
10

Shadow Symbolic Execution for Testing Software Patches
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While developers are aware of the importance of comprehensively testing patches, the large effort involved

in coming up with relevant test cases means that such testing rarely happens in practice. Furthermore, even

when test cases are written to cover the patch, they often exercise the same behaviour in the old and the

new version of the code. In this article, we present a symbolic execution-based technique that is designed to

generate test inputs that cover the new program behaviours introduced by a patch. The technique works by

executing both the old and the new version in the same symbolic execution instance, with the old version

shadowing the new one. During this combined shadow execution, whenever a branch point is reached where

the old and the new version diverge, we generate a test input exercising the divergence and comprehensively

test the new behaviours of the new version. We evaluate our technique on the Coreutils patches from the

CoREBench suite of regression bugs, and show that it is able to generate test inputs that exercise newly added

behaviours and expose some of the regression bugs.
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1 INTRODUCTION

The malleability of software is both a blessing and a curse. On the one hand, one can easily change
software to fix incorrect behaviour, add new functionality, or refactor the code. On the other hand,
software changes are often responsible for introducing errors and security vulnerabilities, making
users think twice about whether or not to update to the latest version of the software.

Ideally, software changes, typically introduced by separate commits to the source-code repos-
itory and referred to as patches, should be comprehensively tested. At the very minimum, each
line of code affected by the patch, i.e., appearing in the source-code diff between two consecutive
commits, should be covered by at least one test case. While this level of testing is still far from
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being achieved in practice [28], automatic techniques for enabling high-coverage patch testing
are becoming more and more successful [1, 24, 27, 40, 43]. Many of these techniques are based on
dynamic symbolic execution [8], a program analysis technique that provides the ability to generate
inputs that form high-coverage test suites.

However, achieving full statement or even full branch coverage for the patch code is clearly
insufficient. In fact, one can achieve full statement and branch coverage without testing at all the
new behaviour introduced by the patch! To give a simple example, consider a patch that only
changes the statement if (x > 10) to if (x > 20), with this statement executed only once
by a deterministic program. Suppose that the developer adds two test cases, x = 0 and x = 30, to
test the patch. A superficial reasoning might conclude that the change is comprehensively tested,
as we have inputs covering each side of the branch. However, the execution of these inputs is
completely unaffected by the patch, as the program behaves identically for these inputs before
and after the patch is applied. Careful analysis reveals that the program behaviour is changed only
when x is between 11 and 20 (inclusive)—causing the two versions to take different sides of the
branch—so one of these values should be used to test the patch.

In this article, we present a technique based on dynamic symbolic execution that can generate
test inputs that cover the new program behaviours introduced by a patch. The technique works by
executing both the old (unpatched) version and the new (patched) version in the same symbolic
execution instance, with the old version shadowing the new one. This form of analysis, which we
refer to as shadow symbolic execution, makes it possible to (1) precisely determine when the two
versions exhibit divergent behaviour and (2) keep execution time and memory consumption low.
Both of these features are key for effective testing of software patches and are difficult to achieve
without running both versions in the same symbolic execution instance.

The main contributions of this work are:

(1) Shadow symbolic execution, a technique for generating inputs that trigger the new be-
haviours introduced by a patch. The technique effectively reduces the program search
space by pruning a large number of irrelevant execution paths.

(2) A mechanism for unifying two program versions and representing them as a single an-
notated program, equivalent to executing both versions in lockstep, which lets us run the
analysis in a single symbolic execution instance. The unified program could be useful in
other dynamic analysis techniques.

(3) A tool called Shadow that implements shadow symbolic execution, and the experience
of applying it to the Coreutils patches in CoREBench, a collection of highly complex
real-world patches.

A shorter version of this article was presented in [31], and an idea paper on this topic was
published in [7]. In addition to providing more details and examples, this article presents an
extended empirical evaluation that includes an investigation of how the time budget dedicated
to the different stages of the technique impacts its overall effectiveness (Section 5.6), as well as
a direct comparison with a vanilla symbolic execution approach (Section 5.7). It also includes a
careful analysis of the limitations of the technique (Section 6.3) and a discussion of its applications
to other programming languages (Section 6.4) and software engineering tasks (Section 6.5).

The rest of the article is organised as follows. We introduce shadow symbolic execution in
Section 2 and then present it in detail in Section 3. We then give a brief overview of our prototype
tool Shadow in Section 4 and describe our experience applying it to test a suite of complex
patches in Section 5. We reflect on various aspects of shadow symbolic execution in Section 6,
give an overview of related work in Section 7, and conclude in Section 8.
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Fig. 1. A toy example illustrating symbolic execution.

2 OVERVIEW

Shadow symbolic execution is meant to augment an existing test suite of a program. In our ap-
proach, we assume that we already have a test input that touches the patch, i.e., executes at least
one patch statement—if such an input does not exist in the program’s test suite, it could be gen-
erated using previous techniques such as KATCH [27], which uses targeted symbolic execution to
explore paths that reach a patch.

Given such an input, our technique is designed to automatically generate new inputs that exer-
cise the new behaviours introduced by the patch. These inputs can then be analysed by developers
to either uncover bugs, if the new behaviour is unexpected or create test cases that witness and
validate the new behaviour, if it is expected.

Our technique is based on dynamic symbolic execution [8], a popular program analysis tech-
nique that runs the program on symbolic rather than concrete inputs, with classes of program
paths with the same branching behaviour being encoded as sets of constraints over those sym-
bolic inputs. At any point on a path, the symbolic state maintains the current program location, a
symbolic store mapping program variables to expressions computed over the symbolic input and
reflecting dynamic runtime information for the non-symbolic inputs, and a path condition (PC)
characterising the inputs that exercise the path. The PC takes the form of a conjunction of con-
straints obtained from the symbolic branch conditions encountered along the path.

As an example, consider the toy program in Figure 1, and assume that we want to run the func-
tion foo on the symbolic input x. When symbolic execution starts, the symbolic store is {x→ x },
meaning that variable x maps to symbolic input x , and the PC is true. After line 4 is executed, the
symbolic store becomes {x→ x , y→ x − 1}. When execution reaches branch y > 7, we establish
by employing a constraint solver—typically a Satisfiability Modulo Theories (SMT) solver [11]—
that under the current PC both sides of the branch are feasible, so we fork execution, following
each path separately. On the then branch, we add to the PC the constraint x − 1 > 7, while on the
else branch, we add its negation x − 1 ≤ 7. The latter path immediately terminates by executing
return 1, but the former continues by executing the assignment z = x - 8, which adds the
mapping z→ x − 8 to the symbolic store.

Then, when execution reaches branch z < 4, we discover that under the current PC both
branches are feasible, and we fork execution again, adding the constraint x − 8 < 4 on the then
side, and the constraint x − 8 ≥ 4 on the else side. The latter path terminates immediately by
executing return 0, while the former executes arr[z] = ‘A’. Prior to this array-indexing in-
struction, symbolic execution inserts an implicit check asking if the array index is guaranteed to
be in bounds. On this path, the PC is x − 1 > 7 ∧ x − 8 < 4, and the constraint solver can be used
to establish that z→ x − 8 cannot be out of bounds.
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Fig. 2. Four-way forking in shadow symbolic execution as a mechanism for capturing divergent executions

(the ones shaded in grey).

In shadow symbolic execution, our goal is to generate inputs that trigger the new behaviours in-
troduced by a patch. While various definitions of behaviour are possible (especially if higher-level
semantic information about the program is available), in this article, we use a generally applica-
ble definition of behaviour at the code-level: the behaviour of the program on a certain input is
represented by the sequence of edges in the control-flow graph of the program traversed during
execution. We say that two versions diverge on an input if their code-level behaviours are different
for that input. Note that a code-level divergence may or may not result in an observable output
difference.

To find inputs exposing different behaviour across versions, we start by executing both the old
and the new version of the program on an input that exercises the patch, and we gather constraints
on the side, as in the dynamic symbolic execution variant called concolic execution [12, 38]. Until the
patch is reached, assuming deterministic code, both the symbolic stores and the path conditions are
identical for the two versions (by definition, since they have yet to execute a different instruction).
However, once the patch is reached, the two versions might update their symbolic stores and path
conditions differently. In our approach, we let each version update its symbolic store as required,
sharing the two stores efficiently (see Section 3.2).

When a branch condition is reached, we evaluate it under the symbolic stores of each version,
and we explore the entire branch cross product. Figure 2 illustrates the general case when we
reach a branch condition that evaluates to semantically-different expressions in the two versions—
say, old in the old version, and new in the new version.1 Instead of forking execution into two
paths (if possible) based on the execution of the new version—one adding the condition new and
the other ¬new , we fork into up to four ways. On two of these cases the two versions behave
identically (denoted by same in the figure): both versions take either the then (new ∧ old) or the
else (¬new ∧ ¬old) branch. On the other two, the executions of the two versions diverge (denoted
by diff in the figure): either the new version takes the then branch and the old version the else
branch (new ∧ ¬old), or the new version takes the else branch and the old version the then
branch (¬new ∧ old).

