Nuclear Inst. and Methods in Physics Research, A 896 (2018) 139-151

journal homepage: www.elsevier.com/locate/nima

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

NUCLEAR
INSTRUMENTS
&METHODS

IN
PHYSICS

Emittance measurements in low energy ion storage rings |

J.R. Hunt®*, C. Carli, J. Resta-Lépez?, C.P. Welsch?

@ The Cockcroft Institute and The University of Liverpool, United Kingdom
Y European Organization for Nuclear Research, CERN, Switzerland

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Beam dynamics

Low energy storage rings
Antiprotons

Beam diagnostics

Beam scraping

The development of the next generation of ultra-low energy antiproton and ion facilities requires precise
information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton
storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic
measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the
electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread
estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates.

Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects,
and present simulation results for the case of ELENA.

1. Introduction

Emittance measurement is essential in all particle accelerators and
transfer lines to control and provide the required beam quality. There
are many different ways to measure emittance ranging from simple
beam optics techniques to new and advanced setups such as the super-
sonic gas jet based beam profile monitor [1]. In this paper we focus on
expanding the capabilities of beam scraping through new data analysis
and determine the limits of such a technique using particle tracking
simulations.

Beam scraping enables direct access to information on the transverse
phase space amplitude. It also presents a high dynamic range very
suitable for getting information of low density long tails and halo mea-
surements. Indeed, scraping by collimators has been used to measure
beam halo diffusion and population in high energy colliders, e.g. in the
Large Electron—Positron collider (LEP) [2] and Tevatron [3] in the past,
and more recently in the Large Hadron Collider (LHC) [4].

Despite being destructive, the scraping method has also been used in
many hadron machines for emittance measurement. Concretely, due to
the simplicity of usage, it has been used with relatively low intensity
antiproton beams in the Antiproton Decelerator (AD) [5,6], and a
scraper device has been installed to measure emittances in the new
ELENA storage ring [7].

As mentioned before, beam scraping is a destructive measurement
technique. The beam is completely or partially removed by the scraper.
Apart from measuring transverse phase space dimensions of the beam,
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scrapers can be used as collimators to reduce the size and intensity of
the beam if necessary.

There are two types of scraper operation. In some cases the beam is
progressively driven into a fixed limiting scraper aperture by means of
steering magnets producing a local orbit bump. For instance, this is the
functioning principle of the so-called BEAMSCOPE (BEtatron AMplitude
Scraping by Closed-Orbit PErturbation) installed in the PS Booster at
CERN [8]. However, the most common scraper operation mode is to
move the scraper blades into the beam.

In order to directly access the information of the betatron phase
space, scraper devices are preferably placed at energy dispersion-free
positions in the optical lattice. For example, in the AD it is located in a
position with zero dispersion. This simplifies emittance measurements
since one does not have to deal with dispersive components. However,
unlike the AD, there is no position with zero dispersion along the ELENA
lattice. This will require a careful analysis of the finite dispersion on the
signal and the design of efficient algorithms taking it into account.

An additional challenge is the emittance measurement for non-
Gaussian beams. In several facilities, where electron cooling is a fun-
damental part and diffusion effects (rest gas and intrabeam scattering)
are also important, the beam can adopt highly non-Gaussian beam
distributions. For instance, beam profile measurements in the AD in
the past [9] have shown non-Gaussian transverse beam distributions
with a very dense core and long amplitude tails, generated during the
beam cooling process (stochastic and electron cooling). In recent years
such a core-tail beam structure in the AD has been confirmed using Gas
Electron Multiplier (GEM) based beam profile monitors [10,11].
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Fig. 1. Schematic of a scraper blade moving horizontally into a beam. The
ellipses represent the acceptances for a beam with zero momentum offset
(black), with positive momentum offset (red) and with negative momentum
offset (blue). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

After describing the principle of emittance measurements by scrap-
ing in Section 2, in Section 3 we briefly describe an algorithm for the
particular case of Gaussian beams and propose an algorithm to calculate
the emittance for arbitrary beam distributions. Simulations of emittance
measurement by scraping in ELENA are shown in Section 4, followed by
an analysis of various sources of errors. Finally, in Section 5 we draw
some conclusions and plan for further studies.

2. Emittance measurements by scraping

In the algorithms developed below, we seek to determine the RMS
value of the geometric transverse emittance, which may be defined
statistically as:

s = () = 3(4) M

where A is the amplitude of the particles in phase space, and J the action
variable.

The principle of emittance measurements by scraping is based on a
limiting aperture moving slowly into the beam to progressively remove
the beam particles. Here, we consider the example of a metallic scraper
blade moving slowly (compared to the revolution frequency) into the
beam. Let us assume that the scraper aperture movement is slow enough
such that the remaining beam intensity can be safely approximated by
the fraction of the beam particles within the acceptance defined by the
scraper position. Fig. 1 is a phase space plot to illustrate a horizontal
scraper blade approaching the beam from the positive x-axis with a
positive dispersion D.

Let us consider the normalised betatron phase space:
X,= L, x Rk

VB VB
where x; and x/; are the non-normalised particle betatron position
and divergence angle in the beam, respectively, and f and « are the
Twiss parameters in the corresponding transverse plane. The normalised

=x;] p+ 2)

amplitude in phase space is then given by A = /X ; +X ;2, ie.

