇Wh ∗ [(Fθ ◦ (Wh ∗ ν1
s ))ν1

s ])(ξ1)− (∇Wh ∗ [(Fθ ◦ (Wh ∗ ν2
s ))ν2

s ])(ξ2)
∣∣

6 M2 ‖D2Wh‖∞ |ξ1 − ξ2|+
(
M2 ‖D2Wh‖∞ +M3 ‖∇Wh‖2∞

)
W(ν1

s , ν
2
s ). (57)

The last term in (47) we treat as follows:∣∣(K ∗ ν1
s )(ξ1)− (K ∗ ν2

s )(ξ2)
∣∣ 6 ∣∣(K ∗ ν1

s )(ξ1)− (K ∗ ν1
s )(ξ2)

∣∣+
∣∣(K ∗ ν1

s )(ξ2)− (K ∗ ν2
s )(ξ2)

∣∣
6 ‖K‖Lip

(
|ξ1 − ξ2|+W(ν1

s , ν
2
s )
)
. (58)

The estimate of the second term is obtained like in (54).

We combine (47), (48), (49), (56), (57) and (58) to get

|Φν1

t (x)− Φν
2

t (y)| 6 (1 + t ‖η‖∞) |x− y|+ t |v0(x)− v0(y)|

+

∫ t

0

[M4 (t− s) + ‖η‖∞] |Φν1

s (x)− Φν
2

s (y)| ds + M5

∫ t

0

(t− s)W(ν1
s , ν

2
s ) ds,

with M4 and M5 as defined in the statement of the lemma.

Now we have all ingredients to prove Theorem 3.11.

Proof of Part 1 of Theorem 3.11.
If M5 = 0 then the well-posedness of (31) is straightforward. In that case, Fθ ◦ (Wh ∗ µt) = 0 on B(r(T )) for all t and
moreover K must be constant, so the first equation in (31) is independent of µt. The Picard-Lindelöf Theorem guarantees,
for each x ∈ B(r0), the existence and uniqueness of a solution to (31). Moreover, the solution to the ODE depends contin-
uously on the initial data, which implies that x 7→ Φt(x) is continuous for every t ∈ [0, T ] and hence Φt : B(r0)→ Rd is
measurable. The push-forward of µ0 by Φt is therefore well-defined for all t. The solution (µt)06t6T is uniquely defined
by µt = Φt#µ0.
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If M5 6= 0, the well-posedness proof is based on a fixed-point argument (Banach’s Fixed Point Theorem). Let T > 0
be fixed. Choose N ∈ N+ large enough, such that T ∗ := T/N satisfies

κT∗ :=
1

2
(T ∗)2M5 exp

(
‖η‖∞ T ∗ +

1

2
M4 (T ∗)2

)
< 1. (59)

Let j ∈ {1, . . . , N} be fixed. Suppose that µ(j)
0 ∈ P(Rd) and v

(j)
0 ∈ C1

b (Ω(j);Rd) are given, with Ω(j) such that
suppµ

(j)
0 ⊂ Ω(j). Consider a mapping F (j) : ν 7→ µ := F (j)(ν) from

Cj :=
{
ν ∈ C([0, T ∗];Pr(jT∗)(Rd)) : ν|t=0 = µ

(j)
0

}
(60)

to itself, defined by

µt = [Φ
(j)
t ]ν#µ

(j)
0 , for all t ∈ [0, T ∗],

where the motion mapping [Φ(j)]ν : Ω(j) → C2([0, T ∗];Rd) is the solution to the following ODE

[Φ̈
(j)
t ]ν(x) = −Fθ

(
ρ̃t([Φ

(j)
t ]ν(x))

)
∇ρ̃t([Φ(j)

t ]ν(x))− θ (∇Wh ∗ [(Fθ ◦ ρ̃t)νt])([Φ(j)
t ]ν(x))

−∇V
(

[Φ
(j)
t ]ν(x)

)
− η

(
[Φ

(j)
t ]ν(x)

)
[Φ̇

(j)
t ]ν(x) + (K ∗ νt)([Φ(j)

t ]ν(x));

ρ̃t := Wh ∗ νt;

[Φ
(j)
0 ]ν(x) = x, [Φ̇

(j)
0 ]ν(x) = v

(j)
0 (x).