1The expressions old and new are semantically different at a program location along a program path if they are not equiv-

alent under the current path condition.
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Fig. 3. The toy example in Figure 1 with a simple patch that modifies the if statement on line 4.

There are two scenarios of interest whenever the initial input reaches such a branch:

(1) Concrete executions diverge. That is, the input makes the two program versions follow
different sides at this branch. This means that developers have already done a good job
exploring at least part of the new behaviour introduced by the patch. However, this one
input might not be sufficient to explore all the new behaviours—for example, the new
version might go on and execute a lot of new code introduced by the patch. To better test
the patch, at this point we enable a bounded symbolic execution run on the new version,
i.e., we start symbolic execution in a breadth-first search mode, for a fixed time budget.
This lets us generate other divergent inputs exhibiting the same branching behaviour up
to that point (but different afterwards).

(2) Concrete executions are identical, but divergences are possible. That is, the input makes the
two programs take the same side of the branch, but at least one of the diff paths in Figure 2
is feasible. In this case, we also explore those paths. For each feasible diff path, we first gen-
erate an input that exercises the divergent behaviour, and then continue doing bounded
symbolic execution in the new version in order to systematically and comprehensively
explore additional divergent behaviours.

As long as the concrete executions do not diverge, we continue running both versions until the
end of the program, exploring any additional possible divergences along the way.

Toy example. As an illustrative example, consider again the code in Figure 1, and assume that
the developers have written a patch that changes y = x - 1 to y = x + 1. We repeat for con-
venience the code in Figure 3, where the changed code is marked using the annotation change().
Furthermore, suppose that the developers have written three test cases to exercise the patch:
x = 0, x = 9 and x = 15. These tests achieve full branch coverage in both versions, but fail to
exercise the new behaviour introduced by the patch and miss a buffer underflow bug introduced
for x = 7.

Shadow symbolic execution provides a systematic way of testing the new behaviours introduced
by a patch. Its effectiveness and performance depend on the starting input that touches the patch,
but in our example, it can find the bug starting from any of the three inputs, with similar amount of
effort. We illustrate how it works starting from input x = 0. When function foo is entered, both
symbolic stores are {x→ x } and the PC is true. After the patched code on line 4 is executed, the
symbolic stores become {x→ x , y→ x − 1} in the old version and {x→ x , y→ x + 1} in the new
version. As a result, when line 5 is reached, the condition y > 7 evaluates to x − 1 > 7 in the old
version, and to x + 1 > 7 in the new version. At this four-way fork, our input x = 0 follows one
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Fig. 4. A high-level overview of shadow symbolic execution.

of the same cases illustrated in Figure 2. However, both diff cases are also feasible at this point, so
shadow symbolic execution first generates an input that triggers the divergent behaviour in each
case, and then starts from that point a bounded symbolic execution run on the new version.

One diff case, when at line 5 the old version takes the else side while the new version takes the
then side, generates the divergence condition x − 1 ≤ 7 ∧ x + 1 > 7. At this point, the constraint
solver may return x = 7, which exposes the buffer underflow bug, but it could also return x = 8,
which does not. In both cases, we start a bounded symbolic execution on the new version, which
finds the bug, thanks to the implicit index-in-bounds check injected by the symbolic execution
engine before each array access. Note that the bounded symbolic execution phase is started only
on the divergent path (in our case when the new version takes the then side on line 5) and with
the path condition that triggers the divergence (in this case x − 1 ≤ 7 ∧ x + 1 > 7). This signifi-
cantly constrains the search space, making symbolic execution explore only paths that expose new
behaviours introduced by the patch.

While not relevant for our buffer underflow bug, note that the patch also introduces a diver-
gence that causes the old version to take the then side and the new version the else side at
line 5, resulting in a divergence condition x − 1 > 7 ∧ x + 1 ≤ 7. This divergence is less obvious,
because it only occurs when there is an arithmetic underflow on line 4. For example, when x
is −2147483648, y becomes 2147483647 in the old version2 and −2147483647 in the new version,
causing the unexpected divergence. The subtle point is that x − 1 > 7 does not imply x > 8 for
fixed-width machine arithmetic, which illustrates the difficulty of manually reasoning about the
new behaviours introduced by software patches and the need for automatic techniques to help in
the process.

3 SHADOW SYMBOLIC EXECUTION

Figure 4 presents an overview of the process of testing software patches with shadow symbolic
execution. The inputs to our technique are: (i) the source code of the old and the new version of
the program under test (alternatively, the old version and the patch), and (ii) the program’s test
suite. The output is a set of inputs that expose divergent behaviour between versions, triggering
either regression bugs or expected divergences. We further divide these divergent behaviours into
four subcategories. First, divergences that lead to generic errors (e.g., memory errors or assertion
violations) only in the new version are clear regression bugs that should be fixed. Second, diver-
gences that lead to generic errors only in the old version are expected divergences that witness
the fix of that error. Third, divergences that propagate to the output are of interest to developers,
because they can be used to quickly assess whether they reflect intended changes or regression
errors. Finally, divergences that do not lead to any noticeable differences could still be of interest
to developers, who could add the corresponding inputs to the application’s test suite.

2In gcc 4.8.2; signed overflow is undefined in C.
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In the first step of our approach, we annotate the patches as illustrated in Figure 3 to unify the
old and the new version into a single program that incorporates them both (Section 3.1). Next, we
select from the test suite those test cases that touch the patch. We then perform shadow symbolic
execution and generate inputs that expose divergent behaviour (Section 3.2). Finally, we run both
versions natively on all divergent inputs using enhanced cross-version checks and identify those
that trigger errors or output differences (Section 3.3).

3.1 Unifying Versions via Patch Annotations

Our approach to executing both the old and the new version of the program in the same sym-
bolic execution instance is to enforce them to proceed in lockstep until they diverge in control
flow. This is done by creating a single unified program in which the two versions are merged via
change() annotations, as we have shown on line 4 in Figure 3. Mapping program elements across
versions [20] is a difficult task, as in the extreme, the two versions could be arbitrarily different
programs. However, in practice the process can be streamlined using several annotation patterns,
which we discuss below.

Our annotations use the macro change(), which resembles a function call with two arguments:
the first argument represents the code expression from the old version and the second argument
the corresponding expression from the new version. One key property is the ability to run the old
version by replacing change() with its first argument, and the new version by replacing it with
its second argument.

Writing these annotations was easier than we initially expected—we started by targeting very
small patches (1 or 2 lines of code), but ended up annotating large patches of up to several hundred
lines of code. Below, we discuss the main annotation patterns that we follow, in the order in which
we typically apply them.

(1) Modifying an rvalue expression. When an expression E1 is changed to E2, the annotation
is simply change(E1, E2). As a general principle, we always push the change() anno-
tations as deep inside the expression as possible. This strategy optimises the sharing be-
tween the symbolic stores of the two versions, and it also allows for various optimisations,
such as constant folding, to be performed by the symbolic execution engine. Examples
include:
(a) Changing the right-hand side of an assignment:

x = y + change(E1, E2);
(b) Changing an argument in a function call:

f(..., change(E1, E2) + len(s), ...);
(c) Changing an expression in a return statement:

return change(E1, E2) % 2;
(d) Changing a conditional expression:

if (change(E1, E2))
... code ...

In the patches that we examined, we observed that developers often change the control
flow in the program by strengthening or weakening existing conditional expressions, i.e.,
by adding or removing boolean clauses. For instance:
(e) Weakening a condition from A to A | | B:

if (A || change(false, B))
... code ...
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(f) Weakening a condition from A && B to A:
if (A && change(B, true))
... code ...

(g) Strengthening a condition from A | | B to A:
if (A || change(B, false))
... code ...

(h) Strengthening a condition from A to A && B:
if (A && change(true, B))
... code ...

We choose a different style of annotations for strengthening a condition from A | | B to
B and for weakening a condition from A && B to B:
(i) Strengthening a condition from A | | B to B:

if (change(A || B, B))
... code ...

(j) Weakening a condition from A && B to B:
if (change(A && B, B))
... code ...

The reason for using this different style is to avoid the introduction of spurious di-
vergences. For example, if we annotated a strengthening of a condition from A | | B to B
as if (change(A, false) || B), then if A is true and B is also true, then a diver-
gence would be reported, even though the two versions would take the same then side
of the branch. While this annotation might be preferable when a stronger coverage cri-
terion such as MC/DC [15] is desired, in our experiments we prioritise divergences that
propagate to the output.

(2) Adding/removing extra assignments or conditionals. Essentially, we view all changes of this
type as modifications of existing constructs by adding dummy statements at appropriate
points in the program [37]. For example:
(a) Adding an extra assignment x = E:

x = change(x, E);
(b) Removing an assignment x = E :

x = change(E, x);
(c) Adding code conditional on an expression. That is, if the code added in the new version

has the form if (C) ... code ..., the annotation is:

if (change(false, C))
... code ...