= — 2 / 2
A=V2J \/xﬁy+2xﬂxﬂa+xﬂﬁ,

with y = (1+a?)/f and J the action variable. The subindex “#” refers to
the betatron component of phase space. If at the scraper position the first
order dispersion is D # 0 and we assume a relative particle momentum
offset 6 = Ap/p, then the total position and angle can be written in
terms of the betatron and dispersive contributions as x = x; + x; + D§

3
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and x’' = x{ + x’ﬁ + D’s, respectively, with D’ = dD/ds. A displacement
(xo> xé) with respect to the reference closed orbit is also assumed.

A relative momentum offset § > §,,,,. := (x; — x)/ D corresponds to
a closed orbit inside the scraper blade at position x,; thus the transverse
acceptance for parts of the initial beam with § > §,,, vanishes. For
relative momentum offsets § < §,,,, the transverse acceptance is
determined by the distance x; — (x, + D§) between the momentum
dependent closed orbit (x, + D§) and the scraper position x;. The
acceptance for lower (higher) momentum offset § corresponding to the
blue (red) ellipse in Fig. 1 is larger (smaller) than for on-momentum
particles (black ellipse).

The maximum oscillation amplitude defining the transverse accep-
tance is a function of the momentum offset given by:

—xog— D6
% %0 fOr 6 < 8,35
Amax = \/E (4)
0 otherwise.

For the sake of clarity, the resulting acceptance in longitudinal and
transverse phase space is depicted in Appendix A (Fig. A.18).

In general, before scraping a beam can be characterised by a
distribution density:

p(8, A) = p,(6)pr(8, A), )

where the total density p(5, A) can be represented as the product of
two densities: the synchrotron amplitude distribution 2p(6), expressed
as a function of the relative momentum offset §, and the transverse
amplitude distribution p1(3, A), which depends on A and intrinsically
on § through the dispersive component of the position.

The phase space density is normalised as follows:

+o0
/ dép,(8) =1, (6)
+00 -
/ dA27Apy (8,A) = 1. )
0

Here, we will further assume the case of a coasting beam (the
measurement of the emittance by scraping of a bunched beam may be
more complicated) and no transverse plane (x—y) cross-coupling.

Taking into account the acceptance limits above, the remaining
fraction of the beam in the machine with dispersion D > 0 is determined
by the following integral:

N Smax
NGy _ / dép,(3)

Ny
where N, is the number of particles in the machine before scraping and
N, (x,) is the number of particles left in the machine when the scraper
is at x;.
Similarly, if the scraper is coming from the negative x-axis, we
obtain:

Ama«\/
Fo(x,) = / dA 27 A pr(5. A), ®
0

N_(xy)

F_(x,)=

+oo —Amax
/ dépp(é)/ dA27 Apr (6, A). 9
é, 0

0 max
The integrals above give the cumulative distribution functions (CDF)
of the beam loss. With this information one can obtain the corresponding
probability density functions (PDF) projected on x, from the derivatives

fi = £dF,(x)/dxg,
x, — D6 — x
d(s,;p(5)2;rT xpr| 6, , (10)
D6 + xg — xg

D6 + xy — x;
1) .o
7 XPT<7 \/ﬁ > an

An example of a CDF and its corresponding PDF for a Gaussian
distribution is shown in Fig. 2. Details of the derivation of the function
f, from F,_ are shown in Appendix A.

f(x)_/m x, — D& — x,
+\As/ =
Vb

—00

+00
fo(xy) = /.u—xo dép,(6)2x
D
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Fig. 2. Example of a cumulative distribution function (left) and its corresponding probability density function (right) for a Gaussian distribution.

3. Emittance reconstruction algorithm

3.1. Gaussian beams

If the beam passing the scraper in a dispersive region is known to
have a Gaussian distribution, the beam density (Eq. (5)) is determined
by:

A2
" 2erms
e “frms |

1 e and 6,A) = 1
T8O 27e,

rms

ROE (12)

2ros
where the average momentum offset has been set to zero, () = 0, and A
is given by Eq. (3). Substituting Eq. (12) into Egs. (8) and (9), and after
solving the corresponding integrals, one obtains:

1 Ay
F.(x,) = = |1+xerf | ———
- 2 [ (\/Zermsldl >]

AZ
[1 +erf <

1 0
where Ay = (x, — xo)/\/f and d = Doz/+/Bems and erf(x)

REvrr v— Ay
e 20+d)ermg
2V1+d?
2 /Ox dte~" is the so-called error function.
e

V2emldIV1+d?

I

13)

Then, for the probability density functions we obtain:

2
0

Sfalxy) S —
V27 e m (1 + d?)
2

"0
Age 2(14d2)erms
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go0¢ T
2(1 + d2)3/2 /e,
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[1 ierf( >] . 14
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Note that the absolute value |d| in the argument of the error function
arises from the fact that changing the sign of the dispersion does not alter
the result (exchange particles with positive and negative momentum
offset).

3.2. General case algorithm

In order to compute the rms emittance value for arbitrary beam
distributions, first we express the second moment of (x, —x,) in terms of
density functions f,(x,), Eqs. (10) and (11), with the variable x, being
an estimate for the central orbit coordinate x,. We may develop the
cases for the scraper blades coming from the positive and negative x,-
axis simultaneously:

+oo
- / )

((xg = x,)z)i dx(x, — x,)zfi(xs) = )'ci + (Ti —2x,x, + x%, (15)

where (...) denotes the expectation value of the quantity in the paren-
thesis and

+00
/ dxsxzfi(xs) = )'ci +O’i2, (16)
s
/ dxgx, f, (x,) = %, an
-
/ dx,f, (xg) = 1, 18

where x, is the mean value of the measured distribution and o, is the
rms measured beam size. We may also write this quantity in terms of
the emittance:

((xy = x,)%), = (xg = X,)% + D5 + 652) + 2f€, s + 2(xg — x,) D
+2(xo — X,)V/BA + 2D/ B(5A).

