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Characterisation of Embryonic Dermal Precursor Cells by Sarah Blincko 

Abstract 
Skin is an attractive organ for the acquisition of stem cells due to its accessibility, size and 

potential for autologous transplants. Research into skin development has implications for the 

isolation of stem cell populations, for example skin-derived precursors (SKPs), as well as the 

treatment of skin conditions, such as fibrosis.  

This study centred on the early development, differentiation and stem cell potential of the dermis 

in embryonic mouse skin. Based on microarray data, the expression of specific Wnt family 

members was examined using RT-PCR and immunohistochemistry. No evidence of Wnt protein 

expression was observed in the dermis, but more embryonic stages and Wnt family members 

need to be explored to better understand Wnt signalling and its role in dermal development. 

Our main focus was to investigate the plasticity of the common dermal fibroblast precursor 

population present at E13.5. We hypothesised that the dermis contains a common precursor 

capable of producing all cell types of the dermis and could harbour a high proportion of 

mesenchymal stem cell (MSC)-like precursors. 

This E13.5 dermal cell (DC) population was investigated by exploring its differentiation potential 

when cultured in adipogenic and osteogenic media. These experiments indicated the E13.5 DCs 

contained a small subpopulation of MSC-like progenitors. However, when E13.5 DCs were 

cultured to produce SKPs and, subsequently, pushed to adipogenic and osteogenic lineages, they 

differentiated less than expected.  

Most research regarding SKPs has used adult and older embryonic skin, therefore the findings 

here are novel in that SKPs were not expected at a younger age. However, RT-PCR revealed 

differences between the gene expression profiles of early and late embryonic dermal SKPs. 

Moreover, neither displayed the expected differentiation potential. The possible reasons for 

these unexpected findings include the potential role of hair follicle induction and/or a later 

migration of neural crest progenitors into the dermis. 
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1. Introduction 

1.1 The Skin 
Skin is an essential organ of the body and one of its key functions is to be a barrier by protecting 

the body from dehydration, microorganisms, toxins, chemicals, temperature, light and other 

hazards. It also has a role in temperature regulation, sensation and immunity (Sriram, Bigliardi, 

and Bigliardi-Qi 2015). The skin consists of a surface layer, largely made up of keratinocytes (the 

epidermis), and a mainly extracellular compartment containing heterogeneous fibroblasts and 

adipocytes (the dermis), separated by a basement membrane (Figure 1.1) (Wickett and Visscher 

2006, Driskell et al. 2013, Forni et al. 2015). The dermis has been subdivided into three 

compartments: the upper, known as the papillary dermis, merging with the reticular dermis 

below, and an underlying hypodermis, which has a high proportion of adipocytes, now known as 

dermal white adipose tissue (DWAT) (Figure 1.2) (Driskell et al. 2014). Hair follicles are 

appendages found in most anatomical regions of the skin and one process they play a role in 

(among others) is thermoregulation, along with sweat glands and blood vessels (Fore 2006, 

Romanovsky 2014). The blood vessels also provide a source of nutrients to the skin. Nerve 

endings (which extend as far as the epidermis) are present to carry out the sensory function of 

the skin, including temperature and pain detection, and immune cells (such as monocytes, 

Langerhans cells and eosinophils) stand as an additional defence to the outside world if the skin 

should be broken (Fore 2006, Romanovsky 2014). 

 

Figure 1.1: Structure of skin. The surface layer of the skin is called the epidermis and is divided from the 
dermis beneath it by the basement membrane. Blood vessels, hair follicles and sweat glands are all shown 
to be present in the skin, as well as the subcutaneous white adipose tissue (SWAT) below the skin. Adapted 
from (MacNeil 2007). 
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1.1.1 The Dermis: Structure and Function 
The dermis has a wide range of functions and cell types due to its division into three layers: the 

papillary dermis, reticular dermis and DWAT (Wojciechowicz et al. 2013, Mastrogiannaki et al. 

2016). 

In human skin, the papillary dermis is divided from the reticular dermis by the rete subpapillare (a 

vascular plexus) and the reticular dermis lies between this and the rete cutaneum (a deeper 

vascular plexus). However, they are also defined as distinct parts of the dermis by their 

extracellular matrix (ECM) composition. The papillary dermis has thin Collagen fibres that are 

loosely organised, a higher ratio of Collagen type III compared to type I and lower Versican levels. 

By contrast, the reticular dermis has well-organised, thick Collagen bundles, a lower ratio of 

Collagen type III to I and higher Versican levels (Sriram, Bigliardi, and Bigliardi-Qi 2015). 

Fibroblasts (the main cell type of the dermis) have historically been considered to have more 

structural and supportive roles, as they are responsible for the synthesis of the ECM, particularly 

Collagen (Driskell and Watt 2015, Sriram, Bigliardi, and Bigliardi-Qi 2015). However, recent 

research has led to a new understanding of their role. They have been shown to have more 

dynamic functions in multiple skin-related processes, such as ageing, wound healing, fibrosis and 

epidermal:dermal communications (Maas-Szabowski, Shimotoyodome, and Fusenig 1999, Werner 

and Smola 2001, Eming, Krieg, and Davidson 2007, Werner, Krieg, and Smola 2007, 

Figure 1.2: Simplified schematic of the structure of skin. The surface layer of the skin is called the 
epidermis and is followed by the dermis, which is split into the papillary dermis, reticular dermis 
and dermal white adipose tissue (DWAT). In mice, the panniculus carnosus (a muscle layer) 
separates DWAT from SWAT. Figure based on (Driskell et al. 2014).  
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Bhattacharyya, Wei, and Varga 2011, Quan and Fisher 2015, Sriram, Bigliardi, and Bigliardi-Qi 

2015).  

The papillary and reticular dermis both consist of fibroblasts but have distinct functions due to the 

heterogeneous nature of the dermal fibroblast population and their distinct environments. For 

example, the dermal papilla (DP) cells in the hair follicle have a role in controlling the hair cycle 

(discussed later in this chapter) and the arrector pili muscle has a role in piloerection. However, 

both cell types are derived from papillary fibroblasts (Driskell and Watt 2015). In addition, the 

reticular dermis has a key role in the repair of the dermis during wound healing: these fibroblasts 

are involved in ECM deposition and degradation, and differentiating into myofibroblasts (Baum 

and Arpey 2005, Velnar, Bailey, and Smrkoli 2009, Rolin et al. 2014).  

Recently an adipocyte population, termed DWAT, has been discovered to be of dermal origin and, 

thus, distinct from the subcutaneous white adipose tissue (SWAT) layer that resides below the 

skin (Wojciechowicz et al. 2013). In mice, DWAT and SWAT are clearly distinguished as separate 

fat depots by the panniculus carnosus (a striated muscle). However, in humans this is not the case 

because there is no panniculus carnosus and, consequently, the two depots are harder to define 

(Driskell et al. 2014, Alexander et al. 2015, Naldaiz-Gastesi et al. 2016).  Previously, the main 

function of adipose tissue was thought to be an energy store but it is now known to have 

secretory, endocrine, insulating, inflammatory and metabolic roles (Trayhurn and Beattie 2001). 

The specific functions of DWAT are not fully understood at present but there is evidence to 

suggest a regulatory role in the hair follicle cycle and a role in the immune response to wound 

healing (Zhang et al. 2015).  

1.1.2 Dermal Development 
During embryogenesis, the dermis undergoes changes which eventually give rise to the adult 

dermis. Lineage tracing experiments, in mice, have been conducted to elucidate this process of 

dermal development. Figure 1.3 summarises this data and shows the dermis begins with a 

common ‘fibroblast’ progenitor cell which diverges to the papillary and reticular fibroblast 

progenitors which are then responsible for differentiating into the papillary fibroblast, DP, 

arrector pilli muscle, reticular fibroblast and adipocyte cells. Driskell et al. (2013) proposed that 

fate restriction of the dermis takes place at embryonic day 16.5 (E16.5) when there is a 

divergence in the expression of markers (Driskell et al. 2013). This data led to the hypothesis that 

the dermis contains a common precursor responsible for producing all cell types of the dermis. 
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Specifically in relation to DWAT, Wojciechowicz et al. (2013) used the pre-adipocyte marker 

FABP4 to investigate the timings of adipocyte development. FABP4 was shown to mark only the 

lower dermis of dorsal skin from E16, agreeing with the fate restriction proposed by Driskell et al. 

(2013). Therefore, cells of the lower dermis eventually give rise to DWAT (Driskell et al. 2013, 

Wojciechowicz et al. 2013). However, Rinkevich et al. (2015) showed that migration of Engrailed-1 

positive cells (CD26+) from the papillary dermis to the reticular dermis takes place at E16.5. This 

may indicate that adipocytes are produced from cells originally of papillary dermis origin 

(Rinkevich et al. 2015). Therefore, the mechanism of dermal development is still a subject of 

interest and debate. 

Further work has shown that adipogenesis of DWAT goes through a progressive series of 

commitment starting with a precursor cell, then a preadipocyte and finally a mature adipocyte 

(Figure 1.4). The general process of adipogenesis involves the expression of the early markers 

EBF1 and Zfp423 and the late markers C/EBPα and PPARγ (Camp, Ren, and Leff 2002, Stephens 

2012). 

 

 

 

Figure 1.4: The stages of adipogenesis. The diagram highlights the 3 key stages involved in DWAT development: 
precursor cell, preadipocyte and adipocyte. Many transcriptional regulators are involved in this process and a few are 
shown here for each stage. Green arrows=activation; Red lines=inhibition. Based on Stephens (2012). 

Figure 1.3: A summary of the lineage tracing data from Driskell et al. (2013) showing the dermis begins with a common 
‘fibroblast’ progenitor which undergoes progressive differentiation to ultimately produce the final cell types found in the 
adult dermis. Figure based on Driskell et al. (2013).  
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One of the questions addressed in this project revolves around the plasticity of the early 

embryonic dermal cells (DCs; thought to be the common ‘fibroblast’ progenitors), since further 

knowledge of this will hopefully improve our understanding of dermal development. Therefore, 

E13.5 mouse dermis was chosen as the focus of these studies for a number of reasons. Firstly, on 

a technical level, it is physically easier to separate the epidermis and dermis at this earlier stage of 

skin development. Secondly, again on a technical level, it is easier to remove the underlying 

muscle layer from the dermis than at earlier ages. And, finally, E13.5 is the last period before 

mouse pelage hair follicle formation is observed (E14.5) and, thus, represents the dermis before 

cells are morphologically segregated and before it becomes a more divergent, differentiated 

population (Sennett and Rendl 2012, Fu and Hsu 2013).  

1.2 Hair Follicle Initiation and Cycle 
Hair follicles are fascinating to study as they are composed of both epidermal and dermal 

elements and provide a great model to study regeneration as they repeatedly regenerate from a 

stem cell niche that resides within the follicle (Morgan 2014). 

In mice, pelage hair follicles first become morphologically visible at E14.5 because of the placode: 

an epidermal accumulation of cells that subsequently initiates the dermal condensate (a dermal 

accumulation of cells). This initiation process involves cross-talk between the epidermis and 

dermis and Wnt signalling is thought to be involved in this communication (Sennett and Rendl 

2012, Fu and Hsu 2013). Epidermal Wnts signal to the dermis leading to expression of a dermal 

signal (pre-placode stage). The epidermal Wnts aren’t able to act on the epidermis due to an 

inhibitor but when the dermal signal is expressed this inhibitor is repressed, thus allowing Wnt 

activity in the epidermis. This leads to placode formation in the epidermis (placode stage), 

followed by the dermal condensate formation as a result of placode signalling (dermal condensate 

stage). Further hair follicle induction is subsequently achieved via dermal Wnt signalling to the 

placode (dermal condensate stage). Other signals (such as Shh) are involved in hair germ 

formation at E15.5 (hair germ stage) (Zhang et al. 2008, Chen et al. 2012, Sennett and Rendl 2012, 

Fu and Hsu 2013, Rishikaysh et al. 2014). Further to this step, epidermal growth occurs down into 

the dermis and surrounds the dermal condensate which ultimately forms the DP (hair peg stage). 

During this stage, the cells undergo differentiation which is under the regulation of many signals 

(for example, Wnt, BMP and Notch). Once follicle morphogenesis is complete, the hair follicles 

undergo cycling (Figure 1.5) (Stenn and Paus 2001, Fu and Hsu 2013, Rishikaysh et al. 2014). 

The hair follicle cycle consists of three main stages, anagen (growth), catagen (regression) and 

telogen (rest), characterised by their distinct morphology (as depicted in Figure 1.5).  