(d) Removing code conditional on C:

if (change(C, false))
... code ...

(e) Weakening the execution of a block of code from conditional on C to unconditional:

if (change(C, true))
... code ...

(f) Strengthening the execution of a block of code from unconditional to conditional on C:

if (change(true, C))
... code ...

Rules 2c, 2d, 2e, and 2f also apply to while statements and can be easily tailored to
for loops.
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(3) Adding/removing straightline code fragments. In general, we first try to annotate any code
modifications using rules (1) and (2). However, if the changed code has side effects (e.g.,
it writes to a file) or the previous rules are too difficult to apply, we use the following
rules:
(a) Removing straightline code:

if (change(true, false))
... code ...

(b) Adding straightline code:
if (change(false, true))
... code ...

(c) Replacing code sequences:
if (change(true, false))
... old code ...

else ... new code ...
We note that this is the most conservative way of annotating a change in our framework—
the execution of a branch instruction conditional on a change(true, false) expression
immediately triggers the generation of a divergent test input, terminates shadow execu-
tion and proceeds by running the new version only, losing the ability to use the old version
as an oracle.

However, with those rules developers can easily model large complex patches, spread
over not-necessarily contiguous blocks of code. For example, developers might decide to
conservatively enclose inside a single if change(true, false) statement a large frag-
ment of code that interleaves unmodified and modified bits. While such a heterogeneous
code fragment might not necessarily introduce a divergent behaviour, symbolically exe-
cuting it in the context of the new version would still check for the presence of various
kinds of generic errors, including assertion violations. Hence, even approximately outlin-
ing the contours of the changed regions in code could prove beneficial.

(4) Adding/removing variable declarations. If a variable declaration is added or removed, then
we keep it in the merged program; no annotations are necessary. Uses of that variable are
treated using rules (1) to (3) above.

(5) Modifying variable declarations. When the type of a variable is changed to include more
or fewer values, we keep the larger type. Due to arithmetic overflow issues, we reason
manually whether this is safe to do; however, in our benchmarks type changes were a
rare occurrence and quite straightforward: e.g., changing char buf[5] to char buf[2]
or changing a bool to an enum.

Automating Patch Annotations. We believe some of the patterns described above could be auto-
mated via a compiler pass. However, we acknowledge that the process can sometimes require a
good understanding of the semantics of the patch, which go beyond the capabilities of a pattern-
based automated technique. Examples include changing a variable type (as in pattern (5) above)
or patches with large numbers of inter-dependent parts. In these examples, it would be very chal-
lenging to automate the annotation process, except for enclosing the entire patch in a change
(true, false) statement as noted in pattern (3)(c) above, which is sub-optimal, as explained
there.

However, we see Shadow primarily as a development-time tool that would be used by the
authors of the code. We found the effort of writing annotations for third-party code to vary from
a few minutes for the easy patches up to a few hours for the most complex ones, but the authors
of the code would have been able to write them with considerably less effort.
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Fig. 5. A change in an assignment propagating through the rest of the code.

3.2 Symbolic Execution Phase

For each input that touches the patch, shadow symbolic execution operates in two phases:

(1) Concolic phase. We start by executing the unified program on that input, and gather
constraints on the side, as in concolic execution [12, 38]. As the program executes:
(a) If at a branch point the input exposes a divergence, then we stop concolic execution

and add this divergence point to a queue to be processed in phase (2).
(b) If at a branch point the input follows the same path in both versions, but divergences

are also possible, then we generate a test case exposing each possible divergence and
then add these divergence points to the queue to be processed in phase (2). We then
continue the concolic execution of the unified program.

(2) Bounded symbolic execution (BSE) phase. For each divergence point placed in the
queue during the concolic phase, we initiate a BSE run in the new version starting from
that divergence point (with the symbolic store and path condition that trigger the diver-
gence), to search for additional divergent behaviours.

The concolic phase is computationally cheaper; nevertheless, the BSE phase is essential as it is
able to propagate the divergent behaviour down the execution tree and explore systematically the
impact of the divergence.

Efficiently sharing state using shadow expressions. As in other instances when different
software variants or versions are run together [10, 16, 17, 19, 29, 42], shadow symbolic execution
can substantially increase memory consumption. As a result, it is important to maximise sharing
between the symbolic states of the two versions. Since the patch typically affects a relatively small
number of symbolic expressions, everything else can be shared. Furthermore, it is possible to share
those parts of symbolic expressions that are identical between versions.

To enable sharing, whenever we encounter a change() annotation, instead of constructing and
maintaining separate symbolic expressions for the old and the new version, we create a shadow ex-
pression. A shadow expression contains two subexpressions, one corresponding to the old version,
and one to the new. Shadow expressions can be used as any other expressions, without the need
to duplicate for each version entire expression trees that contain modified subexpression nodes.
To illustrate, consider the example in Figure 5, in which the code is changed to assign into x value
b instead of a. Furthermore, assume that after this change x is used multiple times in the program,
directly or indirectly, e.g., to derive the values of variables y and z on lines 2 and 3.

Without sharing, both y and z would have to point to different symbolic expressions in the two
versions. However, the use of shadow expressions unifies the expressions for the two versions and
maximises sharing. In our example—as illustrated in Figure 6—x will point to a shadow expression
with children a and b. Then, when y is created, its left child is assigned to this shadow expres-
sion, but node y itself remains the same in both the old and the new versions. Similarly, when
z is created, its children become simply y and 2. This scheme has the advantage that sharing is
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Fig. 6. A shared expression tree for the expressions corresponding to the variables x, y, and z in Figure 5.

Expressions containing shadow subexpressions are kept in the symbolic store and lazily evaluated at symbolic

branch points, e.g., in the if condition on line 5, to extract the new and old counterparts.

maximised, propagation of changes is implicit, and the creation of expressions can still be per-
formed in constant time.

In addition, the dynamic nature of symbolic execution provides opportunities for identifying
refactorings on a per-path basis at run time, which allows for further optimisations. In particular,
if the two candidate children eold and enew of a shadow expression are equivalent under the current
PC, then the syntactic changes do not introduce semantic differences and we skip the creation of
a shadow expression.

3.3 Enhanced Cross-Version Checks

To determine whether an input that exposes a code-level divergence results in an externally-
observable regression bug or expected behavioural change, we use a series of enhanced cross-
version checks. These checks run the two versions natively on each input that exposes a divergence
and compare their outputs, including exit codes. They also check for generic errors, in particular
crashes and memory errors that do not trigger a crash, the latter detectable by compiling the code
with address sanitisation [39]. The purpose of address sanitisation is to detect heap and stack buffer
overflows and use-after-free errors. The technique involves compiler instrumentation of memory
allocations, deallocations, and accesses. For instance, stack allocations are instrumented to insert
special red zones around the allocated objects, which are later used to detect out-of-bounds ac-
cesses. When an error is detected, the execution halts with an error report. Across the experiments
that we present further in the article, address sanitisation detected nine unique errors, as identified
by the code location and memory address involved in the error.

If the outputs of the two versions differ, then it is up to developers to decide whether the dif-
ference is expected or a regression bug. Even though in our evaluation we determined this au-
tomatically (because we also knew the patches that fixed the introduced bugs), we validated the
classification manually and often found making this judgement easy to do, by reading the commit
message describing the intention of each patch. We also had cases in which it was not immediately
obvious whether the change in behaviour was expected—these are exactly the kind of inputs that
developers should pay attention to, as they could point to bugs or lack of proper documentation.

We apply these checks both on the inputs in the regression test suite and on the inputs generated
by our technique.

4 IMPLEMENTATION

We implemented our approach in a tool called Shadow, which is built on top of the KLEE symbolic
execution engine and uses the concolic execution functionality from the ZESTI extension [26]. Our
code is based on KLEE revision 02fa9e4d, LLVM 2.9 and STP revision 1668.
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Table 1. An Overview of the Timeout

Values Used

Total 7,200s
Test case 3,600s

Symbolic Run Invocation 600s
BSE 570s
Solver 30s
Total 7,200s

Replay Test case 60s
Invocation 5s

Invocation means a single run of Shadow or the

native version of the program. The BSE timeout

is just for symbolic exploration and does not in-

clude the time to repeat the concolic phase.

To select the test cases in the regression suite that touch the patch, we run the regression suite
on the new version of the program compiled with coverage instrumentation.3

To run the concolic phase, we replace the program under test with a wrapper script that passes
the original invocation parameters to Shadow. Note that a test case may invoke a given program
multiple times. To test the nth invocation, the script runs the first n − 1 invocations natively, and
forwards the nth to Shadow.

The concolic phase runs each test case touching the patch, and generates a test input every
time it finds a divergence. The BSE phase repeats the concolic phase (for ease of implementation)
and stores all divergence points in a queue. Then, Shadow performs bounded symbolic execution
starting at each divergence point in this queue, in a breadth-first search manner. We generate
an input for each path explored during BSE. As these paths originate from divergent points, the
generated inputs should also expose divergences, modulo imprecision in our change annotations.