(61)

Endowed with the metric

sup
τ∈[0,T∗]

W(µ1(τ), µ2(τ)),

Cj is a complete metric space for arbitrary j ∈ {1, . . . , N}. This is because the space of continuous functions on a complete
metric space (in this case: Pr(jT∗)(Rd) endowed withW) is complete. Moreover, by fixing the initial condition, we select
a closed subspace, while any closed subspace of a complete space is complete itself. Further details are left to the reader.
A full proof can be found in Appendix A of [18].

Note that a fixed point µ(j) of this mapping together with the corresponding motion mapping Φ(j) is a solution of (31)
on [0, T ∗] with initial data µ(j)

0 and v(j)
0 . We create a hierarchy of the mappings F (j) for j ∈ {1, . . . , N} by defining

µ
(1)
0 := µ0

µ
(j+1)
0 := µ

(j)
T∗

v
(1)
0 := v0

v
(j+1)
0 := Φ̇

(j)
T∗

Ω(1) := B(r0)

Ω(j+1) := Φ
(j)
T∗

(
Ω(j)

)
Such definition only makes sense if mapping j actually has a unique fixed point and thus µ(j)

T∗ , Φ
(j)
T∗ and Φ̇

(j)
T∗ are well-

defined. In view of the to be constructed hierarchy, suppµ
(j)
0 ⊂ B(r((j − 1)T ∗)) should be satisfied for each j.

For any ν ∈ Cj the image µ = F (j)(ν) exists, and it is an element of Cj . This is the case, because well-posedness of
the motion mapping (for given ν and for each x ∈ Ω(j)) follows from Picard-Lindelöf (see before) and guarantees the
existence and uniqueness of µ. Moreover, the support of the image measure, suppµt, is contained in a ball of radius

r(jT ∗) = r0 + jT ∗ ‖v0‖∞ +
1

2
(jT ∗)2 (M1 + ‖∇V ‖∞ + ‖K‖∞).

This is easily checked by use of (39) and a recursive relation involving ‖[Φ̇(j)
T∗ ]

ν‖∞ = ‖v(j+1)
0 ‖∞ for each j ∈ {1, . . . , N−

1}. Thus, the image µ of our mapping F (j) is an element of Cj .
Consider two measures ν1, ν2 ∈ Cj and their corresponding images µ1 := F (j)(ν1) and µ2 := F (j)(ν2). Let π0 ∈
Π(µ

(j)
0 , µ

(j)
0 ) be arbitrary. For an arbitrary fixed t ∈ [0, T ∗] define πt ∈ Π(µ1

t , µ
2
t ) by

πt :=
(

[Φ
(j)
t ]ν

1

, [Φ
(j)
t ]ν

2
)

#π0.
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Note that this πt is indeed a joint representation of µ1
t and µ2

t for each t. We drop the dependence on j of π0, µ
1, µ2 and

πt since no ambiguity appears. By definition of the push-forward and of the Wasserstein distance (see Definitions 3.1 and
3.3), we have

W(µ1
t , µ

2
t ) 6

∫
|z − w|πt(dz, dw) =

∫ ∣∣∣[Φ(j)
t ]ν

1

(x)− [Φ
(j)
t ]ν

2

(y)
∣∣∣ π0(dx, dy) (62)

holds for each t ∈ [0, T ∗]. Applied to (45), a version of Gronwall’s Lemma yields that for each x, y ∈ suppµ
(j)
0∣∣∣[Φ(j)

t ]ν
1

(x)− [Φ
(j)
t ]ν

2

(y)
∣∣∣ 6 [(1 + t ‖η‖∞) |x− y|+ t |v(j)

0 (x)− v(j)
0 (y)|

+ M5

∫ t

0

(t − s)W(ν1
s , ν

2
s ) ds

]
exp

(
‖η‖∞ t+

1

2
M4 t

2

)
. (63)

We remark that Gronwall’s Lemma may be applied because the term |v(j)
0 (x) − v

(j)
0 (y)| is bounded and s 7→ (t −

s)W(ν1
s , ν

2
s ) is bounded and continuous. The former can be shown by using estimates similar to those in the proof of

Lemma 3.14. The continuity of s 7→ W(ν1
s , ν

2
s ) follows from the triangle inequality. Indeed, since

|W(ν1
s , ν

2
s )−W(ν1

s0 , ν
2
s0)| ≤ W(ν1

s , ν
1
s0) +W(ν2

s0 , ν
2
s ),

we have that lims→s0W(ν1
s , ν

2
s ) = W(ν1

s0 , ν
2
s0) because W(ν1

s , ν
1
s0) → 0 and W(ν2

s , ν
2
s0) → 0. The estimate (t −

s)W(ν1
s , ν

2
s ) ≤ T ∗maxs∈[0,T∗]W(ν1

s , ν
2
s ) then implies that the (continuous) left-hand side is bounded.