When the hair follicle is in telogen, the cells in the bulge area (highlighted in pink) are quiescent, 

the DP is not surrounded by the epithelial component of the follicle and there is minimal Wnt/β-
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catenin signalling. The balance between BMP and Wnt/β-catenin signalling is key to the transition 

from telogen to anagen as BMP signalling inhibits anagen and Wnt/β-catenin signalling promotes 

it. As anagen approaches, BMP signalling is reduced in the dermis and Noggin is released by the 

DP which inhibits BMP in the bulge area so that these cells are able to upregulate Wnt/β-catenin 

signalling and proliferate. This leads to follicle elongation so that the DP and bulge area are 

further apart which regulates anagen from lasting too long (less Noggin from the DP will reach the 

bulge area as they become further apart). In anagen, the DP is surrounded by the epithelial 

component and the follicle itself extends further into the dermis (Lim and Nusse 2013). In 

catagen, the follicle regresses and brings the DP closer to the bulge area again so it is at its 

shortest during telogen (Figure 1.5) (Huelsken et al. 2001, Sieber-Blum et al. 2004). 

 

 

 

Figure 1.5: (a) A schematic of the stages of hair follicle initiation: E12.5-E14.5: pre-placode; E14.5: placode; E14.5: 
dermal condensate; E15.5: hair germ; and E17.5: hair peg.  (b) A schematic of the three key stages of the hair follicle 
cycle-anagen (growth), catagen (regression) and telogen (rest). The DP, depicted in blue, is the dermal component of 
the hair follicle.  The epidermal components are shown in white, but also include the bulge area shown in pink. Figure 
based on Stenn and Paus (2001), Sennett and Rendl (2012), Fu and Hsu (2013), and Lim and Nusse (2013). 



14 
 

1.3 Wnt/β-catenin Signalling 
Wnt/β-catenin signalling (along with many other pathways such as, Hedgehog, Notch and BMP 

signalling) is one of the key developmental pathways (Nie, Luukko, and Kettunen 2006, Willert 

and Nusse 2012, Collu, Hidalgo-Sastre, and Brennan 2014, Lerner and Ohlsson 2015, Muñoz-

Descalzo, Hadjantonakis, and Arias 2015, Edeling 2016).  

Wnt signalling is involved in many different systems for example, bone formation, kidney 

development, neural development, cell fate decisions in embryogenesis and skin development 

(Mulligan and Cheyette 2012, Lim and Nusse 2013, Lerner and Ohlsson 2015, Muñoz-Descalzo, 

Hadjantonakis, and Arias 2015, Edeling 2016). There are 19 family members of Wnt ligands in 

mice and humans (Willert and Nusse 2012). These Wnt family members can be categorised into 

either canonical Wnts (acting through β-catenin; for example, Wnt 1, Wnt 3a) or non-canonical 

Wnts (acting independently of β-catenin; for example, Wnt 5a, Wnt 11) (Sinha et al. 2015). 

However, this categorisation is not definitive, as non-canonical Wnts may also act through the β-

catenin-dependent pathway in certain contexts (Fathke et al. 2006). β-catenin-dependent 

signalling has been associated with targeting genes involved in proliferation, cell fate decisions 

and differentiation. β-catenin-independent signalling has been linked to cell migration and organ 

morphogenesis (Solis, Lüchtenborg, and Katanaev 2013). Interestingly, the pluripotency of a cell 

has also been linked to Wnt/β-catenin signalling and this was shown (in a particular cell line of 

mouse embryonic stem cells) to be independent of LEF-1, indicating an alternative mechanism of 

action for β-catenin (Sato et al. 2004, Lluis et al. 2008, Marson et al. 2008, Kelly et al. 2011).  

Of particular interest for this project is Wnt’s key role in dermal development. This has been 

shown by the distinct localisation of Wnt-related gene expression in the papillary but not in the 

reticular dermis in neonatal skin. Its role in hair follicle initiation and cycling, as mentioned above, 

has also indicated this (Fu and Hsu 2013, Lim and Nusse 2013, Mastrogiannaki et al. 2016). Wnt/β-

catenin signalling is a short- and long-range signalling pathway for intercellular communication 

Figure 1.6: Schematic of the simplified Wnt/β-catenin signalling mechanism. In the absence of Wnt signalling, β-
catenin is phosphorylated by GSK-3 (part of the destruction complex) and subsequently degraded, so can’t enter the 
nucleus to turn on transcription. In the presence of Wnt signalling, β-catenin is not degraded and, thus, it enters the 
nucleus to turn on transcription. FZD=Frizzled. Based on (Saito-Diaz et al. 2013). 
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and involves secreted Wnt glycoproteins which bind to the Frizzled and LRP5/6 co-receptors 

(Mikels and Nusse 2006, Saito-Diaz et al. 2013). When Wnt is bound, β-catenin is free and is 

therefore able to enter the nucleus and activate transcription of specific genes via the 

transcription factor LEF-1. However, in the absence of Wnt, β-catenin is phosphorylated by GSK-3 

(a component of the destruction complex) and is consequently unable to enter the nucleus and, 

thus, the transcription of those specific genes does not take place (Figure 1.6) (Saitoh et al. 1998, 

Grigoryan et al. 2008, Saito-Diaz et al. 2013).  

In addition to the role Wnt/β-catenin signalling has in hair follicle initiation and cycling, it has 

been linked to lineage commitment. For example, it has been shown to be involved in promoting 

osteoblast development and maturation and plays a much-debated role in adipogenesis 

(Grigoryan et al. 2008). Wnt/β-catenin signalling was thought to have a role in inhibiting 

adipogenesis due to the following: Wnt is downregulated in preadipocytes; Dkk1 (a Wnt inhibitor) 

is upregulated in adipogenesis; and Wnt signalling has been shown to block the induction of 

PPARγ and C/EBPα (factors involved in adipogenesis) (Longo et al. 2004, Christodoulides et al. 

2006, Christodoulides et al. 2009). However, there have been contradictory findings where 

ectopic expression of epidermal Wnt/β-catenin signalling resulted in an expanded adipocyte layer 

(Donati et al. 2014). This may imply that the different family members of Wnt have different roles. 

Previous work (in the Jahoda lab) investigating RNA expression levels of the dermis and epidermis, 

has had limitations in deciphering the proposed individual functions of the Wnt family members 

due to lack of localisation. Hence, this project utilises immunofluorescent labelling of particular 

Wnt family members to elucidate their localisation and aid the understanding of their functions. 

This is particularly useful during hair follicle induction, for example, due to many of the Wnt family 

members being involved (Fu and Hsu 2013). 

1.4 Stem cells 
Stems cells are defined as cells capable of self-renewal (the ability to divide and retain their 

undifferentiated state) and differentiation (He, Nakada, and Morrison 2009, Chen, Ye, and Ying 

2015). Stem cell populations are generally considered to expand via symmetric division (which 

produces two identical stem cells) but maintain their population via asymmetric division (which 

produces one stem cell and one cell that goes on to differentiate). This maintenance of stem cells 

is usually aided by a specialised microenvironment, termed a stem cell niche, which provides 

signals to control division and differentiation, as well as physically limiting the population size (He, 

Nakada, and Morrison 2009).  

Due to skin being such an accessible organ, research has been done to find stem cell sources 

within the adult skin that can be used for autologous treatments (Wong et al. 2006, Vapniarsky et 

al. 2015, Kwon et al. 2017). Previous research has extensively explored the multiple stem cell 
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niches in the epidermis, for example the interfollicular epidermis, hair follicle, sebaceous gland 

and sweat gland (Watt 1998, Ghazizadeh and Taichman 2001, Janes, Lowell, and Hutter 2002, 

Uzarska et al. 2013, Kretzschmar and Watt 2014, Tadeu and Horsley 2014, Chen, Wang, and Shi 

2015). The hair follicle is particularly interesting due to the multiple stem cell niches it contains 

from both the epidermis and dermis: for example, the bulge, the hair germ, the isthmus (all of 

epithelial origin) and the dermal sheath (DS) and DP (both of dermal origin) (Jahoda et al. 2003, 

Jaks, Kasper, and Toftgård 2010, Goldstein and Horsley 2012, Rahmani et al. 2014, Rompolas and 

Greco 2014). In contrast to the epidermal stem cell niches, dermal stem cells have only relatively 

recently become significant when Toma et al. (2001) identified a niche in the form of skin-derived 

precursors (SKPs) (Toma et al. 2001, Chen, Wang, and Shi 2015). Consequently, research has 

shown the dermis to contain mesenchymal stem cells (MSCs)/MSC-like cells in the dermis due to 

their broad differentiation potential and similar expression and functional properties to bone 

marrow MSCs (Goldring, Jones, Sewry, et al. 2002, Goldring, Jones, Thiagarajah, et al. 2002, 

Fernandes et al. 2004, Chen et al. 2007, Riekstina et al. 2009, Ambasudhan et al. 2011, Vaculik et 

al. 2012).  

1.5 SKPs 
SKPs represent a multipotent stem cell population derived from the skin which characteristically 

express Nestin, Fibronectin and Vimentin. They are observed in vitro and have the potential to 

produce neuronal and mesodermal lineage cell types: for example, neurons, glia, smooth muscle 

cells and adipocytes (Toma et al. 2001, Fernandes et al. 2004, Toma et al. 2005). The extent of the 

multipotency of this stem-like population is exciting as, previously, adult stem cells were thought 

to only differentiate to cell types found in their tissue of origin which severely limited their wider 

use (Joshi and Enver 2002).  

However, there is controversy surrounding SKPs concerning the unclear nature of their origin 

(Hunt, Jahoda, and Chandran 2009). One potential origin for SKPs has been hypothesised to be 

the neural crest which is an embryonic, transient population of precursor cells that are derived 

(during gastrulation) from the dorsal border of the neural plate as a result of ectodermal and 

mesodermal signalling (Fernandes et al. 2004, Liu and Cheung 2016, Coste et al. 2017). 

Subsequently, epithelial to mesenchymal transition occurs and so, these cells are able to migrate 

to different peripheral locations where they differentiate to a wide range of cell types (for 

example, bone, neurons, melanocytes, adipocytes and glial cells) (Liu and Cheung 2016, Coste et 

al. 2017). Interestingly, the dermis has different developmental origins in different anatomical 

locations. For example, the facial dermis is neural crest-derived, whereas the dorsal dermis is 

somite-derived (Fernandes, Toma, and Miller 2008, Jinno et al. 2010). This is an important factor 

to consider when choosing which skin sections to study and when drawing conclusions regarding 

the possible origin(s) of SKPs. 
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In addition to the question of SKP origin, there are questions as to whether SKPs are a skin-

resident multipotent stem cell; whether they are a cell type with the ability to transdifferentiate; 

and whether they are something seen exclusively in vitro (Hunt, Jahoda, and Chandran 2009).  

Research has mainly focused on producing SKPs from the adult dermis, but some work has been 

done on older embryonic skin (Toma et al. 2001, Fernandes et al. 2004). This work has attempted 

to answer some of the key questions surrounding SKPs and has provided evidence in favour of a 

neural crest origin for SKPs (discussed further in Chapter 5) and found that they do not arise due 

to transdifferentiation (Fernandes et al. 2004).  

In contrast to previous literature, this project will investigate the properties of the SKPs produced 

from embryonic dermis as young as E12.5 and E13.5 with the hope that this will shed more light 

on the origin(s) of SKPs, how early they can be produced and provide information about the 

dermal population at these early embryonic stages, particularly regarding their plasticity. 

1.6 Significance of Research 
Dermal development is a significant area of research for a number of reasons. 

First, understanding the way in which the different cell types develop can aid our understanding 

of the signals (for example, Wnt) that influence the behaviour of these cells and this can be 

applied to therapeutic treatments of conditions such as, fibrosis, diabetic ulcers and obesity 

(Trayhurn 2005, Wei et al. 2011, Quondamatteo 2014, Lafyatis et al. 2017). 