Timeout values for symbolic runs. In the concolic phase, a single invocation is allowed to
run for a maximum of 600s. The same budget is given for the BSE phase, which as discussed above,
also repeats the concolic phase for ease of implementation. The actual symbolic exploration phase
is given a maximum of 570s, divided equally among all the divergence points placed in the queue.

For each phase, we set a global timeout of 3,600s for running an entire test case (potentially
consisting of multiple invocations). Also, for each phase we set a global timeout of 7,200s for
running all the test cases that touch the patch. In all the presented experiments, we use an SMT
solver timeout of 30s.

The symbolic run timeout values are summarised in the upper part of Table 1. In Section 5.6,
we present an extended study in which we run the experiments with different timeout values to
better understand the impact of the time budget on the results.

Timeout values for replay. To rerun the generated inputs natively, Shadow provides a replay
functionality that implements the enhanced checks described in Section 3.3. This functionality
also uses a wrapper script that calls the native versions of the application and substitutes the
original parameters with the ones synthesised for the generated test cases. Shadow runs each test
input twice, once with the old version and once with the new one. The outputs and exit codes are
then compared to discover divergences that propagate to the program output. For each phase, the
replay is bounded by a per-invocation timeout of 5s, a per-test-case timeout of 60s and a global

3We use gcov, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
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timeout of 7,200s. Due to some non-determinism in our replay infrastructure, we retry each replay
experiment once if the first attempt is unsuccessful. The replay timeouts are summarised in the
lower part of Table 1.

Non-determinism. One of the sources of non-determinism are background tasks used in some
of the test cases. These test cases would run two instances of a given tool in parallel, one of which
would be running in the background. In our infrastructure, we run and replay test cases in a
selective manner, each time focusing on the nth invocation of the tool. However, it might happen
that the nth invocation during the symbolic execution run is not the nth invocation during the
replay run.

To address this problem, we remember the actual invocation parameters and try to match them
during the replay phase (rather than relying on the invocation number). However, even this ap-
proach is sometimes inadequate as some of the parameters might change at each invocation, e.g.,
names of temporary files/directories or process IDs.

Finally, Shadow may not generate exactly the same output as the native version of the tool. For
instance, a timeout may occur that would prevent the application from completing execution, or
some feature might be unsupported by Shadow, e.g., accepting standard input from a Linux pipe.
As a result, some test cases might not behave as expected as sometimes the output of a tool is used
further on in the test case script. While these are not fundamental limitations, engineering effort
would be required to make Shadow more transparent. However, that proved unnecessary for our
patch testing experiments.

5 EVALUATION

We evaluate Shadow on the software patches from the GNU Coreutils application suite4 in-
cluded in the CoREBench suite of regression bugs.5 Coreutils is a collection of utility programs
for file, text and shell manipulation. It is a mature, well-maintained and widely used project in-
cluded in virtually all Linux distributions. Together, the programs form a code base of over 60
KLOC.6

The CoREBench patches represent a tough challenge for test input generation: as the CoREBench
authors discuss [5], the complexity of these regression errors and associated fixes is significantly
higher than those in popular evaluation suites such as the SIR and Siemens benchmarks.7

CoREBench provides 22 pairs of {bug-introducing, bug-fixing} patches for Coreutils. However,
there are only 18 unique bug-introducing patches in CoREBench, as some patches introduce multi-
ple bugs. These 18 patches are shown in Table 2. Due to technical problems related to running old
revisions, we could not run the test suites coming with patches #2 and #9. Therefore, we exclude
those two patches from our evaluation, although we do report the annotation effort involved for
these patches too.

The first column of Table 2 shows the CoREBench ID for the patch. If the patch is responsible for
multiple bugs, then we show all relevant IDs: e.g., “5 = 16” means that the bug-introducing patch
with ID 5 is the same as the one with ID 16.

The LOC, Hunks, and Files columns provide information about the size of each patch, in terms
of added/modified lines of code (LOC), hunks, and files. The number of LOC is measured by the
diff tool.

4http://www.gnu.org/software/coreutils/.
5http://www.comp.nus.edu.sg/∼release/corebench/.
6Measured with the cloc tool, http://cloc.sourceforge.net/.
7http://sir.unl.edu/portal/index.php.
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Table 2. Coreutils Patches from CoREBench

Patch Size Test Files Annotations
ID Tool LOC Hunks Files Touching Annotations Touched

1 mv, rm 45 17 4 243 12 12
2 od 141 46 1 – 32 –
3 cut 294 34 1 17 14 14
4 tail 21 4 1 4 4 2
5=16 tail 275 12 1 2 1 1
6 cut 8 3 1 15 3 3
7 seq 148 5 1 29 5 5
8 seq 37 4 1 29 12 9
9=18=20 seq 324 45 1 – 11 –
10 cp 16 8 5 42 2 2
11 cut 2 1 1 14 1 1
12=17 cut 110 16 1 1 4 4
13 ls 13 2 1 8 2 2
14 ls 15 5 1 7 4 4
15 du 3 1 1 26 1 1
19 seq 40 9 1 11 6 6
21 cut 31 9 1 11 6 6
22 expr 54 6 1 2 4 4

We report the CoREBench bug/patch ID, the affected tool, the patch size (which takes into account source code files only),

the number of test files that touch the patch, the number of change() annotations that we used for each patch, and the

number of annotations covered by the test suite.

The hunks forming a patch essentially characterise the different non-adjacent segments of code
affected by a patch and therefore the number of hunks is indicative of how localised or dispersed
the code changes are. More formally, the concept of adjacency is parametric on the so-called con-
text size and a hunk groups together all the lines added or modified in a patch that are at a distance
smaller than or equal to the context size. We used the unified diff format with a context size of
zero when computing the hunks, which implies that in our setting a hunk is a maximal code frag-
ment consisting of only contiguous lines of changed code. For example, the code in Figure 7 on
page 19 consists of three hunks starting on lines 1, 4, and 10. Similarly, the code in Figure 8 on
page 20 consists of five hunks starting on lines 2, 8, 11, 14, and 16—note that the changes on the
consecutive lines 2 and 3 are enclosed in a single hunk.

As can be seen, the size of a patch varies between only 2 LOC and a single hunk and 324 LOC
and 45 hunks. Most patches change a single file, with two exceptions, where 4 and, respectively, 5
different files are affected.

Finally, the last three columns provide information on patch coverage and annotations. The
column Test Files Touching provides the number of test files in the regression test suite that touch
the patch. Those are used as starting points by Shadow and vary between 1 and 243 test cases.
The columns Annotations and Annotations Touched report, respectively, the number of change()
annotations that we introduced for each patch and the actual number of annotations that are
covered by the test suite. We needed to introduce between 1 and 32 annotations across all tested
patches. As we can see, in most of the cases all annotations were touched by the test suite, except
for patches #4 and #8 for which some of the annotations remained uncovered by the existing
tests.
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Table 3. Distribution of Annotation Patterns Across the CoREBench Patches

Modified Extra Straightline Added/removed Modified

ID rvalues assign/cond code variables types

1 11 1 - - �
2 24 - 8 � �
3 4 6 4 � -
4 3 1 - - -
5=16 - 1 - � -
6 1 2 - - -
7 2 3 - � -
8 11 1 - - -
9=18=20 9 2 - � �
10 - 2 - � -
11 - 1 - - -
12=17 2 - 2 � �
13 1 - 1 - -
14 3 - 1 � -
15 - 1 - - -
19 2 3 1 - -
21 4 2 - � -
22 3 1 - � -
Total 80 27 17 � �
The second, third, and fourth columns refer to the annotation pattern groups outlined in Section 3.1. The last two

columns indicate the presence of changes that require no explicit annotations despite taking some effort to reason

about, e.g., an added/removed variable or a type change. Variables that are added or removed in a scope accessible

only to a single version (e.g., in a newly-added function) do not contribute toward column 5.

5.1 Annotations

Column Annotations in Table 2 shows the number of change() annotations that we added for each
patch. In general, the number of annotations does not depend on the number of LOC in the patch.
For example, patch #5 adds a call to a new function consisting of over 200 LOC, which in turn
calls other new code. However, while a lot of code has been added, we need a single change()
annotation to enable it, as discussed in Section 3.1.

Instead, the number of hunks can give a rough estimate of the number of required annotations.
Nonetheless, there are exceptions—for example, many hunks do not require any annotations. E.g.,
patch #5 discussed above includes a variable renaming from nfiles to n_files, which results in
many hunks that do not require any annotations. Hunks that only change comments are another
example.