Now we combine (62) and (63), and obtain

W(µ1
t , µ

2
t ) 6

[
(1 + t ‖η‖∞)

∫
|x− y|π0(dx, dy) + t

∫
|v(j)

0 (x)− v(j)
0 (y)|π0(dx, dy)

+ M5

∫ t

0

(t − s)W(ν1
s , ν

2
s ) ds

]
exp

(
‖η‖∞ t+

1

2
M4 t

2

)
. (64)

The integral with respect to π0(dx, dy) disappeared for the third term inside the square brackets, since this term is indepen-
dent of x and y, and moreover

∫
π0(dx, dy) = 1. Now we take

π0 := (I ⊗ I)#µ
(j)
0 ,

which is the measure concentrated on the diagonal x = y with marginals both µ(j)
0 . With some abuse of notation it can also

be written as

π0(dx, dy) := δ(x− y)µ
(j)
0 (dy).

For this choice of π0, we have that∫
|x− y|π0(dx, dy) = 0, and

∫
|v(j)

0 (x)− v(j)
0 (y)|π0(dx, dy) = 0.

Therefore, only the third term in square brackets on the right-hand side of (64) remains. Since∫ t

0

(t− s)W(ν1
s , ν

2
s ) ds ≤ sup

s∈[0,t]

W(ν1
s , ν

2
s )

∫ t

0

(t− s) ds =
1

2
t2 sup
s∈[0,t]

W(ν1
s , ν

2
s ),

we obtain

W(µ1
t , µ

2
t ) 6

1

2
t2M5 exp

(
‖η‖∞ t+

1

2
M4 t

2

)
sup
s∈[0,t]

W(ν1
s , ν

2
s ).

Finally, we take the supremum over t ∈ [0, T ∗]:

sup
t∈[0,T∗]

W(µ1
t , µ

2
t ) 6

1

2
(T ∗)2M5 exp

(
‖η‖∞ T ∗ +

1

2
M4 (T ∗)2

)
sup

t∈[0,T∗]

W(ν1
t , ν

2
t ).
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By the specific choice of T ∗, F (j) is a contraction mapping for each j, since

sup
t∈[0,T∗]

W(µ1
t , µ

2
t ) 6κT∗ sup

t∈[0,T∗]

W(ν1
t , ν

2
t ),

where κT∗ < 1 by assumption; cf. (59). As argued before, the space Cj is complete for each j. Banach’s Fixed Point
Theorem then guarantees the existence of a unique fixed point µ(j) of F (j) for each j. The corresponding mapping Φ(j)

then follows from (61) with ν = µ(j). The pair (µ(j),Φ(j)) satisfies µ(j)
t = Φ

(j)
t #µ

(j)
0 for all t ∈ [0, T ∗].

Having the construction of (µ(j),Φ(j)) for j ∈ {1, . . . , N}, we ‘glue’ these pieces together to define a couple (µ,Φ) of a
measure and a motion mapping as follows:

if t ∈
(
(j − 1)T ∗, jT ∗

]
then µt := µ

(j)
t−(j−1)T∗ and Φt := Φ

(j)
t−(j−1)T∗ ◦ Φ

(j−1)
T∗ ◦ . . . ◦ Φ

(1)
T∗

for j ∈ {1, . . . , N}. By our construction (µ,Φ) ∈ C([0, T ];Pr(T )(Rd))×A and it uniquely satisfies (31) with initial data
µ0 and v0.