Second, the fact that skin is an accessible organ has meant it is a very attractive source of stem 

cells-especially as there is the potential for it to provide an autologous source of stem cells for 

transplantation and tissue engineering applications (Wong et al. 2006, Vapniarsky et al. 2015, 

Kwon et al. 2017). For example, SKPs have been shown to innervate aganglionic intestine (a 

symptom of Hirschsprung’s disease) via differentiation to enteric ganglia when injected in vivo 

(Wagner, Sullins, and Dunn 2014). Here, the key advantage is the autologous property of the 

transplanted cells which would reduce immune rejection. Additionally, the transplantation of 

autologous SKPs could have applications for the improvement of chronic wounds, for example 

diabetic ulcers (Shu et al. 2015) and burns (Bayati et al. 2017); as well as treat corneal endothelial 

disease (Inagaki et al. 2017); Parkinson’s disease (Toma et al. 2005); type II diabetes mellitus; 

alopecia (Kellner and Coulombe 2009), Hirschsprung’s disease (Wagner, Sullins, and Dunn 2014), 

de novo regeneration of hair follicles (Wang et al. 2016) and multiple sclerosis (Toma et al. 2005). 

However, more research is needed to establish the risk of tumour formation (Chen, Wang, and Shi 

2015). 

The downside to using adult samples is the fact that there will not always be enough tissue 

available to produce enough cells quickly (can be an issue for burn wounds). The culture time and 
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the cost are also disadvantages. A favourable alternative to autologous transplantation would be 

to use a bank of foetal DCs which have low immunogenicity and higher proliferative and 

regenerative properties compared to adult cells (Akershoek et al. 2016). However, the ethics of 

using foetal cells limits this approach and returns us to the preference for an accessible adult stem 

cell source (Kang et al. 2011). Thus, research into the optimal age for collecting skin cells in adults 

is being conducted with the view to cryopreserving them for future use. This is due to the 

discovery of a decline in the number and/or differentiation potential of SKPs correlated with the 

increased age of adult human skin. Having cryopreserved autologous cells would eliminate the 

issue of not having enough tissue available and quickly enough, while still using a source with 

reduced risk of rejection (Gago et al. 2009). 

Third, in addition to transplant applications, SKPs can be used to produce specific cell types of an 

individual for screening as well as, be used to research neurodegenerative genetic disorders due 

to SKPs link with the neural crest (Toma et al. 2005, Fernandes, Toma, and Miller 2008). 

Finally, SKPs may have been linked to ‘cancer stem cells’ so could have applications in testing and 

optimising cancer treatments by producing them in vitro from biopsies (Fernandes, Toma, and 

Miller 2008). 

1.7 Thesis Aims 
The first aim of this project was to investigate the localisation of particular Wnt family members in 

E13.5 skin, our embryonic stage of choice, in order to shed more light on the complex role Wnt/β-

catenin signalling has on dermal development. 

The second aim was to investigate the plasticity of early embryonic DCs: firstly, by looking at their 

differentiation abilities in 2D cell culture and, secondly, by pushing them to a more primitive state 

to see if they could produce SKPs. This would lead to an understanding of how many cells of the 

E13.5 dermal population are stem-like. Is the population dominated by stem-like cells, as the 

lineage tracing predicts, or are these stem-like cells just a subpopulation (Driskell et al. 2013)? In 

addition, the production and differentiation of embryonic SKPs would allow the plasticity of this 

dermal population to be investigated, showing whether it is restricted in its ability to differentiate 

to particular lineages. It would also allow us to challenge the literature which say SKPs cannot be 

produced using skin earlier than E14 (Fernandes et al. 2004). These two experimental approaches 

were used to test the hypothesis, that the dermis contains a common precursor cell capable of 

producing all cell types of the adult dermis, to further understand the properties of this early 

dermal precursor population. 
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2. Materials and Methods 
Please see (at the end of this chapter) Table 2.1 for the components of the culture media used, 

Table 2.2 for information on the primary antibodies, Table 2.3 for information on the secondary 

antibodies, Table 2.4 for other solutions used, Table 2.5 for information on the number of 

replicates of SKPs and Table 2.6 for primer sequences. Unless otherwise stated, the incubator 

used for cell culture was a SANYO MCO-18AIC incubator with 20% O2, 37oC, 5% CO2 conditions. All 

centrifugation steps used an Eppendorf Centrifuge 5810 R. 

2.1 Mice 
BALB/c and GFP129 mice were from Durham University Life Sciences Support Unit. Mice were 

used as animal models due to their similarities with the human genome; the fact that they 

produce litters of embryos; have a short gestation period of around 20 days; are easy to maintain; 

and have a fully sequenced genome allowing transgenic/knockout strains to be produced. At 

present, they are a good alternative to using human skin (Perlman 2016). 

The presence of a vaginal plug was used to indicate pregnancy and to age the embryos 

(embryos=0.5 days old when vaginal plug forms). The animals were sacrificed using cervical 

dislocation. The embryos used were E12.5, E13.5, E14.5 or E15.5 (ages confirmed by microscopic 

analysis of features). Embryos were snap frozen by placing in a base mould filled with Tissue Tek 

O.C.T. (Sakura), put over liquid nitrogen until frozen, and stored at -80oC. 

2.2 Isolation of the Dermis 
Stages of embryos were confirmed by microscopic analysis. Figure 2.1 summarises the method of 

dermal isolation. Embryos were pinned on agar, and two pieces of the dorsolateral skin were cut 

per embryo, using ophthalmic scissors, and transferred into an enzymatic solution (1.5% 

pancreatin (Sigma), 1.25% trypsin (Sigma) in 1X Earle’s) for 30-60 minutes at 4oC to separate 

dermis and epidermis. The epidermis was then removed from the dermis using a needle. For RNA 

extraction, the dermis or epidermis were put straight into RLT Buffer (the first step of RNeasy Mini 

Kit (Qiagen)). For cell culture, the epidermis was mechanically dissociated, and the dermis was put 

into an enzymatic solution of hyaluronidase (Sigma) and collagenase-2 (Worthington Biochemical 

Corporation) (100 units and 290 units per 1 ml PBS (Severn Biotech), respectively) for 15 minutes 

at 37oC. Then the dermis was mechanically dissociated into single cells, the enzymatic reaction 

stopped by adding DC media. Both epidermal cells and DCs were passed through a cell strainer 

(70 μm, Fisher Scientific) and finally, centrifuged in DC media for 10 minutes at 1000 rpm.  This 

method was similarly used on whisker pad skin. Once isolated, the cells were either cultured in 1X 

SKP proliferation media, differentiation media or DC media. 
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2.3 DC Differentiation 
The DCs were resuspended and seeded at 20,000 cells on coverslips in 24-well plates with 

adipogenic or osteogenic media. Cells were then cultured in adipogenic media for 7 days and then 

in DC control media for 7 days or osteogenic media for 21-28 days in the dark. The media was 

changed every 3-4 days and 2-3 days, respectively.  

2.4 DC Adipogenic Differentiation Under Different Oxygen Conditions 
The cells were resuspended and seeded at 20,000 cells on coverslips in 24-well plates. Cells were 

cultured in adipogenic media for 4 days and then in DC media for 4 days in either hypoxic (5% O2, 

37oC, 5% CO2, Baker In vivO2 400 incubator) or normoxic conditions (20% O2, 37oC, 5% CO2, SANYO 

MCO-18AIC incubator) in the dark, and the media was changed every 3-4 days. 

2.5 Rat Mesenchymal Stem Cells (rMSCs) 
rMSCs were isolated from Wistar rats as previously described (Croft and Przyborski 2006). They 

were maintained in culture with rMSC control media and seeded at 14,000-20,000 cells/ml in 24-

well plates as a control for the osteogenic differentiation assays. Only rMSCs less than passage 8 

(P8) were used. 

2.6 3T3-L1 Cells 
3T3-L1 cells were maintained in culture with 3T3-L1 control media and seeded at 20,000 cells/ml 

in 24-well plates as a control for the adipogenic differentiation assays. Only 3T3-L1 cells less than 

P12 were used. 

2.7 Production of Dermal Skin-Derived Precursors (dSKPs) 
The DCs were resuspended in 1X SKP proliferation media, seeded between 100,000 and 500,000 

cells/ml into T12.5 flasks with 4 ml of 1X SKP proliferation media and incubated at 37oC and 5% 

Figure 2.1: Schematic describing the method of dermal and epidermal cell isolation for use in cell culture. Cartoon 
images courtesy of Clipart. 
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CO2. The flasks were agitated once a day and 10X media was added every 3-5 days. Flasks were 

imaged using Zeiss Axiovert 40C microscope and Canon PowerShot A620 camera. 

Once dSKPs had formed they were snap frozen by pipetting them into a base mould filled with 

Tissue Tek O.C.T. (Sakura), placing in liquid nitrogen until frozen and were stored at -80oC. 

Alternatively, SKPs were also put on coverslips with 1X SKP adherence media for 48 hours. 

2.8 Passaging dSKPs 
dSKPs were passaged by spinning the dSKP suspension at 250g for 4 minutes, saving the 

supernatant, and incubating in collagenase XI (1 mg/ml) for 10 minutes at 37oC. The enzymatic 

reaction was stopped with FBS and the dSKPs were triturated using a pipette. The cells were 

pelleted by centrifuging at 250g for 5-7 minutes and then resuspended in 2 ml of 2X SKP 

proliferation media. 1 ml of 2X SKP proliferation media cell suspension was added to 2 ml of 

conditioned media and 1 ml of 2X SKP proliferation media in a T12.5 flask.  

2.9 Quantification of dSKPs 
dSKPs were imaged in a 12-well plate using a Zeiss Stemi SV 11 microscope and AxioCam ERc 5s 

camera and the cell counter plugin on ImageJ was used to quantify the number of dSKPs per flask. 

2.10 dSKP Differentiation 
For adipogenic and osteogenic differentiation, 5-15 dSKPs (5 μl suspension) were plated in a 24-

well plate with SKP adherence media overnight to allow adherence. Cells were then cultured in 

adipogenic media for 7 days (37oC, 5% CO2) or osteogenic media for 20-28 days in the dark and 

the media was changed every 3-4 days and 2-3 days, respectively. Coverslips were imaged using 

Zeiss Axiovert 40C microscope and a Canon PowerShot A620 or A630 camera. 

2.11 3D DC Culture-Hanging Drop Method 
The isolated DC suspension was resuspended in DC media and then approximately 10,000 cells 

were seeded in 10-15 μl drops on the lid of a 90 mm petri dish. The hanging drops were kept 

hydrated by incubating with deionised water in the bottom of the petri dish. The media was 

changed on day 3 (a spheroid should have formed at this point) and day 7 and they were cultured 

for 8 days in total. The spheroids were imaged using Zeiss Stemi SV 11 microscope and AxioCam 

ERc 5s camera. 

2.12 Staining 
For immunofluorescent and Haematoxylin and Eosin staining of frozen tissue, 7 μm cryosections 

of the sample were cut on a Leica CM3050 S cryostat and air-dried at room temperature until dry. 

2.12.1 Immunofluorescent Staining 
1X PBS was used for 5 minutes at room temperature in all wash steps. Specimens were washed 3 

times and then fixed using Methanol (Emsure) for 10 minutes at -20oC, or 4% PFA (Sigma) for 30 
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minutes at 4oC for the Cbx5 antibody. After 3 washes, 0.1% Triton X-100 (Sigma) was used for 30 

minutes at room temperature for permeabilisation. Specimens were washed 3 times and then 

blocked with 2% BSA (Sigma) for 30 minutes at room temperature. Specimens were incubated 

either overnight at 4oC or at room temperature for 2 hours with the primary antibodies. After 3 

washes, the samples were incubated for 1 hour at room temperature with the secondary 

antibodies, either alone, and followed by 3 washes and DAPI staining (KPL;1:1000) for 5-10 

minutes at room temperature, or in combination with DAPI (KPL; 1:1000). The samples were 

washed 2 or 3 times and were mounted with coverslips using Mowiol 4-88 (Sigma). A ZEISS AXIO 

Imager M1 microscope and a Hamamatsu C4742-95 camera were used to capture images.  

2.12.2 Haematoxylin and Eosin Staining 
All steps were done at room temperature. Mayer’s Haematoxylin (VWR) was used to stain the 

nuclei of sections (5 minutes). Blueing was done with distilled water followed by alkaline alcohol, 

70% ethanol and 95% ethanol, each for 30 seconds. Eosin Yellowish (Sigma) was used for 30 

seconds to counterstain and the dehydration steps were 95% ethanol (15 seconds), 100% ethanol 

(45 seconds) and then Histoclear (National Diagnostics) for 5 minutes. DPX (Sigma) was used to 

mount the slides. A ZEISS Axiovert 40C microscope and Canon PowerShot A620 or A630 camera 

were used to capture the images. 