Table 3 provides a rough overview of the distribution of annotation patterns as classified in
Section 3.1. The classification is approximate—for example, a transformation of a variable bool
neg into int sign can be interpreted as both a change of type or an addition and a removal of a
variable. The most common annotations were the ones that represent a modification of an rvalue
expression. We introduced 80 annotations of that type. We also introduced 27 annotations rep-
resenting adding or removing extra assignments or conditionals and 17 annotations representing
adding or removing straightline code fragments. Furthermore, in 10 out of 18 patches, we encoun-
tered added/removed variable declarations or type modifications.
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In general, there is often more than one way to annotate a patch and there is a judgement call
involved as to what would be the best way to express the change. Furthermore, our manual effort
is error-prone, although we are confident that the annotations are correct. Based on our empirical
experience with annotating the patches, we created the set of rules outlined in Section 3.1. These
rules can be used as a guideline when annotating new patches.

We make our annotations publicly available at http://srg.doc.ic.ac.uk/projects/shadow/
annotations.html, hoping they will prove valuable in other differential testing projects too.

5.2 Experimental Details

Environment. We conducted our experiments on a server running Ubuntu 14.04, equipped with
two Intel(R) Xeon(R) E5-2450 v2 at 2.5GHz CPUs (32 cores) and 192GiB of RAM. The tests were
usually run in parallel for all the tested revisions.
Memory limit. We use KLEE’s default memory limit of 2,000MiB per invocation, which was never
exceeded.
Changes to code and test suites. Since some of the tested Coreutils revisions are several
years old, they do not compile out of the box, and we had to apply several patches provided by the
CoREBench authors. Furthermore, we had to make other minor modifications for compatibility
with KLEE and our infrastructure.

To consistently compare the program outputs across versions, we also applied a series of changes
to the Coreutils test suite related to making tests run (more) deterministically. One example is
the creation of temporary files, which by default have different names across runs.

5.3 Overall Results

We conduct three sets of experiments, corresponding to running: (1) the regression test suite,
(2) the concolic phase of Shadow, and (3) the BSE phase of Shadow. We run all three sets of ex-
periments with our enhanced cross-version checks that were described in Section 3.3. Note that for
running the regression test suite with the enhanced checks, we use the same unified programs em-
ployed by the concolic and BSE phases of Shadow. We take a conservative approach and assume
that all invocations in the regression suite that execute the change() annotations with arguments
of different value are divergent. Note that this is an over-approximation as the two versions might
still have the same branching behaviour.

Regarding the run times for the different phases of Shadow, we observed median values of
1,020s for running the regression suite, 1,962s for running the concolic phase, and 7,213s for run-
ning the BSE phase, all including our enhanced checks. Note that these values are only meant to
give a rough estimate of the time needed by Shadow—they are influenced by the different num-
bers of test cases that touch the patch, and also by the load on our machine, which we have not
tried to control.

Table 4 gives an overview of our experimental results. For each phase, we provide the number of
test inputs exposing code-level divergences (Divergences–Total) and the percentage of those inputs
that we manage to replay in the allotted time frame (Divergences–Replayed). Due to a small degree
of non-determinism in our replay infrastructure, a few of these divergences might be duplicates.
As we can see, the BSE phase discovered most of the code-level divergences, orders of magni-
tude more than the regression test suite and the concolic phase. The concolic phase discovered
relatively few divergences on top of the ones found by the test suite. In total, Shadow detected
between 1 and 54,842 code-level divergences across all tested patches. However, the figures under
Regression Suite–Divergences–Total are an over-approximation, as they reflect our conservative ap-
proach of assuming that all invocations in the regression suite that touch change() annotations
with different value arguments are divergent.
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Table 5. Sample Inputs Generated by Shadow Exposing Regression Bugs and Expected Differences

Behaviour

ID Generated Input Old New Classification

4
tail –retry
///s\x01\x00g\x00

tail: warning: –retry is useful
mainly when following by
name...

tail: warning: –retry ignored;
–retry is useful only when
following...

Expected

6
cut -c1-3,8-
–output-d=: 〈file〉
file contains “abcdefg”

abc abc + buffer overflow Bug

17
cut -c1-7,8-
–output-d=: 〈file〉
file contains “abcdefg”

abcdefg abcdefg + buffer overflow Bug

21
cut -b0-2,2-
–output-d=: 〈file〉
file contains “abc”

abc signal abort Bug

21
cut -s -d: -f0- 〈file〉
file contains “:::\n:1”

:::\n:1 \n\n Expected

21
cut -d: -f1,0- 〈file〉
file contains “a:b:c”

a:b:c a Expected

The second column provides the test inputs generated by Shadow, the third and the fourth columns present the exter-

nally visible differences observed between the old and the new version. The last column provides a classification of the

externally-visible differences into expected or bugs.

Table 4 also presents how many of the divergent inputs that we replayed led to output
differences. These differences are further classified into expected differences and bugs. There
are two types of bugs: generic bugs, such as memory errors, and semantic bugs, which lead to
incorrect results. For generic bugs, if the old version does not trigger the error and the new one
does, then we report the input as exposing a regression error. If it is the other way around, then
we report it as exposing an expected difference. As we can see, running the regression suite phase
led to the detection of differences in 10 out of 16 patches. The concolic phase was able to detect a
difference in patch #21 on top of what was found by the regression test suite. The BSE phase found
further differences in four patches, notably in patches #6 and #12 for which the other phases had
no success. Code-level divergences do not always translate into externally visible differences, as
it is the case for e.g., patches #6 and #11 for the concolic phase and #3 and #8 for the BSE phase.

As discussed in Section 3.3, by reading the commit message associated with the patch, we can
often reason manually whether an input that leads to different outputs across versions exposes a
regression bug or an intended change in behaviour. We expect this would be even easier for the
authors of those patches. However, in our evaluation, we make use of the fact that the CoREBench
regression suite provides the revisions that fix the introduced bugs. More precisely, we run the
input on two additional versions: the version just before the fix and the version in which the fix
was applied. If these two versions behave the same on this input or the fixed version behaves the
same as the new version, then we classify the change in behaviour as expected. Otherwise, we
classify it as a regression bug. For patches introducing multiple bugs, we run each fix in turn. This
approach is automatic but is not guaranteed to correctly classify changes in behaviour due to non-
determinism or because the patch fixing the bug may introduce other changes too. Hence, we also
perform a brief manual sanity check of the automatic classification.

5.4 Successful Examples

Table 5 gives several examples of actual inputs generated by Shadow. For each input, we show
side-by-side the behaviours of the old and the new version. For instance, the first example shows
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Fig. 7. Shadow annotations for CoREBench bug #6.

an expected difference in tail, while the second example shows a regression bug that triggers a
buffer overflow in the new version of cut.

We discuss in more detail two patches in which we managed to find the introduced regression
bug and/or the intended change in behaviour.

CoREBench patch #6. This is a patch in cut, a tool whose purpose is to delete portions of text
(ranges of bytes, characters or fields) from each line of a file. To do so, the user can specify both
closed ranges, e.g., 3-5, meaning all bytes (or characters or fields) from the third to the fifth byte
from the beginning of the line, as well as open ranges, e.g., -5 and 9-, to refer to all the bytes (or
characters or fields) from the beginning of the line up to the fifth byte, and from the ninth byte
until the end of the line, respectively. The aim of the patch is to prevent unnecessary memory
allocation when only open ranges are specified.

The annotations for the patch are presented in Figure 7. We added three annotations, one when
an if statement is removed (line 1), one when an if statement is added (line 4), and one when an
extra conjunct is added to the condition of an if statement (line 10).

Prior to the patch, memory was allocated unconditionally (line 5), but the patch strengthened
the condition guarding the allocation based on the value of max_range_endpoint, which rep-
resents the maximum end value of an index in a closed range, and is 0 when the user spec-
ifies only open ranges. The patch introduces a buffer overflow on line 11, when both closed
and open ranges are specified and the value of max_range_endpoint is greater than 0 but
smaller than the minimum start value of an index in an open range (eol_range_start). In such
cases, max_range_endpoint in the new version is not set to the value of eol_range_start
(line 2) and on line 5 the printable_field array is allocated to size max_range_endpoint + 1.
Finally, on line 11, function is_printable_field() accesses the printable_field array at in-
dex eol_range_start, which results in an index out-of-bounds error in the new version.

Table 5 shows a test input generated by Shadow that exposes this bug. The input was found in
the BSE phase.

In addition to detecting bugs introduced by software patches, Shadow can be used as a debug-
ging tool, to help trace down the root cause of a bug. In particular, we could map the generated test
input to the branch point where the divergence was exposed, which could help with debugging.
Furthermore, one could track the divergent branch conditions to the change() expressions from
which they derive. For instance, the bug-triggering input that is shown in Table 5 for the code
in Figure 7 was synthesised due to the divergence on line 1, and the divergent branch conditions
were due to the change() annotation on the same line.
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Fig. 8. Shadow annotations for CoREBench bug #21.

CoREBench patch #21. This patch intends to make cut emit an error message when invalid
ranges such as 2-0 are specified.

Our annotations for the patch are given in Figure 8. We added six annotations: three of them
when an rvalue expression is changed (lines 2, 3, and 14), one that adds a new if statement (line 8),
one that removes an if statement (line 16), and one that modifies an if statement (line 11).