Summing terms for positive and negative scraper scans in Egs. (15)
and (19) we may write:

(CGeg = x4

+ {0y = x,)7)_

19

2xg = x,)? +2D*(8 + 65%) + 4f€,, + 4(xy — x,) D

rms

=32 +% +0,2+0 2 —2x,(%, + %) +2x% (20
which may arranged and simplified to find an expression for e,,,, (see
Appendix B for a more detailed explanation of this derivation):

1 (%, —x_] Do
ermszﬁ [73_+GE+ +2 - 2/7 s 21

which contains only values that can be obtained from the scraper data
or otherwise measured and estimated, and hence forms the basis of the
algorithm.

Eq. (21) shows explicitly the subtraction of the dispersive term
depending on the momentum spread. Similarly, we can proceed in the
same way for the vertical plane, where generally D = 0.

The calculation of the emittance applying the above method requires
a complete scan on both the negative and positive side of the x;
coordinate, i.e. two measurements. This requires two machine cycles,
and therefore the stability of the machine during the measurement
process is very important.

The main problem is how to obtain the information of the functions
f+(x,). The curves F,(x,) are obtained from discrete data by scraping
and, in general, we will not know the mathematical expression that
better fits such curves. Therefore, unless we have any information a
priori on the shape of the beam distribution, it will not be possible
to apply symbolic differentiation. In this case, first we need to apply
numerical interpolation of the recorded F, data, and then numerical
differentiation to obtain f,.

For instance, given the tabulated function F, we can use cubic spline
interpolation [12]. One of the main advantages of spline interpolation
over polynomial interpolation is that it leads to small interpolation
errors even when low degree polynomials are used for the spline.
In addition, applying spline interpolation we can avoid the so-called
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Fig. 3. Example of horizontal antiproton beam distribution after 8 s e-cooling,
including also IBS effects, at 35 MeV/c momentum. The horizontal axis is
normalised to the initial rms width. The red triangles show the result of the
BETACOOL simulation. Gaussian fittings to both the dense core (black solid
line) and the tails (dashed green line) are also shown. In addition, a Lorentzian
function fitting has also been performed (dotted blue line).

Runge’s phenomenon, which is a problem of oscillation between equis-
paced points that occurs when using polynomial interpolation with high
degree polynomials [13].

Given that the detectors will have a high data acquisition rate, we
may alternatively forgo the spline and use more basic approximations
to determine f,. An investigation to compare the accuracy of spline
interpolation with simple numerical methods was carried out. It was
found that there was a negligible difference between the two, assuming
a data acquisition rate of 400 Hz. The results can be seen in Appendix
C, along with an explanation of the methods used.

4. Simulations
4.1. Expected beam profiles in ELENA

To simulate the cooling process and the beam parameter evolution
during cooling we have used the code BETACOOL [14], which allows
us to perform long-term multiparticle tracking simulations, including
several cooling and heating processes affecting the beam. The code
BETACOOL has been benchmarked with measurements in the past, for
example in the context of the low energy ion ring ELISA [15], giving a
reasonable agreement.

In ELENA, e-cooling is applied at three stages of the machine
cycle: after deceleration ramps, at p 35 MeV/c and 13.7 MeV/c,
respectively, for a coasting beam; and during bunching prior to ejection
at 13.7 MeV/c.

A typical core-tail beam distribution obtained after the simulation
of the cooling process in presence of heating diffusion effects is shown
in Fig. 3. It presents a dense core and long tails, which can be well
represented by a bi-Gaussian function in a broad dynamic range. The
central region (-3¢, < x < 30,) can also be well described by heavy-
tailed functions, such as a Lorentz function or a Lévy stable symmetrical
distribution. A more extensive discussion can be found in [16].

4.2. Scraping process in ELENA

In ELENA, two aluminium scraper windows (Fig. 4) (one horizontal,
one vertical) will be used to scrape the beam from four directions [7].
A combination of scintillators and four in-vacuum multichannel plate
(MCP) detectors will be used to measure the intensity of the secondary
particle showers produced when particles collide with the scraper blade.
From this data the beam intensity as a function of the scraper position
can be inferred.

Nuclear Inst. and Methods in Physics Research, A 896 (2018) 139-151

Support Arm

Scraper Window

Hydraulic Movement

Beam Direction {( (< Assembly

Fig. 4. A model of the horizontal scraper blade window in the extended position
for use in ELENA [17].
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Fig. 5. Schematic diagram of ELENA highlighting the six section names and the
position of the scraper system.

Table 1
ELENA scraper system parameters.

Parameters Specifications
Material Aluminium
Max. scraper movement +40 mm
Scraper Window Diameter 66 mm
Movement precision (step) 0.1 mm

Frequency of acquisition 400 steps/s

Some relevant ELENA scraper system parameters are summarised in
Table 1.

This scraper system is placed in Section 5 of the ELENA lattice
(Fig. 5), which in the context of the simulations presented here, gives
the following optics parameters for the position of the horizontal scraper
blade: f, ~ 0.69 m, §, ~ 3.00 m, a, ~ -0.74, «, ~ —0.30, D, ~ 1.30 m.

In order to simulate the scraping process, we have implemented a
rectangular limiting aperture into the MAD-X [18] ELENA lattice model.
Here, this element acts as a perfect collimator, i.e. particles with position
amplitude larger than the aperture are considered lost. At this stage of
the simulation, no interaction of the beam with the scraper material is
being introduced. The element can be moved transversally along the x
and y axes, allowing it to emulate the scraper blade windows.