2.12.3 Oil Red O Staining 
Cells on coverslips were initially washed with 1X PBS at room temperature and then fixed for 1 

hour in 10% Neutral Buffered Formalin at room temperature. Subsequently, cells were washed 

with deionised water 1-2 times and covered with 60% Isopropanol (Sigma) for 5 minutes and then 

Oil Red O working solution (3:2, Oil Red O stock:deionised water) for 30 minutes, all at room 

temperature. Specimens were then rinsed with tap water 2-3 times before being counterstained 

with Mayer’s Haematoxylin (VWR) for 1 minute at room temperature. Cells were rinsed again in 

tap water and then mounted in Glycergel (Dako). Coverslips were imaged using Zeiss Axiovert 40C 

microscope and Canon PowerShot A620 or A630 camera. 

2.12.4 Von Kossa Staining 
Cells were initially washed with 1X PBS, then fixed for 30 minutes in 10% Neutral Buffered 

Formalin at room temperature. This was followed by 10 washes with deionised water, making 

sure to wash under the coverslip. Subsequently, cells were covered by 2% silver nitrate (BDH) for 

1 hour in the dark at room temperature, and then for another hour under UV at room 

temperature. After washing three times, the deionised water was replaced with 2.5% sodium 

thiosulphate (Sigma) for 5 minutes at room temperature. Then washed twice with deionised 

water and mounted in Glycergel (Dako). Coverslips were imaged using a Zeiss Axiovert 10 
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microscope and AxioCam ERc 5s camera or Zeiss Axiovert 40C microscope and Canon PowerShot 

A620 or A630 camera. 

2.13 RT-PCR 
RNA extraction was done using the RNeasy Mini Kit (Qiagen). RNA quality and quantity were 

calculated using a NanoDrop Spectrophotometer. RNA was converted to cDNA using Superscript 

III reverse transcriptase (Invitrogen). All work was done under RNase free conditions. RT-PCR was 

performed on a Biometra thermal cycler. Each individual PCR reaction (10 μl total volume) had 50-

100 ng/μl of cDNA, primer mix of 10 μM, 2X MyTaq mix (Bioline) and sterile water (Gibco). The 

conditions used were: step one (95oC for 3 minutes), then 35 cycles of step two (95oC for 45 

seconds), step three (specific annealing temperature for 30 seconds) and step four (72oC for 30 

seconds). Then step five (72oC for 7 minutes), after which the products were kept at 4oC until 

ready to run on the 2% agarose gel (Severn Biotech Ltd). Gel was imaged using a Syngene 

InGenius machine. See Table 2.5 for primer sequences.  

2.14 Microarray 
The processing of samples and microarray was carried out by the Jahoda lab in collaboration with 

the Christiano lab, New York. Dorsal epidermis and dermis from C57BL/6J embryos between E12.5 

and E15.5 (embryos=0.5 days old when vaginal plug forms) were used and total RNA isolated 

using RNeasy Minikit (Qiagen). Affymetrix reagents and protocols were used to amplify and label 

the samples which were then hybridised to a MOE430A microarray chip (Bazzi et al. 2007). The 

data output was normalised and analysed using Expression Console Software and then 

Transcriptome Analysis Console Software by Adam Gilmore (Affymetrix). The normalised values 

were then plotted without statistical parameters.  
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Table 2.1: Details of the media used for cell culture. 
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Table 2.2: Details of the primary antibodies used. 

Table 2.3: Details of the secondary antibodies used. 
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Table 2.4: Details of the solutions used for staining. 

Table 2.5: Number of replicates of the dSKPs made. 
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Table 2.6: Details of the primers used. Primers taken from papers 
(Fernandes et al. 2004, Chen et al. 2006, Kim et al. 2010). 
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3. The Skin 

3.1 Introduction 
The development of the epidermis and hair follicles has been studied extensively (Fu and Hsu 

2013, Lim and Nusse 2013, Liu, Zhang, and Duan 2013, Rishikaysh et al. 2014). However, dermal 

development (resulting in a subdivided dermis consisting of the papillary dermis, reticular dermis 

and DWAT) has only recently been explored and the mechanisms involved still need further 

elucidation (Driskell et al. 2013, Driskell et al. 2014, Driskell and Watt 2015). It has been 

hypothesised that the dermis contains a common precursor cell from which all these DC types 

derive and Wnt/β-catenin signalling (a key pathway in development) has been associated with the 

lineage decisions of the dermis (Fu and Hsu 2013, Donati et al. 2014, Driskell and Watt 2015, 

Mastrogiannaki et al. 2016, Plikus et al. 2017). In particular, Wnt/β-catenin signalling from the 

epidermis to the dermis is thought to be involved in specifying the papillary dermis fate (Driskell 

and Watt 2015). However, the timing and localisation of this pathway in skin, particularly in 

relation to the specific Wnt family members, is less well known. In addition, little is known about 

the common precursor population in the early dermis. A lot of research on SKPs (a multipotent 

stem cell population derived from the skin) has been done in adult skin but less research has been 

conducted on embryonic skin, especially at the early stages of skin development (Toma et al. 

2001, Fernandes et al. 2004, Toma et al. 2005). Consequently, little is known about the 

characteristics and localisation of these early dermal precursor cells in vivo. 

In this chapter, the changes in skin development between E12.5 and E15.5 were tracked using 

immunofluorescent staining for LEF-1, a transcription factor downstream of the Wnt signalling 

pathway, and Dlk1, a non-canonical Notch ligand associated with progenitor cells and the 

negative regulation of adipogenesis (Smas and Sul 1993, Vorotnikova et al. 2010, Falix et al. 2012, 

Driskell and Watt 2015, Traustadottir et al. 2016). E14.5 skin, one of the most characterised stages 

of mouse skin development, is the stage at which pelage hair follicle morphogenesis is first 

observed in the form of placodes and, from the literature, the earliest time-point at which SKPs 

could be isolated from the skin (Fernandes et al. 2004, Sennett and Rendl 2012, Fu and Hsu 2013). 

Therefore, E13.5 skin is the final stage of skin development before hair follicles begin to form and, 

according to lineage tracing, is thought to have a relatively primitive dermis (Driskell and Watt 

2015). In addition, microdissection and enzymatic dermal-epidermal separation is cleaner and 

easier at E13.5 than at younger stages. This chapter will focus on characterising the expression of 

a selection of Wnt family members in E13.5 skin, as well as Nestin, to investigate the location of 

progenitor cells. 
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3.2 Methods and Approaches 
Figure 3.1 summarises the methodical approaches taken for this chapter of the project (See 

Chapter 2 for detailed methods), involving immunofluorescent staining of whole skin and RT-PCR 

of the dermis and epidermis. 

 

 

 

  

3.3 Results 

3.3.1 The Changes in Skin During Development 
Basic histology of the skin at E12.5 showed a thin epidermal layer of 1-2 cells deep and a 

morphologically uniform dermis. By E13.5, the epidermis thickened to 2-3 cells deep but the 

dermis remained the same. At E14.5, the epidermis thickened, became more defined and 

displayed the first sign of hair follicle induction: the emergence of epidermal placodes (an 

accumulation of epidermal cells, indicated with an arrow head). The dermis remained the same 

but a denser layer of cells at the bottom of the dermis formed (indicated by the dashed lines). 

This layer is where the panniculus carnosus is shown to form in later development. At E15.5, the 

epidermal placode had expanded to become an early follicle bud and started to push down into 

the dermis where a dermal condensation (accumulation of DCs) had increased in size. Again, the 

dermal border was defined by the cells predicted to develop into the panniculus carnosus 

(indicated by the dashed lines; Figure 3.2.a-d). 

At E12.5, LEF-1 was expressed in most of the dermis and in the basal layer of the epidermis 

(although less intensely). By E13.5, this expression was restricted more to the papillary dermis 

(indicated by double ended arrows) and the epidermis, where the brightest expression was in the 

basal layer. At E14.5, this papillary dermal and epidermal LEF-1 expression was maintained but 

was also expressed in the placode and reticular dermis. By E18.5, LEF-1 was only expressed in the 

DP and intermittently in the basal epidermis, most likely representing the last round of follicle 

initiation which takes place around this stage (Figure 3.2.e-h) (Andl et al. 2002). 

Figure 3.1: Schematic summary of the approaches used to show the changes skin 
undergoes during development; Nestin expression in E13.5 dorsolateral skin; and 
which Wnt isoforms were expressed in E13.5 dorsolateral skin. See Chapter 2 for 
more detailed methods. 
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Dlk1 was expressed in a few cells at E12.5, in a region at the bottom of the dermis where, later, 

the panniculus carnosus develops. The number of cells expressing Dlk1 in this region increased at 

E13.5 and E14.5. At E14.5, Dlk1 was also expressed in regions further below the skin, that were 

also suspected to be muscle due to the morphology. Finally, at E16.5, the panniculus carnosus had 

undoubtedly formed and thickened in this same region and continued to strongly express Dlk1. 

The epidermis, follicular downgrowths and the reticular dermis also expressed Dlk1 at E16.5 but 

with less intensity than the panniculus carnosus (Figure 3.2.i-l; regions of suspected muscle 

indicated with dashed lines). 
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Selected data from an Affymetrix microarray comparing the gene expression of the dorsal 

epidermis and dermis of C57BL/6J embryos ranging from E12.5 and E15.5, previously conducted 

by the Jahoda lab in collaboration with the Christiano lab (New York), is illustrated in Figure 3.3. 

This showed the expression of Wnt 2, Wnt 2b, Wnt 4, Wnt 5a, Wnt 5b, Wnt 7a, Wnt 7b, Wnt 9a, 

Wnt 10b, Wnt 11 and Nestin, all of which were expressed in the epidermis at E12.5, E13.5, E14.5 

and E15.5 (Figure 3.3.a); and in the dermis at E13.5, E14.5 and E15.5 (Figure 3.3.b). Expression 

levels of most of the genes in both compartments, were remarkably constant, although Wnt 2 and 

Wnt 7a did decrease over time in the epidermis. 

3.3.2 E13.5 Skin 
To further analyse the expression of Wnt isoforms in E13.5 skin, RT-PCR analysis was performed 

on E13.5 dermis and epidermis. Figure 3.4 showed that Wnt 5b, Wnt 11, Wnt 7a, Wnt 10b, Wnt 

2b, Wnt 9a and Wnt 5a were present in both the dermis and epidermis in E13.5 skin. In contrast 

to the array data, Wnt 2 was expressed only weakly in the epidermis, and Wnt 7b was not 

expressed in either the epidermis or dermis.  

Figure 3.3: Gene expression profiles of a selection of Wnt isoforms and Nestin in the epidermis (a) and dermis (b) of 
different age points during embryogenesis. Data is from a microarray done previously by the Jahoda lab in 
collaboration with the Christiano lab. 
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E13.5 dorsolateral skin was sectioned and immunofluorescently stained for a number of Wnt 

family members that were of interest, and for which antibodies were available. Wnt 2 was shown 

to mark the epidermis but there was no specific staining of the dermis or developing panniculus 

carnosus (Figure 3.5.a). Similarly, Wnt 11 was shown to label the epidermis the most strongly, 

particularly basally (indicated by upper dashed lines). However, in the dermis, the region 

corresponding to the developing panniculus carnosus (indicated by lower dashed lines) was also 

labelled (Figure 3.5.d). Wnt 4 and Wnt 5a antibodies showed no specific staining of the skin 

(Figure 3.5.b and c). Nestin labelled cells throughout the dermis and developing panniculus 

carnosus (indicated by dashed lines) but no positive labelling was apparent in the epidermis 

(Figure 3.5.e).  

 

 

 

 

 

 

 

 

 

Figure 3.4: RT-PCR results for E13.5 dermis and epidermis (respective order of loading from left to right) for a 
variety of Wnt isoforms. 100 ng/μl cDNA of dermis; 50 ng/μl cDNA of epidermis. Wnt 5a, Wnt 2 and Wnt 7b 
repeated once; all others tested only once. β-actin and GADPH were used as positive controls and water as the 
negative (-ve) control. 
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3.4 Discussion 
Skin dramatically changes its structure and composition during development in mice, starting with 

a thin epidermis and morphologically uniform dermis at E12.5. By E18.5, the epidermis has 

become multi-layered, incorporates multiple types of hair follicles and possesses a full barrier, 

while the dermis has also stratified (Zhang et al. 2008, Driskell et al. 2013, Driskell et al. 2014, 

Driskell and Watt 2015). The progressive cellular and molecular changes during epidermal and 

hair follicle initiation and maturation have been intensively studied (Fu and Hsu 2013, Liu, Zhang, 

and Duan 2013, Rishikaysh et al. 2014). However, the intricacies of how the dermis 

compartmentalises have only been addressed more recently (Driskell et al. 2013, Driskell et al. 