The test cases in the regression suite already detect 12 expected output differences exposing the
same behaviour in which the new version prints out one of the two error messages on lines 9 and
14. However, Shadow generated further inputs for which the output differences do not involve
error messages. The last two rows of Table 5 show two such inputs. Using the bug-fixing revision,
we classified these changes as expected, and we think the generated inputs are good candidates
for being added to the regression suite.

Shadow also found unexplored divergences just off the paths executed by the test suite, which
revealed an abort failure. A sample such input generated by Shadow during the concolic phase is
-b0-2,2- –output-d=: file. In the BSE phase, Shadow detected a buffer overflow bug sim-
ilar to the one discussed in patch #6. Note that these are separate bugs from the one recorded in
CoREBench.

5.5 Unsuccessful Executions

For several patches Shadow failed to synthesise inputs that trigger either expected differences or
bugs. Regarding expected differences, we note that several patches seem to be refactorings, so it
would be impossible to trigger an expected output difference (any difference would be a bug).

In terms of the missed regression bugs, as mentioned before, the CoREBench patches are very
challenging, and significantly more complex than those typically considered by prior research
studies—see the CoREBench paper for details [5]. To get a feel for the challenges involved in
analysing these patches, consider the following bugs missed by Shadow: finding bug #1 requires
reasoning about file access rights, bug #8 requires floating point support, bug #14 requires support
for symbolic directories, and the bug report for #19 is not reproducible on our recent distribution
of Linux. Finally, our relatively short timeout values may have prevented us from successfully de-
tecting some of the bugs and expected divergences; we chose these values to keep the turnaround
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time for running all experiments within a nightly run, and explore their impact in more detail in
Section 5.6.

More generally, some of these patches require a precise environmental model (KLEE’s model is
incomplete, e.g., it lacks the ability to handle symbolic directories), and at least one patch requires
support for symbolic floating-point values (which KLEE does not provide). However, one could
implement Shadow in other symbolic execution engines, such as in Cloud9 [6], which extends
KLEE with a more comprehensive environmental model, or in one of the recent extensions of
KLEE for floating point [23].

We also depend on the availability of inputs that reach the patch (see the discussion in
Section 6.2).

Our mechanism for detecting changes is also limited, focusing solely on output differences.
However, some patches change non-functional properties such as improving memory consump-
tion in #6 or performance in #7.

Finally, note that we typically have inputs that expose divergences at the code level, which could
prove useful to developers to reason about their patches. However, in many cases the number
of divergent inputs is simply too large, and in future work one could investigate clustering and
ranking techniques to help developers sift through these divergences.

We provide a further discussion of limitations in Section 6.3. Below, we present details about
experiments performed with increased timeout values and a comparison with a vanilla version of
KLEE.

5.6 The Impact of Timeout Values

To understand whether the unsuccessful cases discussed in Section 5.5 were a consequence of time-
out values that are too short, we performed further Shadow experiments with increased timeout
values.

For this large number of additional experiments, we used several virtual machines running in
the cloud and equipped with an 8 core CPU @ 3GHz and 8GB of RAM. Because the hardware
platform differs from our initial tests, we first run Shadow with the same timeout values as before,
to get baseline results for the cloud. These results are presented in Table 6. Note that for these
experiments we report results for patches #5/#16 and #12/#17 separately, as it was easy to test each
revision independently, given the parallel platform. As can be seen, the numbers do not deviate
much from those in Table 4, except for generating many more bug-exposing inputs in the BSE
phase for patch #21.

We next perform a set of experiments with the timeout values changed as described in Table 7.
The format and the meaning of the values presented in Table 7 are the same as the ones in Table 1
(see Section 4). For clarity, in Experiments 1–6 of Table 7, we only present the values that changed
compared to the Baseline experiment (which are identical with the values from Table 1). Exper-
iments 1–6 present a combination of different timeout values. In experiments 1, 3, 5, and 6, we
increased the timeout for a single invocation of Shadow and the timeout for the BSE phase. Fur-
thermore, in experiments 2–6, we increased the global timeout for each phase (denoted as Total)
from 2h up to 48h for both run and replay. The timeouts for the SMT solver, test case replay and
a single tool invocation while replaying remained unchanged for all experiments.

Table 8 presents the total number of divergences as well as the numbers of expected and un-
expected differences for each of the experiments. The meaning of the columns is the same as in
Table 4; please refer to Section 5.3 for more details.

Discussion. As we can see in Table 8, increasing the timeout values improves the overall results.
In most cases the numbers of expected and unexpected differences increased. New differences
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Table 7. Timeout Values Used for Additional Experiments

Baseline Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

Total 2h 8h 8h 48h 48h 48h

Test case 1h 4h 4h 4h 4h 48h

Symbolic Run Invocation 600s 1,800s 1,800s 1,800s 1h

BSE 570s 1,740s 1,740s 1,740s 1h

Solver 30s

Total 2h 8h 8h 48h 48h 48h

Replay Test case 60s

Invocation 5s

For clarity, only the changed values are shown.

were also found: expected differences for patch #3 in experiments 2 and 4, for patch #12/#17 in
experiments 3–6, and for patch #19 in experiments 3–6 (in addition to the differences already
known for #19). In experiment 4, Shadow detected new bug-revealing differences for revision #8,
which uncover a problem not related to the bug reported in CoREBench.

It is interesting to observe how changing various timeout values might influence the results.
In particular, increasing the timeout for the BSE phase alone does not necessary result in finding
more output differences. If we have a test case with three invocations of a tool of interest and a
time budget of 1h for running tests, and if we increase the BSE time budget to half an hour, then
we might never reach the third invocation of the tool, while that uncovered invocation can be the
one that would result in output differences.

5.7 Comparison with Vanilla KLEE

To further evaluate the efficiency of Shadow for patch testing, we run experiments using a vanilla
version of KLEE, borrowing the replay stage with the enhanced checks on both the old and the
new version of the code.

We used KLEE revision 02fa9e4d, on which Shadow is based, and ran it on the new versions
associated with each patch in CoREBench. As a guideline for setting up our experiments, we used
the set of options recommended for the Coreutils experiments.8

We performed two sets of experiments. The first vanilla KLEE experiment uses the same timeout
values as the baseline Shadow experiment in the cloud, while the second vanilla KLEE experiment
uses the same timeout values as Shadow experiment 2 in the cloud. The vanilla KLEE experiments
are also run in the cloud, so the two pairs of experiments are directly comparable.

Vanilla KLEE generated between 434 and 1,095 test cases across all revisions in the first exper-
iment and between 838 and 4,374 test cases in the second experiment. The number of differences
generated by vanilla KLEE are presented in Table 9, with the data for the corresponding Shadow
experiments repeated for convenience. As in Table 8, we present the number of differences found
by Shadow across all stages, including running the test suite with enhanced cross-version checks.

The experiments indicate that Shadow discovers more divergences and differences as compared
to vanilla KLEE. For the first set of experiments (with baseline timeout values), Shadow detected
expected or unexpected output differences in 14 out of 18 revisions, while vanilla KLEE was suc-
cessful only in 5 out of 18 revisions. Similarly, in the second set of experiments (with experiment
2 timeout values), Shadow was able to find output differences in 15 out of 18 revisions, while
KLEE was successful in 5 revisions. In particular, Shadow detected an order of magnitude more

8http://klee.github.io/docs/coreutils-experiments/.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 10. Pub. date: September 2018.

http://klee.github.io/docs/coreutils-experiments/


10:24 T. Kuchta et al.

T
a
b

le
8.

A
d

d
it

io
n

a
l

E
xp

er
im

en
ts

fo
r

D
iff

er
en

t
T

im
eo

u
t

V
a
lu

es

B
a

se
li

n
e

E
x

p
e
ri

m
e
n

t
1

E
x

p
e
ri

m
e
n

t
2

E
x

p
e
ri

m
e
n

t
3

E
x

p
e
ri

m
e
n

t
4

E
x

p
e
ri

m
e
n

t
5

E
x

p
e
ri

m
e
n

t
6

T
o

ta
l

D
iff

e
re

n
ce

s
T

o
ta

l
D

iff
e
re

n
ce

s
T

o
ta

l
D

iff
e
re

n
ce

s
T

o
ta

l
D

iff
e
re

n
ce

s
T

o
ta

l
D

iff
e
re

n
ce

s
T

o
ta

l
D

iff
e
re

n
ce

s
T

o
ta

l
D

iff
e
re

n
ce

s

ID
d

iv
s

E
x

p
.

B
u

g
d

iv
s

E
x

p
.

B
u

g
d

iv
s

E
x

p
.

B
u

g
d

iv
s

E
x

p
.

B
u

g
d

iv
s

E
x

p
.

B
u

g
d

iv
s

E
x

p
.

B
u

g
d

iv
s

E
x

p
.