Then, multi-turn and multiparticle tracking along the ring is sim-
ulated using the Polymorphic Tracking Code (PTC) module in MAD-
X [18]. Considering the beam parameters corresponding to the stage of
the machine cycle that we want to simulate, an initial distribution of
10* macro-particles, representing an intensity of 2.5 x 107 antiprotons,
is tracked for several tens of thousands of turns.
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Fig. 6. Horizontal phase space at different scraper measurement stages for an on-momentum Gaussian beam. The red line indicates the position of the scraper blade.

Firstly we have assumed an ideal case, where the scraper element is
well centred with respect to the nominal orbit, and no imperfections in
the ELENA optics. Then the scraper is moved into the beam by applying
a misalignment to the scraper element. Following the conventions of
previous sections, as in Fig. 1, let us just assume a scraper scan in the
positive x -axis.

To simplify the simulations, the continuous movement of the scraper
has been replaced by a step-wise movement. After 370 revolutions the
scraper edge position was decreased by 0.1 mm. This corresponds, on
average, to the nominal scraper speed of 40 mm/s with a 100 keV beam.
Every particle with a larger position than the edge of the scraper blade
was removed from the simulation and the phase space co-ordinates and
number of particles remaining after each 0.1 mm step were recorded to
reconstruct the cumulative function F, (x,).

To illustrate the scraping process, Fig. 6 shows the horizontal phase
space for different measurement times (different blade positions).

4.3. Scraping results analysis

For thoroughness and to test the simulation was working properly,
the results from a Gaussian beam simulation were first analysed using
the Gaussian beam only algorithm discussed in Section 3. Fig. 7 shows
the results of this analysis for several simulations with varying input
beams. The scraper blade was moved through the beam from positive
x once for each simulation to obtain F,(x,). The expression obtained
previously was fit to the data to give reconstructed values for the
emittance and momentum spread.

For the four beams that were run, the algorithm returned values
within 7% of the input emittances, including for beams with relatively
large momentum spreads. The error may be attributed to the statistical
nature of the simulations, and due to the discrete scraper steps of
0.1 mm. Additionally, taking the longitudinal momentum spread, o,
as a second free parameter enabled the algorithm to estimate this
value simultaneously at some cost of emittance value accuracy. The
results confirm that the single scan algorithm works for Gaussian beams
for within a chosen accuracy limit of 10%. The two scan arbitrary
distribution algorithm was tested next.

143

Fig. 8(a) and (b), show the results of scraper scans from positive
and negative x taking the most simple case: a beam with Gaussian
distributions in transverse phase space, zero momentum spread, o,
and a transverse emittance (e,, ey) of 1 mm mrad. The input ¢, was
calculated upon beam generation using the phase space parameters of
all particles to be 0.9987 mm mrad. The value given by the algorithm
after running the beam through the simulation was 0.9930 mm mrad, a
difference of 0.57% which could be attributed to statistical fluctuations.
This is, however, the simplest possible case, and so further simulations
were run to test the robustness of the algorithm.

The process was repeated (Fig. 8(c) and (d)) for a bi-Gaussian
beam with the same parameters. The emittance ¢, obtained from the
macro-particle distribution was 1.004 mm mrad. The resultant output
emittance was 1.012 mm mrad resulting in a negligible difference of
0.83%. Successful scans in x with zero momentum spread confirm that
the algorithm will work when scanning in y, as D, = 0 around the ring.

The simulations were repeated for both beam distributions with
non-zero values of momentum spread ranging from o5 = 1 x 107 to
65 = 1 x 1073 and a range of input emittances ¢, from 0.4 mm mrad to
10 mm mrad. The results show that the error remains below 2.4% in all
cases tested, confirming the versatility of the algorithm. The data may
be found in Appendix D.

An example of the resultant CDF is shown in Fig. 8(e) and (f), the
effect of the longitudinal momentum spread can be seen as the curves do
not drop to zero at the centre of the closed orbit, x, = 0. A comparison
of plots (e) and (f) with (c) and (d) shows how much the momentum
spread can affect the CDF, and why the double scraper scan method is
necessary for non-Gaussian beams. A clear demonstration of the effect
can seen in Fig. 9 where simulations were used to plot the phase space
ellipses of particles with and without momentum spread.

The simulations presented so far assume that a perfect estimation of
the longitudinal momentum spread has been supplied to the algorithm.
In practice this will not be the case and a further investigation into this
and other systematic errors was performed.

4.4. Systematic errors

As the scraping algorithm is designed to work with a low inten-
sity coasting beam, Schottky diagnostics will be used to estimate the
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Fig. 7. Intensity data for beams of varying parameters overlaid with the Gaussian algorithm fit.

longitudinal momentum spread. As a result, the rms momentum offset
value given to the algorithm may be inaccurate, with an error of
up to around 20%. To investigate the effect this may have on the
reconstructed emittance value, the algorithm was used with varying
degrees of incorrect momentum offset.

Eq. (21) was rearranged to obtain an estimation for the errors:

e () (%) ot

which were plotted with the simulation results (Fig. 10).

For a more realistic momentum spread (65 = 3% 10~4), the algorithm
can tolerate errors of up to 20% for a lower emittance beam, and even
greater for larger beams. When performing the study for a beam with
a larger momentum spread (c; = 1 x 1073), the algorithm was much
more sensitive to momentum spread errors. It can be seen that even
for a larger sized beam, an error greater than 5% could result in an
emittance error over the desired value (10%). It should be noted that
due to statistical fluctuations, there is already a small error on the
measurements for an accurate momentum offset reading.