Proof of Part 2 of Theorem 3.11.
Note that Part 1 implies that for both initial measures µ1

0 and µ2
0 there is a corresponding unique solution (µ1,Φ1), (µ2,Φ2),

respectively. Let π0 ∈ Π(µ1
0, µ

2
0) be arbitrary. We use (45), substituting ν1 = µ1 and ν2 = µ2. Thus Φν

1

= Φ1 and
Φν

2

= Φ2. First of all, we estimate

|v0(x)− v0(y)| 6 ‖∇v0‖∞ |x− y|,
for all x, y ∈ B(r0). This is possible , since v0 ∈ C1

b (Rd;Rd) is given, is defined on the whole of Rd and has bounded
derivative. Using this Lipschitz estimate and integrating (45) against π0(dx, dy), we obtain∫

|Φ1
t (x)− Φ2

t (y)|π0(dx, dy) 6 (1 + t (‖∇v0‖∞ + ‖η‖∞))

∫
|x− y|π0(dx, dy)

+

∫ t

0

[M4 (t− s) + ‖η‖∞]

∫
|Φ1
s(x)− Φ2

s(y)|π0(dx, dy) ds+M5

∫ t

0

(t− s)W(µ1
s, µ

2
s) ds, (65)

where we used that the last term is independent of x and y, and the fact that π0 is a probability measure on Rd ×Rd. If we
define π̃s ∈ Π(µ1

s, µ
2
s) as

π̃s := (Φ1
s,Φ

2
s)#π0

for each s ∈ [0, T ], then we have, analogously to (62), the following:

W(µ1
s, µ

2
s) 6

∫
|z − w| π̃s(dz, dw) =

∫ ∣∣Φ1
s(x)− Φ2

s(y)
∣∣ π0(dx, dy). (66)

We substitute this estimate forW(µ1
s, µ

2
s) in the right-hand side of (65) and apply Gronwall’s Lemma to obtain∫

|Φ1
t (x)− Φ2

t (y)|π0(dx, dy)

6

[
(1 + t (‖∇v0‖∞ + ‖η‖∞))

∫
|x− y|π0(dx, dy)

]
exp

(
‖η‖∞ t+

1

2
(M4 +M5) t2

)
. (67)

Together, (66) and (67) yield

W(µ1
t , µ

2
t ) 6

[
(1 + t (‖∇v0‖∞ + ‖η‖∞))

∫
|x− y|π0(dx, dy)

]
exp

(
‖η‖∞ t+

1

2
(M4 +M5) t2

)
.

We take the infimum over π0 ∈ Π(µ1
0, µ

2
0) on the right-hand side:

W(µ1
t , µ

2
t ) 6 (1 + t (‖∇v0‖∞ + ‖η‖∞)) exp

(
‖η‖∞ t+

1

2
(M4 +M5) t2

)
W(µ1

0, µ
2
0).

Finally, we take the supremum over t ∈ [0, T ] on both sides of the inequality and obtain

sup
t∈[0,T ]

W(µ1
t , µ

2
t ) 6 (1 + T (‖∇v0‖∞ + ‖η‖∞)) exp

(
‖η‖∞ T +

1

2
(M4 +M5)T 2

)
W(µ1

0, µ
2
0).

This finishes the proof.

�
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3.5 Discussion on Assumptions 3.7 and 3.9, and the condition (37)

We comment here on the assumptions needed for the results presented in Sect. 3.3. That is, Theorem 3.11, Corollary 3.12
and Remark 3.13.

Assumptions on Fθ and Wh: We remark here that in [9] only θ = 0 is used, and furthermore ∇V ≡ 0, η ≡ 0 and
K ≡ 0. All possible F0 and Wh treated in [9] satisfy Assumption 3.7:

1. F0(u) = uα, for α > 0, satisfies the assumptions for all choices of Wh ∈ C2
b (Rd;R+

0 );

2. F0(u) = uα, for −1 < α < 0, satisfies the assumptions if Wh is an element of C2
b (Rd;R+) and satisfies the extra

condition |∇Wh(x)| 6 c |Wh(x)|−α for all x, for some constant c > 0.

We remark that the class of admissible pairs (F0,Wh) covered by Assumption 3.7 is more general than in [9], where only
F0 of the form F0(u) = uα is treated. For instance, in our work any F0 ∈ C1

b (R+;R+) (bounded and with bounded
derivative) is allowed in combination with an arbitrary Wh ∈ C2

b (Rd;R+
0 ).

Assumption (37) on convergence of initial data: Given the initial probability measure µ0 supported in the ball B(r0),
we demonstrate here two ways of constructing an approximating sequence of measures (µn0 )n∈N+ .