B
u

g

1
43

,5
79

2
-

33
,1

91
2

-
18

2,
70

8
2

-
14

4,
79

5
2

-
36

1,
31

4
2

-
38

1,
51

3
2

-
37

3,
95

0
2

-

3
17

,2
64

-
-

14
,6

41
-

-
85

,0
37

5
-

34
,2

79
-

-
84

,7
00

6
-

32
,4

14
-

-
14

,6
72

-
-

4
39

36
-

39
36

-
39

36
-

39
36

-
40

36
-

39
36

-
39

36
-

5
14

-
5

14
-

5
14

-
5

14
-

5
14

-
5

14
-

5
14

-
5

16
14

2
3

14
2

3
14

2
3

14
2

3
14

2
3

14
2

3
14

2
3

6
1,

44
2

-
81

2,
24

5
-

59
4,

71
6

-
26

0
4,

75
6

-
27

4
4,

70
9

-
26

1
4,

34
5

-
26

3
2,

59
5

-
16

4

7
12

4
5

-
12

4
5

-
12

4
5

-
12

4
5

-
12

4
5

-
12

4
5

-
12

4
5

-

8
65

,7
75

-
-

62
,6

06
-

-
72

,7
38

-
-

91
,6

56
-

-
80

,3
77

-
74

25
,0

01
-

-
55

,1
79

-
-

10
6

-
2

4
-

2
6

-
2

6
-

2
6

-
2

6
-

2
6

-
2

11
2,

01
7

9
-

1,
84

5
9

-
3,

39
3

9
-

3,
57

1
9

-
3,

39
2

9
-

3,
56

8
9

-
3,

63
5

9
-

12
4,

66
0

-
84

6,
36

3
-

78
8,

41
8

-
37

4
11

,7
31

-
46

4
8,

42
5

-
37

4
11

,4
64

37
0

64
10

,1
10

-
41

7

17
4,

69
8

-
99

6,
36

9
-

78
8,

43
6

-
37

6
11

,7
75

67
39

6
8,

42
9

55
32

4
11

,0
85

66
37

0
10

,1
35

49
36

6

13
11

1
1

11
1

1
11

1
1

11
1

1
11

1
1

11
1

1
11

1
1

14
2

-
-

2
-

-
2

-
-

2
-

-
2

-
-

2
-

-
2

-
-

15
1

1
-

1
1

-
1

1
-

1
1

-
1

1
-

1
1

-
1

1
-

19
40

,0
52

7
-

37
,0

69
7

-
10

0,
51

4
7

-
90

,9
88

8
-

10
2,

08
8

30
-

99
,0

68
18

-
91

,6
28

20
-

21
24

,7
02

15
2

3,
04

1
18

,7
83

15
2

3,
15

0
73

,2
48

16
0

11
,5

87
60

,7
03

16
2

10
,2

20
58

,2
77

1,
02

2
23

,6
83

66
,4

21
78

8
26

,1
13

53
,0

67
68

6
26

,6
44

22
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 3, Article 10. Pub. date: September 2018.



Shadow Symbolic Execution for Testing Software Patches 10:25

Table 9. Comparison Between Shadow and Vanilla KLEE in Terms of the Number

of Expected and Unexpected (Bug) Differences

Shadow baseline Vanilla KLEE run 1 Shadow experiment 2 Vanilla KLEE run 2
ID Expected Bug Expected Bug Expected Bug Expected Bug
1 2 - - - 2 - - -
3 - - - - 5 - - -
4 36 - 22 - 36 - 31 -
5 - 5 54 9 - 5 234 56
16 2 3 69 1 2 3 288 -
6 - 81 - - - 260 - -
7 5 - - 2 5 - - -
8 - - - - - - - -
10 - 2 - - - 2 - -
11 9 - - - 9 - - 1
12 - 84 - - - 374 - -
17 - 99 - - - 376 - -
13 1 1 - - 1 1 - -
14 - - - - - - - -
15 1 - - - 1 - - -
19 7 - - - 7 - - -
21 152 3,041 105 308 160 11,587 423 1,079
22 - - - - - - - -

The two approaches are given the same time budget.

unexpected differences for revision #21 as compared to vanilla KLEE. These results are not surpris-
ing, given that Shadow’s objective is to find divergences, while KLEE has a generic symbolic execu-
tion approach. However, vanilla KLEE manages to find expected and, respectively, unexpected dif-
ferences in patches #5 and #7, which Shadow does not, and there are also cases where vanilla KLEE
generates more inputs exposing externally-visible differences. This is because unlike Shadow,
which starts from a fixed test suite (the regression test suite in our experiments), vanilla KLEE has
the freedom to explore other parts of the program space. One possible improvement would be to
first run vanilla KLEE and add the test cases it generates to the starting test suite for Shadow.

In general, vanilla KLEE has the advantage of not requiring a test suite; however, the user needs
to specify the inputs to the program that are to be made symbolic (in our experiments, the number
and the sizes of the command-line arguments and files), which Shadow does not require.

Finally, we note that the results for vanilla KLEE are also much more non-deterministic across
runs due to the internal search heuristics used by KLEE. For instance, while the longer vanilla KLEE
experiment finds more differences across the board, it misses the bugs in patches #7 and #16, which
the shorter vanilla KLEE experiment detects.

5.8 On the Complexity of SMT Solver Queries

In all our experiments, we used an SMT solver timeout of 30s (as noted in Table 1) and our empirical
evaluation shows that the solver timeout was not the bottleneck.

We measured the number of queries and the number of query constructs—where a query con-
struct is a node of a symbolic expression such as a constant or a binary operator—for both the
Shadow and the vanilla KLEE experiments. The results are summarised in Table 10.
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Table 10. The Maximum, Average, and Median Number of

SMT Queries and Query Constructs in the Shadow and

Vanilla KLEE Experiments

Queries Query constructs

Shadow Vanilla Shadow Vanilla
Maximum 39,487 14,016 271,695 918
Average 138 8,704 624 373
Median 10 9,220 50 391

The figures for the Shadow experiments include both the concolic

and BSE phases.

Table 10 shows that the maximum number of queries across Shadow experiments was higher
than for vanilla KLEE. However, both the average and the median values suggest that Shadow
issues much fewer queries than vanilla KLEE. Similarly, the table shows that the maximum and the
average number of query constructs we recorded was significantly higher for Shadow than for
vanilla KLEE. However, the median value for Shadow is almost eight times lower, which suggests
there were more small-sized queries in Shadow as compared to vanilla KLEE.

In summary, the results presented in Table 10 suggest that the queries solved in Shadow are
overall both less numerous and more lightweight when compared to vanilla KLEE. However, there
were also cases in which Shadow had significantly more and/or significantly more heavyweight
queries than vanilla KLEE.

6 DISCUSSION

We structure our discussion section into reflections on the regression testing process (Section 6.1)
and Shadow’s reliance on concrete inputs (Section 6.2), limitations of the Shadow approach (Sec-
tion 6.3), and applications of Shadow to other programming languages (Section 6.4) and software
engineering problems (Section 6.5).

6.1 Reflections on the Regression Testing Process

Our experience with the CoREBench patches revealed several insights into the regression testing
process. First, we believe that cross-version checks could be easily incorporated into existing re-
gression test suites. We envision a process in which developers would examine divergent inputs
and confirm whether the change in behaviour is expected or not. Such a lightweight process would
have detected some of the complex regression bugs in CoREBench. Second, generating inputs that
trigger externally-visible differences is valuable both for the possibility of finding regression bugs,
as well as for documentation—regarding the latter, we found that such inputs are often the best
“explanation” of the patch.

6.2 Reliance on Concrete Inputs

We designed Shadow to rely on concrete inputs that reach the patch. The alternative would have
been to have Shadow also try to synthesise inputs that reach the patch. While this would have
given Shadow more freedom to explore the search space of the program, we opted for assuming
the existence of concrete inputs for two reasons. First, the challenges of generating inputs that
reach the patch and that of further generating inputs that trigger divergences across versions are
quite distinct, and we did not see a benefit from addressing them in the same system. Second, the
challenge of patch reachability has already been addressed in the past [1, 24, 25, 27, 35, 40, 43],
and Shadow can reuse these results. In fact, Shadow can use any approach for obtaining such
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inputs: regression test suites (as done in this work), vanilla symbolic execution (as suggested in
Section 5.7), directed symbolic execution (as in KATCH [27]), or directed greybox fuzzing (as in
AFLGo [4]).

6.3 Limitations

We further discuss some of the main limitations of Shadow.

Incompleteness of symbolic execution. Symbolic execution is incomplete in that it usually
only explores a subset of all feasible execution paths in a given time budget. Furthermore, it may
also miss feasible paths when interacting with the external environment, such as the operating
system, or when SMT queries time out. For Shadow, this often means that only a subset of the
divergences introduced by a patch are discovered in a given time budget.

The impact of the initial set of inputs. The actual inputs that touch the patch can have a
significant influence on the efficiency of the testing process. These inputs determine the control-
flow path followed by symbolic execution. In particular, certain values may prevent the analysis
from reaching parts of the patch. For example, consider a fragment of code containing a branch
point if (x > 4), with x a symbolic input. When executing such code starting with x = 10,
the branch condition is added to the constraint set for the execution path and it effectively limits
the set of possible values for x further down on the path, even if the patch can be reached with a
value of x smaller than or equal to 4.