A further source of error was investigated by introducing a non-zero
closed-orbit offset. Since the algorithm relies on calculating the area
underneath the PDF and the relative position of the PDFs between the
two scraper scans, it is not affected by a closed orbit offset — so long
as the offset is consistent between the two scraper scans. As expected
the results of the simulation were identical to those obtained for a beam
with x, = 0.

In a more realistic scenario, the closed orbit of the beam may change
during each run of the machine. To study how this would impact the
accuracy of the algorithm, the closed orbit was held at x, = 0 during
scraper scans from positive x, and varied during scans from negative x.
The results presented in Fig. 11 show that a difference in closed orbit of
more than 0.1 mm could affect the reconstructed value of emittance by
around 10% depending on the beam size.

Ae,

Arms _ =1
€

Aoy Aoy

(22)
05

rms Os
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Rearranging Eq. (21) to predict the closed orbit offset error yields:
Ae,

rms __

€rms

-1
=
which was plotted against the data showing that the simulations behave
as expected. Small differences may be due to the statistical nature
of beam generation and this level of accuracy is adequate for these
purposes.

This method of testing the closed orbit offset also reflects how the
accuracy of the scraper blade position could affect the result. An error
in the relative blade position (between the positive and negative scraper
blades) is equivalent to a closed orbit offset. Similarly to the momentum
offset error simulations there is a small error on the measurements for
perfectly matched closed orbits.

In addition to closed orbit and scraper alignment errors, the accuracy
of the estimation of g, at the scraper position will affect the output from
the algorithm. Similarly to the o error investigation, the algorithm was
run with varying incorrect values of g, for a range of input emittances.
A theoretical estimation for the error was obtained by rearranging

Eq. (21):

-1
= <1 + 3 > 1.

The results can be seen in Fig. 12. Differently from errors in ;5 and
X(, the magnitude of the emittance does not affect the impact of an
error in f,, looking at Egs. (21) and (24) we can see this is simply
because the value returned is inversely proportional to g, and does not
depend on ¢,,,. The theoretical prediction agrees extremely well with
the simulation data.

Taking a lattice with g, = 0.69 m at the horizontal scraper blade, we
can see that the algorithm can tolerate an error of —8% < 45, < 11%,
for our target accuracy of 10% reconstructed value.

A study investigating the effects of a tilt misalignment of the scraper
blades was performed. Since opposing scraper blades are connected to

2%, — X_)AX_ — (4%_)) L

rms

(23)

Ae,

rms

€,

44 24)

rms
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-4 -2 0 2 4
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Fig. 8. Cumulative distribution of beam with spline fitted for scraper coming from both positive and negative x, F, (left plots), and the reconstructed probability
density of beam, f,, derived from the differentiated spline (right plots). (a) and (b), and (c) and (d) show results for Gaussian and bi-Gaussian beams, respectively.
Both have e, = 1 mm mrad and o; = 0. Plots (e) and (f) show the results from a bi-Gaussian beam with ¢, = 1.2 mm mrad and c; = 1 x 1073. Finally, plots (g) and
(h) display the results for a bi-Gaussian beam which has a correlation between momentum spread and emittance (discussion in Section 4.5).
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Fig. 9. Phase space ellipses for ten particles with zero (left plot) and non-zero (right plot) momentum offset in a dispersive region. It is clear that two beams with
the same emittance but different momentum spreads yield different scraping profiles.
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Fig. 10. Error in reconstructed emittance value as the result of varying the error in the estimation of rms momentum spread. The left plot shows the results for
beams with o; = 1 x 1073 and the right plot for 6; = 3 x 107*. Theoretical estimations for these errors are represented by dashed lines.
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Fig. 11. Reconstructed horizontal emittances resulting from mismatched closed
orbits between positive and negative scraper scans, for varying input emittances.
The input bi-Gaussian beam had a realistic momentum spread of o; = 3 x 107.
Theoretical estimations for these errors are represented by dashed lines.

each other in the form of a window (Fig. 4), a tilt of the same magnitude
was applied to the blades from both sides. For easy comparison of x and y
a beam with no momentum spread was run in both cases, eliminating the
influence of dispersion in x. Performing the simulations in x for a beam
with 65 = 0.03% showed a negligible difference in the reconstructed
emittance values compared with zero momentum spread.

Fig. 13 shows the results of the simulation. A clear trend can be seen
for scraping in both x and y, and negligible statistical fluctuations in the
data allow simple polynomial fits. A theoretical estimation of the impact
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Fig. 12. The effects of incorrect estimations of g, at the scraper position on
the reconstructed emittance values. The input bi-Gaussian beam had a realistic
momentum spread of 6; = 3x 107*. The theoretical prediction is represented by
a dashed line.

of this error was not calculated due to the complex nature of considering
four dimensions in phase space instead of two as for the previous errors.

The results show that for a nominal beam in ideal conditions, the
limits for a tilt error on the scraper blades in x and y are ~1.95° and
~10.3°, respectively. The difference in the magnitude of the effect is
due to the  parameters at the scraper, f, , = 0.688,3.001 m. Comparing
ratios, z—’ =0.23 and ii ; = 0.19, suggests this effect could scale linearly
with g. ’




J.R. Hunt et al.

12 —r T T T —
i HEREE
1 1 4
- xyZ10310 "
= %y =1.95,10 i
S 1 / 1
£ 5l i A
e X o |
g ! b o :
\u)><: 6 / : ,¢/ : T
3 ] . '/' i
g 4+t X E // : .
= I ' -7 X x Data
5 L -~ x Fit
§ kb ,
e 20 b + y Data
1l .
1 *_,.’: —--y Fit
ok+F - ' ‘ =
0 2 4 6 8 10
Tilt (°)
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Fig. 14. Particle distribution of momentum offsets as an approximation for
the effects of strong electron cooling. This beam has an average momentum
difference, 45, = 0.04% between the core and tails, with an overall average §,
= 0. The o; of the core and tails has been adjusted to give the overall distribution
o5 = 0.03%.