The first way of constructing µn0 is deterministic and has been used in [4]. For simplicity of presentation, we assume
d = 1 and suppµ0 ⊂ [0, 1]. For each n ∈ N+, define

µn0 :=

n∑
i=1

miδ i
n−

1
2n
, (68)

where mi :=

∫
[ i−1
n , in )

µ0(dx), for each i = 1, . . . , n− 1, and mn :=

∫
[1− 1

n ,1]

µ0(dx).

It follows that
∑
imi =

∫
µ0(dx) = 1 and µn0 ∈ P(R). Define a map Ψ : [0, 1] → { in − 1

2n : 1 ≤ i ≤ n} by
Ψ(x) := i

n − 1
2n if i−1

n ≤ x < i
n and Ψ(1) := 1− 1

2n . For every measurable and bounded function f , defined on [0, 1] it
holds that ∫

[0,1]

f(x)µn0 (dx) =

n∑
i=1

mi f

(
i

n
− 1

2n

)

=
n−1∑
i=1

∫
[ i−1
n , in )

µ0(dx) f

(
i

n
− 1

2n

)
+

∫
[1− 1

n ,1]

µ0(dx) f

(
1− 1

2n

)
=

∫
[0,1]

f(Ψ(x))µ0(dx).

Hence, µn0 = Ψ#µ0. Note that |x−Ψ(x)| 6 1
2n for every x ∈ [0, 1]. Therefore,

W(µn0 , µ0) ≤
∫

[0,1]

|x−Ψ(x)|µ0(dx) ≤ 1

2n

∫
[0,1]

µ0(dx) =
1

2n
,

where we obtain the first inequality by taking π ∈ Π(µn0 , µ0) to be π := (I⊗Ψ)#µ0. This implies thatW(µn0 , µ0)
n→∞−→ 0.

This procedure generalizes to the case d > 1 (but with more involved notation). Let suppµ0 ⊂ [0, 1]d and let n ∈ {kd : k ∈
N+}. Dividing the hypercube [0, 1]d into n equal subcubes, we obtain analogously that the convergence rate is O(1/ d

√
n).

The second way of constructing µn0 is probabilistic and is based on the law of large numbers as already pointed out in [9].
Suppose that the pointsXi, i = 1, . . . , n are independent identically distributed random variables with the same distribution
µ0 ∈ P(B(r0)). Let µn0 be the empirical measure, defined by

µn0 :=
1

n

n∑
i=1

δXi .

Note that in fact there is an underlying probability space Ω andXi : Ω→ B(r0). Hence µn0 is, strictly speaking, not a mere
probability measure, but a mapping from Ω to P(B(r0)); i.e. µn0 : Ω→ P(B(r0)). According to [12], Theorem 11.4.1, the
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sequence (µn0 ) converges almost surely to µ0. This implies that for almost every realization x̄1, x̄2, . . . the corresponding
sequence of measures (µ̄n0 ) ⊂ P(B(r0)) given by µ̄n0 := 1/n

∑
i δx̄i , converges in the narrow topology to µ0:∫

B(r0)

f(x)µn0 (dx)→
∫
B(r0)

f(x)µ0(dx), for all f ∈ Cb(B(r0)).

The term ‘almost every realization’ refers to the fact that the set (in Ω) on which the narrow convergence does not hold, has
zero probability (with respect to the probability distribution on Ω). In layman’s terms, this means that if we draw a random
sample x̄1, x̄2, . . ., it is ‘unlikely’ that the corresponding sequence (µ̄n0 ) does not converge narrowly.

Assume that our random sample did yield such narrowly converging sequence (µ̄n0 ). Since all µ̄n0 are probability mea-
sures on a bounded domain B(r0), their first moments are uniformly integrable (i.e. uniformly in n). Thus, Theorem 7.1.5
in [1] implies that

W(µ̄n0 , µ0)
n→∞−→ 0.