2014, Driskell and Watt 2015). In particular, lineage tracing experiments have shown, in more 

detail, how the composition of the dermis changes over time, resulting in the papillary dermis, 

reticular dermis and DWAT (Driskell and Watt 2015). Wnt/β-catenin signalling has long been 

known to play a role in skin development, particularly hair follicle formation. However, more 

recently, it has been associated with determining the lineage commitment of DCs (Fu and Hsu 

2013, Donati et al. 2014, Driskell and Watt 2015, Mastrogiannaki et al. 2016, Plikus et al. 2017). 

Thus, Wnt signalling appears to have roles in multiple developmental pathways. Consequently, 

one of the challenges associated with this pathway is to distinguish between these roles. In this 

context, the upper dermis would be an obvious recipient of epidermal Wnt signalling from the 

adjacent epidermis, and also likely reciprocate in the other direction. Less clear is whether there is 

intradermal signalling involved in the delineation between the papillary and reticular dermis 

and/or the reticular dermis and DWAT. This study set out to explore these questions via 

investigation of the spatial and temporal expression of individual Wnt family members. 

3.4.1 Mouse Skin Development – Wnt/β-catenin Signalling and Progenitor Labelling  
In this chapter, Wnt signalling was examined in developing mouse skin at the RNA and protein 

levels. Tracking Wnt/β-catenin signalling via immunofluorescent labelling of LEF-1 (a transcription 

factor downstream of Wnt) revealed the progressive restriction of labelling from a general basal 

epidermal expression to intermittent epidermal basal expression and in the dermis, from cells at 

almost all depths to just the upper dermis and then, predominantly to the dermal condensations 

that subsequently become the follicle DP (Driskell and Watt 2015). At the level of transcription, 

RT-PCR showed that multiple Wnts were expressed in both the epidermis and dermis at E13.5, 

but immunofluorescent staining revealed strong epidermal labelling of some Wnts and little 

evidence of any dermal Wnt expression, except the region corresponding to the developing 

panniculus carnosus. Dlk1 (a non-canonical Notch ligand associated with progenitor cells and the 

negative regulation of adipogenesis) was found, perhaps unexpectedly, to be limited to this lower 

dermal region of the developing panniculus carnosus, while Nestin (a neuroepithelial stem cell 
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marker) was more widely expressed dermally in early skin development (Smas and Sul 1993, 

Sellheyer and Krahl 2010, Vorotnikova et al. 2010, Falix et al. 2012, Traustadottir et al. 2016). 

3.4.2 Wnt/β-catenin Signalling and Lineage Commitment 
The restriction of Wnt activity (shown by LEF-1 expression) to the papillary dermis at E13.5 is 

reflected in adult mouse skin as well. Mastrogiannaki et al. (2016) showed distinct gene 

expression profiles of papillary and reticular dermal lineages in postnatal day 2 dermis, in relation 

to regulators of the Wnt signalling pathway. For example, high levels of nuclear β-catenin were 

shown in the cells of the papillary dermis and low levels were observed in the reticular dermis 

(Mastrogiannaki et al. 2016). So how does the papillary dermis acquire this Wnt activity when 

Wnts are not shown to be expressed at the protein level? 

Crosstalk between the epidermis and dermis is widely acknowledged so it would not be surprising 

if the expression of epidermal Wnts has a role in specifying the distinct gene expression profile of 

the papillary dermis, which resides directly below it (Chen et al. 2012, Fu and Hsu 2013). Wnt 2 

and Wnt 11 showed bright epidermal immunofluorescent staining at E13.5 (the first stage LEF-1 is 

no longer expressed evenly throughout the dermis) and the Wnt 11 expression was particularly 

notable in the basal layer of the epidermis (Figure 3.4.d; indicated by the upper dashed lines). The 

fact that basal epidermal expression was so bright and that LEF-1 was restricted to the papillary 

dermis at E13.5 suggests support of the previous hypothesis (of the Jahoda lab) that the presence 

of epidermal Wnts directly adjacent to the papillary dermis help to specify its distinct Wnt-related 

expression profile. Chen et al. (2012) have shown that epidermal Wnts are needed for Wnt 

activity in dermal fibroblast progenitors. They showed this by knocking out Wntless (a gene 

involved in Wnt secretion) exclusively in the epidermis using a K14Cre/+;R26R/+;Wlsfl/fl strain. 

These mutant embryos had no hair follicles, a lack of Wnt11 at E14.5 in the dermis, a lack of LEF-1 

in the dermis at E16.5, and the number of dermal fibroblasts between E16.5 and E18.5 was less 

than controls. In addition, Chen et al. (2012) knocked out Wntless exclusively in the dermis using a 

En1Cre/+;R26R/+;Wlsfl/fl strain. The mutant embryos showed very little difference with the controls 

regarding the histology of the dermis at E14.5 and E17.5, the expression of Twist2 and LEF-1 in the 

dermis, and epidermal differentiation. These findings therefore show the need for epidermal 

Wnts rather than dermal Wnts for dermal responsiveness to Wnt signalling and thus, hair follicle 

initiation (Chen et al. 2012). To further highlight the role of epidermal Wnts on the dermis, 

Driskell et al. (2014) have shown that sustained epidermal Wnt/β-catenin signalling in adults 

induced hair follicle growth, the formation of new follicles, fibroblast proliferation and a 

remodelling of the dermal ECM (Driskell et al. 2014). One discrepancy with the Wnt 2 and Wnt 11 

immunofluorescent staining was that, according to the microarray and RT-PCR, Wnt 11 should 

also be dermally expressed. This inconsistency may be due to the limitations of 

immunofluorescent staining with regards to the levels of expression it can detect compared to RT-



37 
 

PCR and microarrays, or it may reflect the location of Wnt protein activity differing to its 

transcriptional activity. Regardless of this discrepancy, we know at least the downstream effects 

of Wnt/β-catenin signalling are present in the papillary dermis (LEF-1 and β-catenin expression) 

and, thus, it is highly likely there is Wnt expression in this region. However, β-catenin can be 

activated by alternative ligands to Wnt which makes interpretation of these results harder 

(McNeill and Woodgett 2010). 

Wnt/β-catenin signalling has also been shown to have a role in specifying lineages not present in 

the skin and, thus, the regulation of this pathway is essential for correct development to take 

place. For example, when β-catenin activity was conditionally knocked out in the face and ventral 

trunk dermis (using En1Cre; R26R; -cateninflox/null mouse strain), the dermis was replaced with 

cells expressing Sox9 (a marker of cartilage cell fate), displaying cartilage morphology and were 

positive for Alcian Blue staining (Tran et al. 2010). 

Mastrogiannaki et al. (2016) went on to investigate the influence of ectopic Wnt/β-catenin 

signalling in the dermis and how it affected cell lineage. Conditional stabilisation of β-catenin 

throughout the dermis led to a reduction in DWAT size and disruption of the hair follicle cycle. In 

contrast, when β-catenin was expressed in only the lower DCs (Dlk1+ population at E16.5, Figure 

3.2.l), DWAT was replaced by fibrotic dermis but the hair follicle cycle remained unaltered 

(Mastrogiannaki et al. 2016). This supports the idea that the presence of Wnt/β-catenin signalling 

in the dermis promotes fibroblast formation and the absence of Wnt/β-catenin signalling, 

adipocyte formation. In addition, Chen et al. (2012) showed sustained β-catenin expression in the 

dermis led to a thicker layer of dermal fibroblasts, as well as faster differentiation of hair follicles, 

larger placodes and larger dermal condensates (Chen et al. 2012). This, therefore, indicates that 

Wnt/β-catenin signalling is involved in this lineage divergence between fibroblasts and 

adipocytes, as well as hair follicle initiation and cycle (Chen et al. 2012, Mastrogiannaki et al. 

2016). These findings are also supported by Wei et al. (2011) who showed the replacement of the 

DWAT layer by a fibrotic dermis when a FABP4-Wnt10b transgenic mouse was used (Wei et al. 

2011). This fits with the restriction of LEF-1 and β-catenin expression to the papillary dermis (the 

fibroblastic region of the dermis) shown in both this project and that of Mastrogiannaki et al. 

(2016). 

In support of this, Plikus et al. (2017) showed that overexpression of Wnt/β-catenin signalling in 

the epidermis (using K14-Wnt 7a mice) led to an increased number of follicles and no adipocyte 

regeneration (in contrast to the control) in wounded skin. Similarly, when β-catenin was 

constitutively expressed in the epidermis (using KRT14-Cre;ROSA26R mice), placodes had 

developed by E12.5 and were present in the footpad at E12 (an ordinarily glabrous (hairless) 

region). However, the placodes produced were unable to advance into follicles, indicating the 
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need for a removal of β-catenin expression at certain points in the process of follicular induction 

(Zhang et al. 2008). In addition, when epidermal β-catenin was deleted in adult mouse skin or 

Dkk1 (a Wnt signalling inhibitor) was ectopically expressed in the epidermis, hair follicles were 

forced into catagen early (Choi et al. 2013). This highlights the divergent role Wnt signalling has in 

promoting hair follicle formation and inhibiting adipogenesis (Plikus et al. 2017). 

Donati et al. (2014) contrast Plikus et al. (2017) when they showed that activation of Wnt/β-

catenin signalling in keratinocytes led to adipocyte differentiation. This was confirmed when 

ectopic expression of Wnt/β-catenin signalling resulted in an expanded adipocyte layer (Donati et 

al. 2014). One might see these two papers as contradictory: one shows that Wnt signalling inhibits 

adipocyte differentiation, the other that Wnt signalling promotes adipocyte differentiation. 

However, it highlights the importance of the location, timing and type of signal (Jahoda and 

Gilmore 2016). This is what this chapter has aimed to uncover with regards to E13.5 skin. 

The literature discussed in this section has provided evidence in support of Wnt signalling playing 

a role in DC fate specification. Therefore, the lack of dermal Wnt expression (at the protein level) 

found in this project is surprising. Obviously, more Wnt ligands need to be explored to draw 

concrete conclusions regarding Wnt signalling in the skin at E13.5 but the data here raises the 

question of the ‘default’ cell fate of DCs. The lack of dermal Wnt protein expression means only 

the papillary dermis, due to its adjacent location to the epidermis, will potentially be influenced 

by the epidermal Wnts shown to be expressed in this project (Wnt 2 and Wnt 11). In contrast, the 

reticular dermis (according to the lack of Wnt protein expression in the dermis) remains 

unaffected by the epidermal Wnts. Therefore, the fact that later in development the reticular 

dermis gives rise to adipocytes may imply adipocytes are the ‘default’ cell fate of DCs (Driskell et 

al. 2013). This concept will be discussed further in Chapter 4. On the other hand, the lack of 

dermal Wnt protein expression may indicate E13.5 is too early or too late a time point to detect 

the Wnt ligands tested in the dermis. Considering lineage divergence of the dermis has been 

shown to take place at E16.5, it would be entirely plausible that the priming of these events take 

place after E13.5 (Driskell et al. 2013). Alternatively, is the Wnt protein expression detected in the 

epidermis secreted from the papillary dermis (discussed later in this chapter)? This is particularly 

pertinent for Wnt 11 due to its basal epidermal expression. Perhaps this expression of Wnt 

protein in the papillary but not the reticular dermis is involved in the lineage divergence of the 

dermis. Further research into the timing and spatial localisation of the different Wnt family 

members will help provide answers to these questions. 

3.4.3 Wnt/β-catenin Signalling and Hair Follicle Induction 
As mentioned above, Wnt/β-catenin signalling and hair follicles are closely associated. At E13.5, 

there are no signs of hair follicles (placodes and dermal condensates are present at E14.5) 
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(Sennett and Rendl 2012, Fu and Hsu 2013). Therefore, the epidermal and dermal Wnts observed 

at E13.5 are likely to be involved in priming hair follicle formation.  

Research into the role of Wnt/β-catenin signalling in hair follicle induction has shown that 

epidermal Wnt signalling (thought to be Wnt 3, 4 and 6) communicates to the papillary dermis to 

trigger a dermal signal. However, this is unable to act in the epidermis due to an inhibitor. The 

dermal signal that subsequently occurs represses the activity of this inhibitor, activating 

epidermal Wnt signalling in the epidermis (thought to be Wnt 2, 7b, 10a and 10b). This allows 

placode formation in the epidermis (thought to marked by Wnt 10b), which leads to the placode 

signalling to the dermis below, resulting in the formation of the dermal condensate and papilla. 