4.5. Momentum—emittance correlation

During deceleration the beam will experience growth in transverse
phase space. To counter these effects an electron cooler is applied during
the cycle at two energy plateaus (0.65 MeV and 0.1 MeV). It is expected
the distribution of transverse electron velocities, v,-, in the electron
cooler will not be uniform and as a result a correlation between the
betatron amplitude and particle momentum may appear in the beam. A
parabolic distribution of v,- centred on x, y = 0 would give particles
with greater emittance a larger momentum offset.

To test that the algorithm is capable of performing well under these
circumstances a set of bi-Gaussian beams were generated as before, but
with a different average §, for the core and tails. An example can be seen
in Fig. 14. To investigate how the magnitude of such a correlation would
impact the accuracy of the algorithm, all beams used in this study had
the same input emittances ¢, , = 1 mm mrad, rms momentum offsets
o5 = 0.03%, and average 6, = 0.

147

Nuclear Inst. and Methods in Physics Research, A 896 (2018) 139-151

1.015 T T T T T T

- X -

X
A3

Reconstructed ¢, (mm mrad)

X Data B
— = Input €,

0.98 . . . . n n
2 3 4 5

A&p (Core and Tails, %)

Fig. 15. The effect of increasing the correlation between momentum spread
and emittance on the accuracy of the algorithm.

An example of the characteristic a-symmetric CDF and PDF due to
this offset can be found in Fig. 8(g) & (h). A shift of the tails to positive x
and core to negative x can be seen in F, and f, and is consistent with the
difference in §,. Fig. 15 displays the impact on the resultant emittance
as a function of the average momentum spread difference. Each point
is the mean value taken from 20 simulations. Statistical fluctuations are
observed, but no trend of increasing error can be seen as 45, increases.
The impact of the correlation on the accuracy of the algorithm can be
seen as negligible because above the values of 45, tested, the beam
begins to appear unphysical in this approximation (45, > 65 peqm)-

Additionally we can analytically compute a “correlation coefficient”
which describes the magnitude of this effect in the beam:

2 rms,i & z
Zi:l(Ni ¥(51 - 6beam)2)

TN

where subscripts i = 1,2 represent the core and tail of the beam. In
these simulations the beam is separated into two parts, however it
would also be possible to have any number of parts to approximate
a more continuous emittance-momentum spread correlation. We may
reconstruct this correlation coefficient using quantities obtained during
the scraping process:

(6, = 6,)A) = . (25)

2 2
[ o

DVp

Comparing the analytical and reconstructed results for different
magnitudes of the correlation we see excellent agreement (Fig. 16).
This coefficient provides further characterisation of the beam and could
allow an investigation into the effects of the electron cooler.

Further studies to determine a realistic momentum spread profile
in the presence of a non-uniform electron velocity distribution in the
electron cooler will be performed using BETACOOL. This will provide
a more realistic momentum offset distribution for further testing. How-
ever, the results presented here provide evidence that the algorithm is
capable of accurately reconstructing the emittance in the presence of a
correlation with momentum spread.

(6, = 5,)4) = (26)

4.6. Diffusion effects

Diffusion effects during the scraper measurement may be other po-
tential sources of systematic measurement errors, leading to an overes-
timate of emittance. Intra-Beam Scattering (IBS) and rest gas scattering
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Fig. 16. A comparison of the analytical and reconstructed values of the
correlation coefficient.

are amongst the most important blow-up and diffusion mechanisms for
high density and low energy ion storage rings.

In the context of ELENA, assuming the nominal vacuum pressure of
3x107!2 Torr, the effect of rest gas scattering on the beam parameters has
been estimated to be practically negligible in comparison with IBS [19].
So it is not considered relevant for the scraper performance in ELENA.
However, IBS could be an important potential source of measurement
error depending on the speed of the scraper with respect to the beam
revolution frequency and the amplitude scan range. Diffusion growth of
the emittance due to IBS could be significant in the case of relatively
slow scans.

Let us briefly introduce IBS. It can be defined as a beam heating
effect produced by multiple small-angle Coulomb scatterings of charged
particles within the accelerator beam itself. It causes an exchange of
energy between the transverse and longitudinal degree of freedom, thus
leading to the growth of the beam phase space dimensions. The theory
of IBS has been extensively described in the literature, e.g. [20-23],
and many of these IBS models are implemented in the simulation code
BETACOOL [14].

For a rough order of magnitude estimate of the IBS growth rates one
can use the following proportionality expression:

1 1‘20

[
«x——2 .
327r\/;ﬂ3y4exey05

where 4 = N /C for coasting beams, and 4 = N, /(2\/;0'5) for bunched
beams. N is the total number of particles of the beam, N, the number
of particles in a bunch (for a bunched beam), o, the rms bunch length
(for a bunched beam), C the circumference of the storage ring, r, the
classical proton radius, ¢ the speed of light, g the relativistic velocity
factor, y the Lorentz factor (y ~ 1 for low energy machines), e, , the
transverse emittances and o the relative momentum spread.

For the case of ELENA, IBS heating effects on the beam were exten-
sively studied in [16,19,24]. Here, in order to illustrate the potential
effect of IBS on the ELENA beam, we have just calculated the transverse
emittance and momentum spread growths as a function of time.