3.6 Numerical illustration

We illustrate the theoretical convergence results presented in Sect. 3.3 by two numerical examples. The first one involves
only the hydrodynamical force, as described by the first term on the right-hand side of (38). We consider both schemes
derived (θ = 0 and θ = 1), in dimension d = 1 and d = 2. In the second example only the non-local interaction term and a
drag force in (38) are present and we take d = 2. First, in problems of bounded domains, it is common to use the differential
form of mass conservation equation, thus the time variation of the measure-valued equation for mass in (31) is evolved in
time along with the momentum equation, via a leapfrog algorithm with a constant time step. The leapfrog algorithm is a
second-order symplectic integrator with the property of preserving the momentum of the system. The Gaussian function,
defined by

Wh(x) :=
1

h
√
π
e−|x|

2/h2

,

for all x ∈ R, is used for the regularization of the mass measure in the one-dimensional case. For d = 2, the cubic
Wendland function is used, whence for all x ∈ R2:

Wh(x) :=

{
1
8 (1 + 3|x|/2h)(2− |x|/h)3, |x| ≤ 2h,

0, |x| > 2h.

These choices are made to illustrate that we can handle both bounded and unbounded support of Wh.
In order for the regularized equations of hydrodynamics to approximate the real physics well, h should be sufficiently
small. Let V0 denote a representative volume assigned to each particle based on the initial configuration. In a bounded
domain, typically V0 scales as V0 ∼ 1/n. It is common practice to achieve “h sufficiently small” by taking h = ε d

√
V0,

with parameter 1.2 6 ε 6 1.5, cf. [27]. However, the convergence result in Corollary 3.12 holds for h fixed, and the
dependence of h on n is not investigated. Numerically, we investigate both cases. That is, we take both h = 1 fixed and
h = 1.5 d

√
V0, which hence varies with the number of particles. We assume that the initial measure µ0 has a density ρ0

such that ρ0(x) = 1 for all x ∈ [0, 1]d and ρ0(x) = 0 otherwise. We construct the measure µn0 , corresponding to the
n-particle approximation, according to (68) or its d-dimensional counterpart. Hence, the initial particle configuration is
realized for d = 1 by equipartitioning the initial domain [0, 1] into n volumes. For the two-dimensional examples, the
initial domain is the square [0, 1]2 ⊂ R2 and particles are placed in the center of each square incremental volume partition
V0. Masses are assigned as mi = ρ0(xi)V0 for each i ∈ {1, . . . , n}. Note that in case of more complicated initial domains,
an equipartitioning may be obtained with a centroidal Voronoi tessellation.
As argued underneath (68), the sequence (µn0 )n∈N+ constructed in this way converges to µ0 and the convergence rate is
O(1/ d

√
n). Hence, the corresponding solutions (µn)n∈N+ converge at the same rate, due to (36).

The hydrodynamical problem considers the spontaneous expansion of a gas cloud until time T = 1, governed by the
equation of state P (ρ) = Kργ , where K = 1 is a parameter and γ the so-called polytropic exponent. We recall that P
relates to e via ∂e/∂ρ = P/ρ2. In dimension d = 1, we examine the cases γ ∈ {1, 2, 7}, using a constant time step
∆t = 10−3, and the Gaussian function. Note that the case γ = 1 is not covered by the convergence proof (cf. Assumption
3.7 and Sect. 3.5). It is a limit case (the proof does hold for any γ > 1) and we include it for generality. We perform the
calculations for n = 2k particles, where k ∈ {1, . . . , 9}, and compute the supremum in time of the Wasserstein distance
between subsequent solutions. We compute the Wasserstein distance by solving a linear programming problem based on
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Fig. 1 For γ = 1, density ρ̃ at final time T = 1, with n = 29 particles and convergence C1. Red and blue plots refer to the schemes for
θ = 0 and θ = 1, respectively. Upper plots present results for h = 1 fixed, while lower plots to variable h = 1.5V0.

a formulation in terms of optimal transportation. Due to the high computational cost (for large k), we use the following
approximation

sup
t∈[0,T ]

W(µ2k

t , µ
2k+1

t ) ≈ max
τ∈I
W(µ2k

τ , µ
2k+1

τ ) =: Wk,k+1, (69)

to reduce the number of evaluations ofW . Here,

I := {jT/(Nr − 1) : j = 0, . . . , (Nr − 1)}

and we take Nr = 10. It should be noted, however that for the vast majority of the computations, the maximum distance is
observed at the final time step.

The convergence rate for d = 1 is approximated by

C1
k+1 := log2

∣∣∣Wk+1,k+2

Wk,k+1

∣∣∣
and based on the theoretical prediction that the convergence rate isO(n−1) if d = 1, we expect that C1

k+1 tends to the value
−1.