Finally, dermal Wnts signal to the placode to promote further induction (Zhang et al. 2008, Chen 

et al. 2012, Fu and Hsu 2013, Rishikaysh et al. 2014). 

The RT-PCR and immunofluorescent staining have both indicated that the dermis and epidermis 

expressed a variety of Wnt family members. However, the key difference (shown more clearly in 

the RT-PCR data) was that, despite the lower concentration of epidermal cDNA (50 ng/μl), the 

epidermis had a higher transcriptional expression of these Wnts than the dermis (which had a 

concentration of 100 ng/μl). This, therefore, indicates that the skin was at the stage where the 

epidermis promotes Wnt signalling in the dermis and begins to express dermal Wnts. This fits with 

the knowledge that placodes form at E14.5, which is the next step in the process that Fu and Hsu 

(2013) have elucidated. However, the lack of Wnt 4 immunofluorescent staining throughout the 

skin does not match up with this mechanism or the microarray data. Wnt 5a (a Wnt known to be 

involved in hair follicle formation) also showed no immunofluorescent staining, despite being 

present in the epidermis and dermis in both the microarray data and RT-PCR (Reddy et al. 2001). 

Both these discrepancies may be due to a need for better antibodies. 

Another caveat is that Wnt 2 was only epidermally expressed and Wnt 7b was not expressed at all 

in the RT-PCR, which contradicts the microarray data where they were expressed in both the 

epidermis and dermis. Their lack of expression may simply be due to non-optimal primers or 

experimental error. In partial support of the microarray data, the immunofluorescent staining of 

Wnt 2 shows clear expression in the epidermis but not in the dermis. This begs the question of 

whether Wnts are secreted. Just because the microarray data shows Wnt 2 was expressed on a 

transcriptional level in the dermis does not necessarily mean the protein remains there. A 

possible explanation is that Wnt 2 is secreted to the epidermis where it promotes placode 

formation in addition to epidermal Wnt 2.  

All Wnt family members are secreted (indicated by a signal sequence for secretion) and Wnts 

have been shown to have short- and long-range signalling, despite being lipid-modified 

glycoproteins (Mikels and Nusse 2006, Port and Basler 2010, Solis, Lüchtenborg, and Katanaev 
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2013). Their hydrophobic nature has led to questions of how Wnts are able to diffuse. One 

explanation is that they form complexes with secreted Frizzled-related proteins, which have been 

shown to increase the diffusion range of Wnt 8 and Wnt 11 in a concentration-dependent manner 

in Xenopus (Mii and Taira 2009). This role of Frizzled-related proteins has been shown to apply to 

Drosophila and mice, indicating conservation (Solis, Lüchtenborg, and Katanaev 2013). Microarray 

data (from the Jahoda and Christiano labs, data not shown) has shown that between E13.5 and 

E15.5 secreted Frizzled-related protein 1 was downregulated but secreted Frizzled-related protein 

5 was upregulated. This adds an additional level of complexity, with regards to Wnt regulation, as 

Frizzled-related proteins have their own family members with differential expression. In addition 

GAG-modified proteins and lipoproteins have also been shown to aid the diffusion of Wnts 

(Mikels and Nusse 2006). However, whether Frizzled-related proteins, GAG-modified proteins 

and/or lipoproteins form complexes with all Wnt family members or just some; or whether the 

diffusion range varies for different Wnt family members needs further investigation. Secretion of 

Wnts has been known to play a key role in the hair follicle cycle. Myung et al. (2013) showed that 

the hair cycle was arrested at telogen/early anagen and that there was a lack of β-catenin activity 

in the DP and secondary hair germ when Wntless was knocked out of the basal layer of the 

epidermis and hair follicle cells (Myung et al. 2013). Therefore, research on the diffusion range of 

individual Wnt family members and the mechanisms that influence this range would aid the 

understanding and manipulation of this pathway and, by extension, its role in dermal 

development. 

3.4.4 Nestin: A Stem Cell Marker that Persists in Adult Hair Follicles 
Nestin is a neuroepithelial stem cell marker and was shown to be expressed throughout the 

dermis and panniculus carnosus in E13.5 skin, here and in previous reports (Sellheyer and Krahl 

2010). However, the microarray data shows it should also be expressed in the epidermis but 

perhaps this expression is at much lower levels than immunofluorescent staining can detect. The 

literature also shows that Nestin is expressed in the full dermis of the mouse at E12.5 but this 

expression is subsequently restricted, resulting in expression only in the DSs in older embryos and 

then hair follicles in the adult (Falodah and Al-Karim 2016). A similar expression pattern is found 

in human scalp embryonic skin, where Nestin is restricted to the DS when the hair follicle is at the 

bulbous peg stage. In contrast to dorsolateral skin, Nestin is still expressed in the papillary dermis 

at this stage. However, this also eventually depletes so that, in the adult, Nestin is only expressed 

in the DS, DP and blood vessels. According to the hair follicle cycle, Nestin expression fluctuates in 

the DS and DP, with the highest level of Nestin expression being at early anagen and a reduced 

expression at catagen and telogen. In addition, Nestin expression increases in the DS of follicles 

close to a wound and the interfollicular fibroblasts within the wound overexpress Nestin. This 

indicates that Nestin-positive cells mark a stem cell niche in the follicles, which are a source of 
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cells needed to increase the hair follicle size during anagen and to replenish the lost cells in 

wound healing (Sellheyer and Krahl 2010). In addition, adult mouse whisker follicles express 

Nestin in the bulge area and staining has shown Nestin-positive cells migrate from the bulge area 

to the epidermis (in the context of wound healing) or down the hair shaft to the DP. This confirms 

Nestin-positive cells play a role in wound healing and also shows there may be more than one 

source of Nestin-positive cells in the hair follicle (Uchugonova et al. 2011). 

Coming back to E13.5 skin, Nestin expression in the dermis and panniculus carnosus area 

indicates a primitive, undifferentiated nature of the E13.5 DCs, including those that will give rise 

to the panniculus carnosus. Further to this project, it would be interesting to confirm whether 

Nestin is marking where the mature panniculus carnosus will form, using double staining with 

panniculus carnosus muscle precursor markers, such as Myf5, Pax3 or Pax7 (Naldaiz-Gastesi et al. 

2016).  

3.5 Conclusions 
The skin was shown to change dramatically during development: from a 1-2 cell thick epidermis, 

morphologically uniform and primitive dermis at E12.5 to a fully stratified epidermis with hair 

follicles and a subdivided dermis at E18.5.  

This chapter aimed to answer two questions: firstly, regarding the spatial and temporal activity of 

particular Wnt family members in early skin development and secondly, regarding the location of 

progenitor cells in E13.5 skin-particularly to see if the dermis is beginning to subdivide at this 

stage. 

Multiple Wnts were shown to be expressed at the transcriptional level in both the epidermis and 

dermis throughout early skin development but this was not reflected at the protein level, where 

only Wnt 2 was expressed in the epidermis and Wnt 11 was expressed in both the epidermis and 

the region of the developing panniculus carnosus. Wnt signalling has been discussed to have a 

role in lineage commitment in the dermis and hair follicle induction and, due to the arrival of 

placodes at E14.5, the Wnts expressed at E13.5 have been postulated to be involved in priming 

these hair follicle induction events. However, the divergent roles of Wnt/β-catenin signalling still 

leaves the question of which family members, if not all, are involved in hair follicle induction and 

which in lineage commitment. 

Nestin and Dlk1, both associated with marking precursors, showed differing immunofluorescent 

expression in E13.5 skin (Sellheyer and Krahl 2010, Falix et al. 2012). Nestin was expressed 

throughout the dermis and in the region of the developing panniculus carnosus, whereas Dlk1 

was only expressed in the latter. Nestin expression is particularly associated with SKPs, even in 

adults (Toma et al. 2001). The high proportion of Nestin positive cells in the E13.5 dermis leads to 
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further questions concerning the stem cell properties of the dermal population at E13.5 that are 

addressed in Chapters 4 and 5.  
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4. Investigation of Embryonic Dermal Precursor Cell Properties via 2D Cell 

Culture 

4.1 Introduction 
Lineage tracing experiments in the developing mouse dermis have shown that, at E12.5, there is a 

homogeneous population of common ‘fibroblast’ progenitor cells. By E16.5, this population was 

shown to diverge into papillary and reticular fibroblast progenitors, indicated by the restriction of 

Dlk1 expression (an early marker of adipogenesis) to the reticular dermis only, which further 

differentiate to the various cell types found in the adult dermis (Driskell et al. 2013, Driskell and 

Watt 2015). Therefore, this project has hypothesised that this common precursor population is 

responsible for producing all cell types of the dermis. However, in contrast to the Watt group, 

Rinkevich et al. (2015) have shown that Engrailed-1 positive cells (CD26+) migrate from the 

papillary dermis to the reticular dermis at E16.5, implying that cell populations are not static and 

the mechanism of dermal development is still up for discussion (Rinkevich et al. 2015). 

E13.5 dermis is the stage this project has chosen to focus on due to its cleaner microdissection 

from the underlying muscle and overlying epidermis, as well as being the stage prior to hair 

follicle development, which is visible morphologically at E14.5 (Fu and Hsu 2013). In addition, 

E13.5 is thought to still be a relatively primitive stage of the dermis (Driskell and Watt 2015).  

There are two essential properties of stem cells: the ability to self-renew and to differentiate. 

Maintenance of a stem cell population usually involves asymmetric division, which results in a 

stem cell (remains undifferentiated) and a daughter cell (goes on to differentiate). The 

environment of stem cells, termed a niche, is also key to their maintenance. Often differentiation 

can result when a stem cell leaves its niche (He, Nakada, and Morrison 2009, Chen, Ye, and Ying 

2015).  

In adult skin, the dermis is known to contain cells that are MSCs or are MSC-like, indicated by their 

similar expression profile and functional properties to bone marrow MSCs, for example (Riekstina 

et al. 2009, Vaculik et al. 2012). The literature shows that embryonic and adult DCs can 

differentiate to a wide range of mesodermal lineages, such as adipocytes, chondrocytes and 

muscle, with some suggesting that cells can become non-mesodermal derivatives, namely 

neurons (Goldring, Jones, and Watt 2000, Goldring, Jones, Sewry, et al. 2002, Goldring, Jones, 

Thiagarajah, et al. 2002, Fernandes et al. 2004, Chen et al. 2007, Ambasudhan et al. 2011). 

Considering muscle and adipocytes are mesenchymal in origin and these layers appear to derive 

from the same precursors as the dermal fibroblasts, a reasonable hypothesis might be that the 

embryonic dermis, when put into culture, should contain at least some MSC-like cells, or even a 

full population of MSC-like cells, if taken at an early enough stage (Driskell et al. 2014, Driskell and 

Watt 2015)  
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One way in which to test MSC-like functionality is to push this E13.5 DC population to 

differentiate to various lineages. In this chapter, E13.5 DCs were cultured in 2D in adipogenic and 

osteogenic media thus, allowing the multipotency of this population to be tested, particularly, 

with regards to its ability to turn into bone which is not present in the skin. 

Previous data from the Jahoda lab has highlighted the important difference between culturing 

embryonic DCs in 2D (where a fibroblastic population resides) vs 3D culture (where a spheroid, 

consisting of mostly adipocytes, forms) shown by Oil Red O staining and immunofluorescent 

labelling of markers associated with various stages of adipogenesis such as, C/EBPα, Dlk1 and 

FABP4 (Stephens 2012, Driskell et al. 2013, Moseti, Regassa, and Kim 2016). This led to the idea 

that embryonic DCs are primed to produce adipocytes, almost as their ‘default’ cell fate, and 

reiterated the importance of environment (Baker and Chen 2012). Therefore, when approaching 

the differentiation capabilities of the E13.5 DC population, one would predict they would have 

little problem in being pushed to differentiate to adipocytes given that this is what a high 

proportion of them become in vivo (Driskell et al. 2014). This echoes the question of whether the 

early dermal population is more restricted to cell types of the skin or is more like an MSC. It also 

raises the question of whether 3D culture is more representative of in vivo than 2D culture. 