Multi-hunk patches. Real-world patches are likely to consist of multiple hunks, i.e., multiple
disjoint areas of the code are likely to get modified within a single commit to the source code
repository. Indeed, as we show in Table 2, all but two of the CoREBench patches consist of more
than one hunk. For such multi-hunk patches, we consider that a test input touches the patch if it
executes at least one line of code in at least one of the hunks. A limitation of this test case selection
strategy is the possibility of missing a certain class of bugs that are caused by inter-dependencies
between hunks, i.e., that are triggered when hunks are executed in a certain sequence. If our se-
lected inputs touch just a single hunk, then we might miss such bugs. While the BSE stage helps
in some cases, it might happen that for some multi-hunk changes we will start the BSE run on
the first encountered change and never reach the code of the subsequent hunks due to the large
number of executed paths. As a result, the bugs that depend on executing a sequence of changed
code fragments might be missed by Shadow.

Data-only divergences. Shadow focuses on the control-flow divergences introduced by the
patch code. Although shadow expressions can be created at any program location in the code (via
our change annotations), Shadow will only consider divergences once it encounters a branch
point that involves a shadow expression in the branch condition. This design decision can result
in missing a bug that is triggered by a changed state of a program rather than a changed control
flow. An example of such a bug would be a modification of a value that is then printed out to
the screen, but that does not affect the control flow. Shadow could be extended to handle data
divergences by specifying points of interest: in the example above, this would be the printing
function.

Technical limitations. Shadow builds on top of the KLEE symbolic execution engine. As a re-
sult, it inherits all its technical limitations. In particular, KLEE operates at the level of LLVM bitcode
and can only reason symbolically about the LLVM bitcode; external calls to native code are pos-
sible, but the symbolic data needs to be concretised first. Therefore, for fully functional symbolic
analysis, the whole analysed program and its external dependencies should be first compiled into
bitcode. Furthermore, while KLEE symbolically executes LLVM bitcode, it mainly supports bitcode
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generated from C programs. For instance, support for high-level programming language concepts
like C++ lambdas depends on whether and how they are translated into the LLVM bitcode by the
compiler. It is important to note, however, that these limitations are not fundamental and could be
solved with engineering effort.

6.4 Shadow Symbolic Execution for Other Programming Languages

Even though Shadow is built on top of KLEE and focuses on C programs, the technique is indepen-
dent of the programming language in which the code is written: the same principles of annotating
patches and reducing the search space for symbolic execution could be applied to other program-
ming languages.

A different research group has implemented the shadow symbolic execution approach for Java
programs [30] on top of the Symbolic PathFinder (SPF) framework [33]. Results indicate that the
technique is also effective for performing regression unit testing of Java code—it reduced the num-
ber of test inputs generated compared to vanilla SPF (which also generated tests irrelevant to re-
gression testing) and synthesised regression test inputs that were missed by SPF.

6.5 Applications of Shadow Beyond Patch Testing

While our objective for shadow symbolic execution is to expose divergences introduced by patches
that are written by humans, the technique is also useful in other software engineering approaches
that require inputs exposing divergences between either manually written or automatically gen-
erated program variants.

For instance, shadow symbolic execution is used by Chekam et al. [9] in the context of investi-
gating the “clean program assumption” and determining the correlation between fault revelation
and various forms of coverage, where the availability of inputs that trigger the differences between
faulty and fixed versions is critical.

Another application of shadow symbolic execution is discussed by the authors of N-Prog [18], a
framework that combines bug detection with test suite augmentation. N-Prog generates multiple
variants of a program such that each of the variants passes all tests in the original test suite, and
then it runs the original program and the variants on a random input stream. If for a given input
stream the outcome is different in at least one of the program variants, then it means that either
the variant is incorrect or that a bug/interesting new test case was detected. The availability of
inputs that expose divergences between these versions is essential to the successful application of
the technique.

Shadow symbolic execution was also discussed recently in the context of genetic improve-
ment [41]. Genetic improvement tasks such as automatic program repair or automatic speciali-
sation could benefit from the ability of shadow symbolic execution to generate inputs that trigger
differences between the automatically-generated variants, with differences defined appropriately.
Those inputs can be used to validate the results (e.g., whether the generated patch fixes the bug)
and/or to provide guidance to the genetic improvement process.

7 RELATED WORK

Recent years have seen a lot of work on automatic techniques for testing software patches, with
many of these techniques based on symbolic execution [1, 3, 24, 25, 27, 35, 40, 43]. However, most
research efforts have looked at the problem of generating test inputs that cover a patch. By contrast,
input generation targeting behavioural changes introduced by a patch has received much less
attention.

Differential symbolic execution [34] is a general framework that can reason about program
differences, but its reliance on summaries raises significant scalability issues.
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Directed incremental symbolic execution [35] combines symbolic execution with static program
slicing to determine the statements affected by the patch. While this can lead to significant savings,
static analysis of the program differences is often imprecise, and can miss important pruning and
prioritisation opportunities, particularly those that exploit dynamic value information.

Partition-based verification (PRV) [2] uses random testing and concolic execution to infer dif-
ferential partitions, i.e., input partitions that propagate the same differential state to the output.
PRV separately runs both program versions using concolic execution, and uses static and dynamic
slicing to infer differential partitions. In contrast to PRV, by running the two versions in a syn-
chronised fashion, shadow symbolic execution does not need to re-execute potentially expensive
path prefixes and can provide opportunities to prune and prioritise paths early in the execution,
as well as to simplify constraints.

A technique with a similar goal to Shadow is presented by Qi et al. [36]. The idea is to use
dynamic symbolic execution to generate test cases that exercise the patch code and also have
externally visible effects that propagate to the output. The approach uses the control flow graph
and the control dependency graph to guide symbolic execution toward the changed code, and also
the path constraints associated with the old and the new version. Shadow requires that at least
one of the test inputs touches the patch and also needs the manual patch annotation step, which
the discussed approach does not. Unlike Shadow, the approach does not run the two versions in
the same symbolic execution instance and does not run full symbolic execution on the divergent
paths. Also, while Shadow can analyse whole patches, the discussed approach can only process
one changed statement at a time.

Another similar approach for testing software changes is Conc-iSE [13]. The goals of Shadow
and Conc-iSE are similar, but the main focus of Conc-iSE is on concurrent patches. Conc-iSE au-
tomatically infers the execution paths affected by the patch using change impact analysis and sym-
bolic summaries and executes the affected paths incrementally. To obtain the summaries, Conc-iSE
needs to first symbolically execute the old version of the program. Shadow executes both versions
of the program at the same time and relies on existing test inputs, without the need to perform a
symbolic run up front.

SymDiff [21] is a static analysis technique for finding bugs in software patches. The high-level
idea is to verify whether a set of assertions that hold for the old version also hold for the new
version of a program. The relative strengths of Shadow and SymDiff are related to the relative
advantages of static and dynamic analysis: for instance, SymDiff can verify bug fixes but can also
generate false alarms, while Shadow can only reason about code that it executes and thus miss
divergent program paths, but has no false alarms and can generate actual test inputs that trigger
the divergences it explores.

The techniques discussed above were evaluated on patches significantly less complex than the
Coreutils patches we considered. However, Shadow is not fully automatic; while many of the
annotations that we added could be automated, manual assistance might still be needed. Never-
theless, research on automating this step is promising [22, 32]; furthermore, note that even an
imprecise automatic annotation system might be enough to help Shadow generate inputs expos-
ing behavioural changes.

Overall, while shadow symbolic execution offers new opportunities, it is unlikely to subsume
any of the techniques cited above. Testing evolving software is a difficult problem, which is unlikely
to be tamed by any single technique.

Running the two program versions in the same symbolic execution instance is similar in spirit
to running multiple versions in parallel, which has been employed in several other contexts, in-
cluding online validation [29, 42], model checking [10], product line testing [19], and software
updating [16].
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Research on test suite augmentation requirements has used the differences between two pro-
gram versions to derive requirements that test suites have to meet to ensure proper patch test-
ing [14, 37]; our analysis could potentially provide further information to guide these techniques.

8 CONCLUSION

In this article, we have presented shadow symbolic execution, a novel technique for generating in-
puts that trigger the new behaviours introduced by software patches. The key idea behind shadow
symbolic execution is to run both versions in the same symbolic execution instance and systemati-
cally test any encountered code-level divergences. The technique unifies the two program versions
via change annotations, maximises sharing between the symbolic stores of the two versions, and
focuses exactly on those paths that trigger divergences. We implemented this technique in a tool
called Shadow, which we used to generate inputs exposing several bugs and intended changes in
complex Coreutils patches. We make our experimental data available via the project webpage
at http://srg.doc.ic.ac.uk/projects/shadow.
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