In Fig. 1 to 3, results are shown for the three different values γ ∈ {1, 2, 7} respectively. Red graphs correspond to
the scheme for θ = 0 and blue graphs to the scheme θ = 1. In these figures, the upper plots refer to computations using
h = 1 for all resolutions and the lower plots depict computations with h varying with the number of particles used. The left
plots show the result for density ρ̃ at T = 1, as obtained with the highest resolution n = 29. Additionally, the convergence
of C1

k+1 is plotted in the right plots.
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Fig. 2 For γ = 2, density ρ̃ at final time T = 1, with n = 29 particles and convergence C1. Red and blue plots refer to the schemes for
θ = 0 and θ = 1, respectively. Upper plots present results for h = 1 fixed, while lower plots to variable h = 1.5V0.

There are several points to be mentioned about the plots. First, note that in all figures solutions, for h = 1 fixed and
h varying, do converge to a solution by increasing the number of particles. The convergence is evident by the rate C1

k+1

approaching its theoretical value −1. Second, although convergent, solutions for h = 1 fixed and h varying are not the
same for the same value of γ. Third, in Fig. 2 where γ = 2, the solutions obtained with the two schemes coincide. This
effect is expected since for this value of γ the two schemes are identical. On the other hand, this is not true for the the
cases γ = 1 and γ = 7. Fourth, interestingly enough, even though the proof only covers cases for γ > 1, the case γ = 1
converges. In the same case, it is unclear why a spike is present in the convergence graph for θ = 0 and varying h. Fifth,
for fixed value of h all cases converge from below sharply towards the theoretical value C1

k+1 ≈ −1, while for h varying
with the resolution they converge from above. Finally, for fixed h = 1, this large value does not permit local effects to
appear on the free boundaries of the domain. These effects are exhibited in the cases of varying h as discontinuities of
the density profile and therefore seem to be related to problems of applying regularization over small h-sized regions in
bounded domains.

In two spatial dimensions, the hydrodynamic problem examined is the expansion of an initially square gas cloud, until
time T = 1. In order to show that the results also hold for non-static initial conditions, a rotation described by the initial
velocity field (v0,x, v0,y) = (−y, x) is applied. The same equation of state as in the one-dimensional computation is used,
with γ ∈ {2, 7}. The Wendland function and a constant time step of ∆t = 10−3 are employed. Note that we omit the case
γ = 1, hence do not need to ‘mimic’ Assumption 3.7, and do allow for bounded support in Wh.

For d = 2, we approximate the rate of convergence by

C2
k+1 :=

1

2
log2

∣∣∣Wk+1,k+2

Wk,k+1

∣∣∣.
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Fig. 3 For γ = 7, density ρ̃ at final time T = 1, with n = 29 particles and convergence C1. Red and blue plots refer to the schemes for
θ = 0 and θ = 1, respectively. Upper plots present results for h = 1 fixed, while lower plots to variable h = 1.5V0.

Table 1 C2
k+1 for the two-dimensional hydrodynamic computations

k 2 3 4 5

γ = 2 θ = 0 -0.51 -0.50 -0.50 -0.50
h fixed θ = 1 -0.51 -0.50 -0.50 -0.50

γ = 2 θ = 0 -0.44 -0.47 -0.49 -0.44
h varying θ = 1 -0.44 -0.47 -0.49 -0.44

γ = 7 θ = 0 -0.51 -0.50 -0.50 -0.50
h fixed θ = 1 -0.50 -0.50 -0.50 -0.50

γ = 7 θ = 0 -0.37 -0.45 -0.48 -0.48
h varying θ = 1 -0.41 -0.43 -0.52 -0.51

Note that this definition is different from C1
k+1, since in d = 1 we took n of the form 2k, while in d = 2 we have n = (2k)2,

for k ∈ {1, 2, 3, 4, 5, 6}. Here, the definition of Wk,k+1 is modified accordingly to approximations by 4k and 4k+1 parti-
cles, respectively. The computational effort for the calculation of the Wasserstein distance makes the investigation of higher
n extremely lengthy. In the case d = 2, theory predicts that the convergence rate isO(n−1/2), whence we expect that C2

k+1

tends to the value −1/2. In Table 1, the convergence rates of the two-dimensional hydrodynamic problems are shown. The
theoretical value is indeed approached, but strong oscillations around this value appear in the case γ = 2 with varying h. In
Fig. 4 and 5, particle configurations at final time T = 1 are presented for the cases γ = {2, 7} respectively. The upper plots
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Fig. 4 For the case γ = 2, particle configurations at final time T = 1 for the two-dimensional hydrodynamic experiment of a rotating
square; on the left-hand side with θ = 0 and on the right-hand side with θ = 1. The upper plots present results for h = 1 and n = 512
particles, while the lower row refers to variable h = 1.5