This chapter, therefore, aims to investigate the plasticity of this population and to see if a large 

proportion of the population, or just a small subpopulation, display stem-like properties as well 

as, determining if there are stem cell niches in the dermis at this early stage of skin development.  
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4.2 Materials and Methods 
Figure 4.1 summarises the methodical approaches taken for this chapter of work (See Chapter 2 

for detailed methods). This chapter focused on investigating the plasticity of E13.5 DCs in vitro by 

pushing the cells to differentiate in 2D to either adipocytes or osteoblasts. 

 

 

 

 

 

 

 

 

4.3 Results 

4.3.1 3D Culture 
Figure 4.2.a shows the formation of E13.5 DC spheroids which are 3D spheres that formed when 

E13.5 DCs were isolated from the epidermis by enzymatic digestion, dissociated and cultured for 8 

days using the hanging drop method. After 3 days, a sphere formed and this compacted over the 

next 5 days. Figure 4.2.b-e show the immunofluorescent staining of sectioned spheroids 

conducted to characterise the extent of adipogenic differentiation. Cbx5 (a protein involved in 

heterochromatin dynamics) and C/EBPα (a late marker of adipogenesis) were expressed in the 

nuclei of almost all cells (indicated by arrow heads) (Stephens 2012, Hinde, Cardarelli, and Gratton 

2015). Dlk1 (an early marker of adipogenesis) was expressed in the nuclei of some cells (indicated 

by arrow head), otherwise was expressed in the cytoplasm (Driskell et al. 2013). FABP4 (a mature 

adipocyte marker) was expressed in the cytoplasm but the sections were more damaged than we 

would have liked (Moseti, Regassa, and Kim 2016). 

 

 

Figure 4.1: Schematic summary of the approaches used to investigate whether E13.5 DCs are capable of adipogenic 
and osteogenic differentiation. Oil Red O and immunofluorescent labelling of C/EBPα were the techniques used to 
analyse adipogenic differentiation and Von Kossa staining for osteogenic differentiation. Immunofluorescent staining 
was also used to characterise a 3D culture model and Oil Red O staining for 2D culture of E13.5 DCs. See Chapter 2 for 
more detailed methods. 
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4.3.2 2D Culture 

Figure 4.3 shows that no Oil Red O staining was observed when E13.5 DCs were cultured in DC 

media for 8 days in 2D. 

 
 

 

 

 

 

4.3.3 Adipogenic Differentiation 
Oil Red O and C/EBPα immunofluorescent staining were used to characterise the adipogenic 

differentiation of the E13.5 DCs after 14 days in culture. Less than 10-15% of the experimental 

E13.5 DCs (in adipogenic media) differentiated to adipocytes, indicated by red staining of lipid 

droplets (indicated by arrow heads; Figure 4.4.a and e), and no significant staining was shown in 

the E13.5 DC control (in DC control media) (Figure 4.4.b and f). 3T3-L1 cells were used as a 

positive control however, less than 30% of the 3T3-L1 cells differentiated when cultured in 

adipogenic media (arrow heads indicate adipocytes; Figure 4.4.c and g). Figure 4.4.q shows the 

3T3-L1 cells in adipogenic media on Day 14 (prior to fixation) and more mature adipocytes were 

visible compared to the Oil Red O and C/EBPα immunofluorescent staining for the same 

conditions (indicated by the arrow head). The control 3T3-L1 cells showed no significant 

differentiation (Figure 4.4.d and h). In addition, no nuclear C/EBPα staining was observed for any 

of the conditions but there was some cytoplasmic staining under all conditions (Figure 4.4.i-p).  

Oil Red O and C/EBPα immunofluorescent staining were also used to characterise the adipogenic 

differentiation of E13.5 DCs but this time, in normoxic (20% oxygen) or hypoxic (5% oxygen) 

conditions and when cultured for 8 days. Oil Red O staining showed that no specific staining was 

observed for the hypoxia E13.5 DCs in adipogenic media (Figure 4.5.a and y) or control (Figure 

4.5.b and z). Less than 1% of the normoxia E13.5 DCs in adipogenic media differentiated to 

adipocytes (Figure 4.4.c and c1) and no significant staining was indicated in the E13.5 DC 

normoxia control (Figure 4.4.d and d1). 3T3-L1 cells were, again, used as a positive control. 

However, less than 1% had large distinct vacuoles stained but small, grainy vacuoles were stained 

throughout (when in adipogenic media) in either hypoxia or normoxia (indicated by arrow heads; 

Figure 4.5.e and a1; and Figure 4.5.g and e1, respectively). The control 3T3-L1 cells showed 

Figure 4.3: 2D culture of E13.5 DCs in DC media. The presence of adipocytes was characterised by Oil Red O Staining 
(a; and macroscopic image: b). Done in collaboration with Adam Gilmore. Repeated once but unsuccessfully due to 
fungal infection. However, consistent with multiple( >6) repeats by Adam Gilmore. 
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staining of small, grainy vacuoles throughout for both hypoxia and normoxia, but hypoxia cultures 

also had less than 1% staining of larger vacuoles (indicated by arrow heads; Figure 4.5.f and b1; 

and Figure 4.5.h and f1, respectively). In addition, no nuclear C/EBPα staining was observed in any 

of the conditions (Figure 4.5.i-x). 

Supplementary Figure S6 shows cell culture images of the progression of adipogenic 

differentiation in E13.5 DCs when in adipogenic media in normoxic conditions. 

 

 

 

 

 

 

 

 

 

Figure 4.4: Adipogenic differentiation of E13.5 DCs and 3T3-L1 (P11) after 14 days in culture (7 days with adipogenic 
media and 7 days with 3T3-L1 control media). The presence of adipocytes was characterised by Oil Red O staining 
(a-d; macroscopic images: e-h) and C/EBPα immunofluorescent staining (i-n). Immunofluorescence controls are also 
shown: E13.5 DC in adipogenic media (k) or in DC control media (l) and 3T3-L1 in adipogenic media (o) or in 3T3-L1 
control media (p). Also shown is a cell culture image of 3T3-L1 cells in adipogenic media on Day 14 prior to fixation 
(q). Arrow heads indicate adipocytes. Repeated once. 
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4.3.5 Osteogenic Differentiation 
Von Kossa staining was used to characterise the osteogenic differentiation of E13.5 DCs and 

rMSCs after 28 and 21 days, respectively. The experimental E13.5 DCs differentiated minimally 

(less than 2%), shown by the brown calcium deposits (indicated by arrow heads; Figure 4.6.a and 

e), and less than 1% staining was observed for the control E13.5 DCs (Figure 4.6.b and f). rMSCs 

were used as a positive control and extensive differentiation (60-70%) was observed when 

cultured in the osteogenic media and only required 21 days to reach this stage (indicated by 

arrow heads; Figure 4.6.c and g). No differentiation was observed for the control rMSCs (Figure 

4.6.d and h). 

Supplementary Figure S7 shows cell culture images of the progression of osteogenic 

differentiation in E13.5 DCs when in osteogenic media. 

 

 

4.4 Discussion 

4.4.1 E13.5 DC Differentiation Potential in 2D and 3D 
In this chapter, the differentiation potential of E13.5 DCs was investigated in 2D and 3D, with and 

without differentiation media. 3D culture work, here and in the Jahoda lab, indicated the ‘default’ 

cell fate of the E13.5 DCs may be adipocytes due to their adipogenic differentiation in the absence 

of the ECM, epidermis and differentiation media. This was characterised by immunofluorescent 

labelling of C/EBPα, FABP4 and Dlk1. In contrast, 2D culture of this dermal population (without 

differentiation media) resulted in a fibroblastic population with no adipocyte differentiation, 

shown by Oil Red O staining. The 2D culture of E13.5 DCs in differentiation media indicated that a 

small subpopulation of E13.5 DCs was capable of adipocyte differentiation (characterised by Oil 

Red O and immunofluorescent labelling of C/EBPα) and an even smaller subpopulation, 

osteogenic differentiation (characterised by Von Kossa staining). This surprising lack of adipogenic 

Figure 4.6: Von Kossa staining to characterise the osteogenic differentiation of E13.5 DCs when cultured in 
osteogenic (a) or DC control media (b) for 28 days, and rMSCs (P4) when cultured in osteogenic (c) or rMSC control 
media (d) for 21 days. Macroscopic images are also shown (e-h). Arrow heads indicate calcium deposits. E13.5 DCs 
were repeated once but unsuccessfully due to fungal infection. rMSCs were repeated twice but one was 
unsuccessful due to fungal infection. 
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differentiation, in both types of 2D culture experiments, was postulated to be related to oxygen 

levels thus, was repeated under hypoxic conditions. However, no difference was observed 

between normoxic and hypoxic conditions.  

Therefore, this data has raised the following questions: is 3D culture more representative of in 

vivo than 2D culture; how do 2D and 3D culture influence differentiation; is this subpopulation 

restricted to only differentiate to cell types of the skin; and how does this embryonic DC 

differentiation potential compare to adult DCs? 

4.4.2 The Role of the Culture Environment 
When approaching the question of what lineages the E13.5 DC population is capable of 

differentiating into, it was strongly anticipated that some adipogenic differentiation was a given. 

This was due to the previous work carried out in the Jahoda lab (Gilmore, unpublished) where 3D 

culture of isolated DCs of the same age has been shown to produce spheroids consisting of almost 

all adipocytes. Figure 4.4 reproduced these findings and confirmed these 3D spheroids were 

mostly undergoing adipogenic differentiation by expressing nuclear C/EBPα (a late marker of 

adipogenesis), FABP4 (a mature adipocyte marker) and Dlk1 (an early marker of adipogenesis) 

(Stephens 2012, Driskell et al. 2013, Moseti, Regassa, and Kim 2016). Hence the idea that the 

‘default’ state of embryonic DCs could be to produce adipocytes as culturing them without the 

influence of the ECM, epidermis and differentiation media resulted in adipocytes. In addition to 

adipocyte markers, Cbx5 expression was studied and nuclear expression in almost all cells was 

observed. Cbx5 is a protein involved in the dynamics of heterochromatin structure thus, indicates 

the changes on a genetic level that are involved in differentiation (Hinde, Cardarelli, and Gratton 

2015).  

In contrast to these 3D findings, culturing the same cells in the same conditions, except they were 

now in 2D, led to no such adipogenic differentiation. In addition, less than 10% of these cells 

produced adipocytes when cultured in adipogenic media in 2D. It is fascinating that the same DCs 

have such varying cell fates when cultured in 2D or 3D, indicating that the environment is 

important for differentiation. One explanation for this is thought to be because gene expression 

profiles of cells dramatically change when cultured in 2D due to a number of reasons. For 

example, adhesions are restricted to one plane as opposed to 3D; this leads to forced apical-basal 

polarity, reduced cell:cell interactions, reduced intercellular signalling and reduced cell:ECM 

interactions; there are a lack of soluble gradients and the stiffness of the cell increases (Baker and 

Chen 2012, Shen et al. 2013). Cells, for example chondrocytes, which have been shown to 

dedifferentiate in 2D culture have had their original differentiated state restored when returned 

to a 3D environment (Benya and Shaffer 1982). This shows how these morphological changes 

have links to differentiation and, thus, gene expression. Shen et al. (2013) have compared 2D 
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culture with the 3D hanging drop culture method using adipose-derived stromal cells to 

investigate osteogenic differentiation. They showed that 3D culture with osteogenic media 

resulted in increased osteogenic differentiation compared to 2D, as well as successful formation 

of bone when transplanted in vivo, unlike the transplantation of monolayer cells (Shen et al. 

2013). It would be interesting to try this comparison of differentiation in 2D and 3D culture with 

E13.5 DCs to see how much the environment plays a role in the restricted phenotype they display. 

In addition to 2D vs 3D arguments, the observations in this study raise some interesting questions 

with regards to the status of DCs before and after they enter culture. It might be expected that 

culture would alter cells from a differentiated state to a less differentiated state. For example, DP 

cells become MSC-like (differentiate to adipogenic, osteogenic and myogenic lineages) and 

express Pax3 (associated with an undifferentiated state in cells of dermomyotome origin) when 

grown in 2D culture (Jahoda et al. 2003, Rufaut et al. 2006). Therefore, it is interesting that mouse 

E13.5 DCs, which aren’t fully committed to a cell type yet and, therefore, might be expected to be 

more ‘plastic’ originally, show less MSC-like activity in culture. However, this increased plasticity 

of DP cells in 2D culture may be due to the SKP niche (multipotent stem cell population derived 

from the skin) that the DP contains, rather than the effect of the culture environment. In addition, 

the DP cells were often clonally expanded prior to 2D culture, unlike the E13.5 DCs in this project, 

so this technique may be the reason for the difference in plasticity (Toma et al. 2001, Jahoda et al. 