In Eq. (27) we can see that IBS will be more critical at low energy
(growth rate depends on 1/y*), so we will focus on the study of the low-
est kinetic energy in ELENA (100 keV). We have performed Monte Carlo
tracking simulations using the model beam algorithm of BETACOOL
and an initial distribution of 10* macro-particles representing 2.5 x 107
antiprotons. The following initial beam parameters at the equilibrium
(after cooling) are assumed: €,y =1 mm mrad and o5 = 5 % 10~4. Then
the transverse emittance and momentum spread growths due to IBS

A, (27)

Tx.y.p
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Fig. 17. Emittance and momentum spread increase due to IBS as a function of
time in the ELENA ring for a coasting beam with 13.7 MeV momentum, assuming
an initial equilibrium emittance of 1 mm mrad and relative momentum spread
5% 1074,

have been calculated as a function of time. To evaluate the IBS effects
here we use the so-called Martini model [22], which is an extended
version of Piwinski’s model [20], taking into account lattice derivatives.
The computation process can basically be summarised as follows: rms
emittances and momentum spread are computed from the input macro-
particle distribution; the growth rates are calculated at each element
of the lattice along the ring, assuming Gaussian beams with these rms
parameters; and, finally, random IBS kicks are then applied to the full
macro-particle distribution based on the calculated growth rates.

Fig. 17 shows both transverse emittance and relative momentum
spread growth in time due to IBS. It can give an estimate of the emittance
growth from the end of the cooling process, where equilibrium has
been achieved between cooling and IBS and the starting of the scraping
process. Obviously, diffusion will become more important for lower
scraper velocity, and therefore longer time steps. For example, to keep
Ae, < 10% the time lapse should be less than 300 ms.

The evaluation of the IBS impact during the scraper measurement
is more complicate and requires taking into account the intensity
reduction during scraping. Actually, the situation will become more
favourable during the measurement progression, since the scraper will
reduce the beam intensity in subsequent steps and IBS emittance growth
rates will decrease according to 1/7, ,, « N, as indicated in Eq. (27),
where N = N, - F,(x,) is the number of remaining antiprotons in the
beam.

5. Conclusions and prospects

We have developed algorithms for reconstructing the transverse
emittances of beams in the dispersive region of a storage ring. The algo-
rithms can reconstruct the emittance of a Gaussian beam using a single
scraper scan, and with a combination of two successive measurements
we can accurately reconstruct a beam of arbitrary particle distribution.
The algorithms were developed for the ELENA ring but would also work
for storage rings in other facilities.

The algorithms were successfully tested by simulations using a MAD-
X model of the ELENA ring which is currently undergoing commission-
ing at CERN. For the two scan algorithm, we have considered various
systematic errors that could affect the performance of the algorithm in
operation, and determined mechanical error tolerances. Complications
due to a correlation between emittance and momentum spread have
been considered and we have shown the algorithm performs well in such
circumstances, with the ability to accurately determine the magnitude
of the correlation.

Additionally, effects generating diffusion such as intra-beam scatter-
ing may play a significant role in the performance of the algorithm given
the low energies at which ELENA operates. In principle, IBS impact on
emittance growth might be significant if operating in slow scan mode
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Fig. A.18. Integration area to compute the function F, estimating the fraction
of particles for the scraper at position x;.

and for an increased scan time due to large amplitude tailed beams.
Simulation studies of the emittance performance measurement under
the presence of IBS are ongoing.

Once ELENA is in full operation, we will take scraper data and com-
pare results with those from our simulations as a benchmarking exercise.
This will give us an insight into the effectiveness of our simulations,
perhaps expose some additional unseen factors, and provide the context
needed for these studies to be used in aid of the development of similar
diagnostic devices in the future.

Finally, it is worth mentioning that we are also carrying out studies
of less-invasive techniques for beam profile measurement and emittance
reconstruction, based on ionisation profile monitors and supersonic
gas jet monitors [1] adapted to low energy and low intensity hadron
accelerators.
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Appendix A. Derivation of probability density function f,

The function F, given by Eq. (8) describes the fraction of particles
inside the machine acceptance determined by an aperture at the position
x,, and is given by the density function integrated over the integration
limits illustrated in Fig. A.18:

5”10}(
F, =
—00

where §,

dén(s, xy), (A.1)

— xo)/ D and the density function n(é, x,) is defined as:

max = (X

— Xo
(6)/ dA2zApp(5,A) for 6 < s
n(s,x,) = Py AT D

Xg — X
foré > ———,
D

(A.2)
0

where 4,,,, = (x, — xo — D8)//B.
The density probablhty function f, defined as the derivative of F,
with respect to x, becomes:

—xg

dF, (x,) 5% dn(s.x,) 1 dn(s,x,)
= ds — A.3
Fut) = [m T A.3)
Using the fact that
dn(3.x,) _ xo — D¢
— - =nnn I —%= %, (8, Apax ) » (A4
XS
Xs—X0
for 6 < =1, and
dn(6, x,)
— T, A5
dx, (A.5)
for § > X=X and also
dn(é, xs)
— s =0, A.6
ds - (A.6)
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yields the Eq. (10) from Section 2:
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The situation for a scraper moving into the beam along the negative
x-axis is very similar. Considerations analogous to the ones given above
lead to function f_.