√
V0 and n = 512 particles. In this case (γ = 2), the schemes for θ = 0 and

θ = 1 are the same.

refer to fixed h = 1 independent of the resolution n (a choice in agreement with the convergence proof), while lower plots
are obtained by h varying with the number of particles as h = 1.5

√
V0. For the plots on the left-hand side the scheme with

θ = 0 is used, while for the plots on the right-hand side θ = 1 is employed. Similarly to the one-dimensional results, the
corresponding solutions for γ = 2 are identical for the schemes employing θ = 0 or θ = 1. On the contrary, they differ for
γ = 7. Finally, it should be mentioned that the instabilities of the density profile on the boundaries of the domain, which
were observed in the one-dimensional computations, have now translated into the nonhomogeneous distribution of particles.

The second numerical example considers the nonlocal force and the drag term, for which the numerical scheme corre-
sponding to (38) does not depend on θ. Moreover, (38) does not depend on ρ̃t, hence h is only relevant if we wish to plot
ρ̃t, and not for the computations themselves.
The Wendland function and a constant time step of ∆t = 10−1 are used. For the interactions, we take K such that it is
the gradient of the Morse potential, see e.g. [11], with parameters Ca = 2.0, Cr = 1.5, `a = 1.0, `r = 2.0. In fact,
we included a short-range regularization around the origin to the potential to enforce the required C1

b -regularity of K. A
side-effect is that automatically self-interactions are cancelled. Two cases for the drag coefficient are examined: η ≡ 10
and η ≡ 0.1, for final time T = 100. In both these cases, an equilibrium has been reached. Similarly to the hydrodynamical
problem, (69) is used with n = 22k particles, where k ∈ {1, 2, 3, 4, 5}. Particle configurations and convergence rates are
plotted in Fig. 6, with the upper plots referring to η ≡ 0.1 and the lower plots to η ≡ 10. The value of the convergence in
this case rapidly tends to the theoretically predicted value.
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Fig. 5 For the case γ = 7, particle configurations at final time T = 1 for the two-dimensional hydrodynamic experiment of a rotating
square; on the left-hand side with θ = 0 and on the right-hand side with θ = 1. The upper plots present results for h = 1 and n = 512
particles, while the lower row refers to variable h = 1.5

√
V0 and n = 512 particles.

4 Concluding remarks and future directions

Apart from the remarks already made, there are two issues that are important to point out. One could call them shortcomings
of our approach, in the sense that these are cases to which our proof of convergence does not apply. The convergence result
presented in Theorem 3.11 and Corollary 3.12 does not state:

• Whether the approximations corresponding to θ = 0 and θ = 1, respectively, actually converge to the same limit
solution. Our computations show that this is certainly not the case for h = 1 and (although the difference is smaller)
neither for varying h, except for the trivial case γ = 2 in which the schemes coincide.

• Whether the limit n→∞ in any of the two cases θ = 0 or θ = 1 is actually like the ‘real physics’. To investigate this,
in principle one would need to consider the limit h→ 0. As said before, this is beyond the scope of the current paper.

The latter point refers to a situation in which first the limit n → ∞ is taken and afterwards the limit h → 0. A more
favourable approach (also from a numerical point of view) would be to have h depend on n in such a way that h = O(1/ d

√
n)

as n → ∞, and hence n → ∞ and h → 0 simultaneously. In Sect. 3.6, we anticipated this —following what is already
typically done in the literature of SPH— and the numerical results there support the hope that solutions converge in the
case of h varying with the number of particles.

Nevertheless, our combined theoretical-computational results establish the convergence of the classical and most-used SPH
scheme and also show that the corresponding equation of motion is a true discretized version of the equation of motion of
a regularized continuous medium.
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Fig. 6 For the problems involving a nonlocal force term, the particle configurations at final time T = 100 (left plots) and the convergence
rates (right plots). Drag coefficients η ≡ 0.1 (upper plot) and η ≡ 10 (lower plot) are used.
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