Sr(xg) =/

—o0

Appendix B. Arbitrary beam distribution algorithm derivation

As mentioned in Section 3.2, we may begin by expressing the second
moment of (x; — x,) in terms of density functions f,(x,), Egs. (10)
and (11), with the variable x, being an estimate for the central orbit
coordinate x,. We may develop the cases for the scraper blades coming
from the positive and negative x-axis simultaneously:

+o0
<(xs - xr)2>t = /

where (...) denotes the expectation value of the quantity in the paren-
thesis.
Considering x;,

dx (g = x,)? fu(x,) = X2 + 02 = 2%, x, +x2, (B.1)

=Xxy+6D+ \/ﬁA, we may write:

((xy = x)% = ((xg = x,) + 6D £ \/PAP),
= (x9 = x,)% +2(xg — x,){8)D £ 2(xo — x,)V/ B(A)
+(6%)D? £ 2D/B(SA) + B(A2).
Considering the definitions § = (6), A = (A), 62 = ((6 — §)*), the
statistical definition of the geometric transverse emittance, Eq. (1), and

the usual normalisation of phase space density, Eq. (7), we can rewrite
Eq. (B.2):

(B.2)

((xy = x,)%), = (xg = x,)% + D*(8 + 65%) + 2f€, s + 2(xg — x,) D
+2(xg — x,)VPA £ 2D\/B(5A).

The above expressions allow us to put {(x,—x,)?), in terms of the rms
transverse emittance ¢, and the dispersive contribution Do . However,
there are additional terms (A) and (A§), which makes the evaluation
difficult even for a known closed orbit centre x. In order to solve this
problem, we can perform a combination of measurements from both the
positive and negative x-axis.

Summing terms for positive and negative scraper scans in Egs. (B.1)
and (B.3) we may write:

(Geg = x4

+{(xg = x,)7)_

(B.3)

2xg = x,)? +2D*(8 + 65%) + 4f€,, + 4(xy — x,) D

=32 + 32 +0,2+ 0.2 = 2x,(F, + %) +2x7. (B.4)
After further transformation:
2 (xg + D& — x,)? + 2D*62 + 4f€, =
Xy +X_
2 (= -x,)?+ %(@ -3 )Y +0, 402 (B.5)

Comparing coefficients in Eq. (B.5) we obtain:

! ol +o +—()_C+_)_C")2
4ﬂ 2

B D? ag
2p

€rms =

Appendix C. Spline testing

To optimise the code for a balance between efficiency and accuracy,
tests on the differentiation and integration methods were performed.
Two methods were tested, one using MATLAB’s piecewise polymorphic
spline interpolant [25], and another using the simplified numerical
methods described below.
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Fig. C.19. A comparison of the simple numerical vs. spline approach for a single
simulation.

Begin by taking the tabulated function F, (x,) and finding a “differ-
entiated” value of f, (x,) for each data entry, i:

F+ i~ F+ i+1
L= L m (C.1)
X = Xaivl

where F, ; is the ith entry of the beam intensity in the data set and x_;
is the corresponding scraper position.
We may combine Eq. (C.1) with the approximation
+00 n
/ dx fy(xy) = Z(fi,t(xi,[ - xi,[+]))’ (C.2)
—oo i=1
where n is the number of entries in the data set, to obtain a simple
expression for use within the algorithm:

+oo n
/ dx, fo(x) % Y (Fay = Fypp). (C.3)
—o0 i=1
We may then calculate:
+oo
0rs = / dx (X)X = %,)* % (Fyj = Fy i) Xgimia — %)% (C.4)

where x, ; ;s is the mid point between x, ; and x, ;,; and %, is obtained
from:
n
Xy~ Z(Fi,i = Fy iy X4 i mia- (c5)
i=1
The same beam was analysed using both versions of the algorithm.
For in input beam with ¢, = 1.2 mm mrad, the two methods returned
values of 1.1935 mm mrad and 1.1941 mm mrad for the spline and
simplified numerical methods respectively. The difference between the
results is negligible. Fig. C.19 shows a comparison of the values obtained
at each point for f,(x,) for both the spline and the simple numerical
method.
We propose it would be sensible to use the more simplified method,
unless the data acquisition rate is <400 Hz.

Appendix D. Scraper results tables

Table D.2 shows how the horizontal emittance of the beam could
affect the accuracy of the algorithm. For a realistic momentum spread,
a slight increase in the average error can be seen towards larger
emittances, however beams with emittances much larger than 10 mm
mrad would not require the level of accuracy given by the algorithm.

From Table D.3 it can be seen that the reconstruction algorithm
works well up to momentum spreads much greater than are to be

150

Nuclear Inst. and Methods in Physics Research, A 896 (2018) 139-151

Table D.2
The results from running bi-Gaussian beams with 6; = 3 x 10™* and varying
horizontal emittances.

€., (mm mrad) €, (mm mrad) €, error (%)

0.4 0.4042 1.05
0.6 0.6060 1.01
0.8 0.8095 1.19
1.0 1.0127 1.27
1.2 1.2164 1.37
2 2.0343 1.72
4 4.0815 2.04
6 6.1385 2.31
8 8.1561 1.95
10 10.192 1.92
Table D.3

Simulation results for ¢, = 1 mm mrad beams with varying momentum spread
for Gaussian and bi-Gaussian distributions.

Gaussian

o5(x107%) €, 0 (Mm mrad) e, error (%)
1 0.9937 0.634
3 0.9945 0.546
5 0.9960 0.401

10 1.0045 0.450

Bi-Gaussian

65(x107%) €, o (mm mrad) e, error (%)

1 1.0120 1.20

3 1.0127 1.27

5 1.0143 1.43

10 1.0132 1.32
expected during the operation of the machine (65 ~ 3 x 107*) for

both beam distribution types. The errors on bi-Gaussian beams were
consistently larger however the results remain within a satisfactory level
of accuracy for the system.
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