2003, Rufaut et al. 2006, Biernaskie et al. 2009, Kellner and Coulombe 2009, Driskell et al. 2013, 

Driskell and Watt 2015). Therefore, to properly rule out this idea, the E13.5 DCs need to be 

clonally expanded prior to differentiation. 

4.4.3 E13.5 DC Differentiation 
When E13.5 DCs were pushed to differentiate to adipogenic and osteogenic lineages in 2D 

culture, a subpopulation of less than 10% seemed to be capable of producing adipocytes and less 

than 2% seemed to be capable of osteogenic differentiation. It could be argued that E13.5 is too 

late in development to find a more homogeneous, stem cell dermal population. However, 

Supplementary Figure S1 indicates that even at E12.5 less than 1% osteogenic differentiation took 

place. E12.5 DCs were not tested for adipogenic differentiation unfortunately, due to technical 

difficulties with the adipogenic media and time restraints.  

With regards to adipogenic differentiation, it was especially odd that there seemed to be a lack of 

C/EBPα nuclear expression despite 10% of cells staining with Oil Red O. C/EBPα is a late marker of 

adipogenesis so perhaps the adipocytes that were present were too mature but this is quite 

unlikely (Stephens 2012). It was particularly strange that the positive control (3T3-L1 cells) did not 

appear to show as extensive differentiation as you would expect. Comparing the Oil Red O and 

C/EBPα immunofluorescent staining to the cell culture image taken prior to fixation indicated a 



53 
 

decrease in the number of adipocytes after staining. This may be because mature adipocytes 

more readily lift and so there is a higher tendency for their loss during the staining process. 

Consequently, oxygen levels were considered as a potential factor. In the 3D spheroid, the oxygen 

levels would be lower for those cells in the centre compared to the levels cells in 2D culture would 

be exposed to. Therefore, we compared 2D differentiation in hypoxic (5% oxygen) and normoxic 

(20% oxygen) conditions. There was no significant difference apparent between these conditions 

so oxygen levels suggest no obvious role in adipogenesis. However, repeats are needed to confirm 

these findings. The literature has shown that hypoxic conditions between 0.1 and 2% prevent 

adipogenesis in 3T3-L1 preadipocytes so perhaps E13.5 DCs act in a similar way hence, lower 

oxygen levels did not enhance adipogenesis. Hypoxia has also been shown to have a role in 

maintaining pluripotency of mouse and human embryonic stem cells as demonstrated by the 

increased expression of OCT4, Sox2 and Nanog (pluripotency-associated genes) and increased 

proliferation rate of human embryonic stem cells cultured in 5% oxygen. In contrast, hypoxia has 

also been known to promote neural differentiation of embryonic stem cells. Therefore, oxygen 

levels should be considered when optimising conditions for differentiation assays (Hawkins, 

Sharp, and McKay 2013). However, in this case, oxygen conditions appear not to be the reason for 

minimal adipogenic differentiation of E13.5 DCs. 

Although testing differentiation of only two different lineages is limiting, this data can provide 

some answers. Firstly, they suggest that the E13.5 DC population is more restricted in its 

differentiation potential rather than being overwhelmingly a plastic, MSC-like population. 

Secondly, they indicate that even at this relatively early stage of skin development there is only a 

very small subpopulation of cells with a more stem-like profile, despite being lower in number 

than one might have predicted. 

As discussed earlier, it is important to remember the limitations 2D culture comes with, and so 

the differentiation experiments beg the question of whether they are representative of in vivo. Is 

the restrictive differentiation of E13.5 DCs simply a product of 2D culture not providing the 

optimal environment or is this restriction present in vivo to ensure the development of the dermis 

occurs correctly? Carrying out the differentiation experiments in 3D would help to answer these 

questions. 

4.4.4 Differentiation of DCs in Adults and to Alternative Lineages 
The presence of a subpopulation containing stem cells is known in the adult dermis as well, for 

example, the DP and DS of adult rat vibrissae have been shown to differentiate to both adipogenic 

and osteogenic cell fates (Jahoda et al. 2003). This is interesting due to the DP, as previously 

mentioned, being immunofluorescently labelled with Nestin (a neuroepithelial stem cell marker 

associated with SKPs) in human adult scalp skin (Sellheyer and Krahl 2010). In addition, Chapter 3 
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indicated the E13.5 dermis was labelled throughout by Nestin. Therefore, the subpopulation of 

embryonic DCs that were able to differentiate in this chapter are possible candidates for the 

precursors of the DP and, thus, SKPs (DP is a source of SKPs) and so would, by this logic, retain this 

differentiation potential and Nestin expression in adulthood (Biernaskie et al. 2009, Kellner and 

Coulombe 2009). One way to determine this would be to isolate DP precursor cells at E13.5 and 

compare their differentiation ability to the rest of the E13.5 DC population. Or alternatively, use 

mouse strains with specific genetic markers of papillary or reticular DC populations in order to 

isolate different parts of the dermis and compare their differentiation potential to narrow down 

the location of this differentiating subpopulation. 

Another example of adult DC differentiation is shown when neonatal mouse DCs were cultured 

with galectin-1 and resulted in 30% of the population expressing desmin (a muscle-specific 

marker) (Goldring, Jones, and Watt 2000, Goldring, Jones, Thiagarajah, et al. 2002). Therefore, 

showing this stem-like population has the capability to differentiate to muscle. In a similar study, 

human foetal DCs showed comparable results of 17.7% of the population expressing desmin when 

cultured with galectin-1 (Goldring, Jones, Sewry, et al. 2002).  

The minimal osteogenic differentiation in embryonic DCs, compared to adipogenic and myogenic, 

warrants the question of whether the resident stem cell subpopulation in the dermis is only 

capable of differentiating to lineages required in the mouse skin (dermal, adipogenic and 

panniculus carnosus). However, the literature suggests that this is not the case. For example, 

Fernandes et al. (2004) showed some E18 and adult skin cells were able to differentiate to 

neurons (a cell type not found in skin) when cultured in differentiation media. This was indicated 

by the expression of βIII-tubulin, and p75NTR (Fernandes et al. 2004). In addition, adult human 

foreskin fibroblasts have been pushed to differentiate to neurons when transduced with miR-124, 

BRN2 and MYT1L. After 3 days, there were signs of neuronal differentiation such as, weak βIII-

tubulin expression and monopolar or bipolar projections from the cell bodies. After another 15 

days, a high number of cells expressed the mature neuronal markers MAP2 (55%) and NeuN (46%) 

and there were more extensions and branching (Ambasudhan et al. 2011). This relatively high 

level of differentiation could perhaps be linked to a unique Nestin expression in the adult dermis 

of foreskin. The glabrous (hairless) nature of foreskin may lead to differential expression of Nestin 

compared to non-glabrous regions (Toma et al. 2005). Therefore, it would be interesting to 

compare the expression profile of Nestin in the foreskin dermis with non-glabrous adult dermis, 

as well as the E13.5 dorsolateral dermis (Chapter 3). 

Additional evidence that DCs aren’t limited to differentiate only to cell types of the skin, comes 

from Chen et al. (2007) who showed that dermal fibroblasts from foreskin were capable of 

adipogenic (20% of population), osteogenic (30%) and chondrogenic (20%) differentiation (the 



55 
 

latter two both being cell types not found in skin) when cultured in differentiation media. Clonal 

analysis of this population revealed that 6.4% of the clones were tripotent, 19.1% bipotent and 

10.6% unipotent. Of the three tripotent clones only one underwent neurogenic and hepatogenic 

differentiation, indicating the presence of a pluripotent subpopulation of dermal fibroblasts (Chen 

et al. 2007). However, clonal expansion involves the isolation of cells. This has been shown to be a 

common culture condition when pushing cells to become more plastic, for example, multipotent 

adult progenitor cells are grown in sparse conditions and are diluted often to reduce cell:cell 

contacts; marrow-isolated adult multilineage inducible cells are grown in isolation; as are SKPs 

(when testing they are multipotent) (Shoshani and Zipori 2015). This indicates a lack of 

neighbouring cells (a stressful environment) induces cells to dedifferentiate. It has been 

postulated that stressful environments influence gene expression via epigenetics thus, leading to 

reprogramming events (Shoshani and Zipori 2011). Therefore, how representative of in vivo are 

these processes of dedifferentiation? Shoshani and Zipori (2015) investigated this question by 

inducing different types of stress in vivo but found that only stress involving cell loss led to 

dedifferentiation of cells. Therefore, perhaps this subpopulation of stem cells, observed in 

embryonic and adult dermis, does represent a resident population in vivo that is only revealed 

under stress conditions requiring replenishment of cells/tissue (for example injury or isolated cell 

culture conditions) via transdifferentiation or dedifferentiation of committed cells (Wagers and 

Weissman 2004, Shoshani and Zipori 2015).  

When one compares the limited differentiation potential observed in the E13.5 DCs to the 

literature discussed here, it seems likely that the early embryonic DCs have a restricted potential 

that is broadened with age in some of the subpopulations that make up the later dermis. The 

literature discussed covers a range of ages, organisms and anatomical skin sites, as well as 

differences in technique (the use of clonal expansion as opposed to direct differentiation). 

Therefore, despite the need for further research, it could be interpreted that developmental 

changes lead to cells displaying more stem-like properties when in 2D culture. Other 

interpretations are that a) some cells in the dermis go from being in a more restricted to a less 

restricted state over time in development, perhaps due to some interactive event (for example 

hair follicle DCs being induced) or b) other cells migrate to the dermis later in development and 

are responsible for this more plastic nature in 2D culture. These concepts will be explored more in 

Chapter 5 in the context of SKPs. 

4.5 Conclusions 
To conclude, this data has suggested that the E13.5 DC population is not full of stem-like, 

primitive cells, as might be hypothesised, but there appears to be a subpopulation capable of 

producing adipocytes and very few osteoblasts. However, more types of differentiation need to 

be explored to fully answer the hypothesis and to determine whether the E13.5 DCs are restricted 
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to differentiate only to the cell types found in the skin. This proposed subpopulation continues to 

be present in the adult dermis and appears to become less restricted and more multipotent in the 

lineages it can produce, according to the literature (Goldring, Jones, and Watt 2000, Goldring, 

Jones, Thiagarajah, et al. 2002, Chen et al. 2007, Ambasudhan et al. 2011). This highlights the fact 

that changes occur during embryogenesis that result in the adult dermis expanding its 

differentiation abilities and results in a larger subpopulation displaying this stem-like property.  

In addition, the 2D differentiation experiments have indicated that the concentration of oxygen 

did not appear to make a significant difference in the extent of adipogenic differentiation and 

there was an increased ability of embryonic DCs to produce adipocytes compared to osteoblasts. 

It could be hypothesised that this is due to the ‘default’ cell type of embryonic DCs, postulated by 

the 3D culture work, being adipocytes. Alternatively, it could be due to a more restrictive stem-

like profile than predicted or 2D culture isn’t reflective of the true properties of these cells. 

Substantial research has been done to isolate these stem-like dermal subpopulations in order to 

fully elucidate their differentiation potential and to investigate how they can be used in clinical 

applications (Kwon et al. 2017). One identified isolated multipotent population, termed SKPs, 

characteristically expresses Nestin, Fibronectin and Vimentin (Fernandes et al. 2004, Toma et al. 

2005). This population will be discussed more in Chapter 5 which will investigate SKP formation in 

the context of the embryonic dermis and its development. 
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5. Investigation of Embryonic Dermal Precursor Cell Properties Via the 

Formation and Characterisation of dSKPs  

5.1 Introduction 
The second approach taken to investigate the question of the plasticity of cells in the E13.5 

dermis was to push these common ‘fibroblast’ precursor cells to an even more primitive state. 

This was achieved by investigating the production of SKPs from the E13.5 DC population.  

SKPs are a multipotent precursor population derived from the skin and capable of differentiating 

into mesodermal and neuronal lineages (Toma et al. 2001, Fernandes et al. 2004). The origin of 

SKPs is a topic of some controversy and still remains unclear. However, similarities have been 

drawn between neural crest stem cells and SKPs. For example, Fernandes et al. (2004) showed 

SKPs had a similar differentiation potential to neural crest stem cells (Fernandes et al. 2004).  

Another point of contention in this field are the questions of whether SKPs are skin-resident 

multipotent stem cells, whether they are a result of transdifferentiation of a particular cell type or 

whether they are a phenomenon seen only in vitro (Hunt, Jahoda, and Chandran 2009)? The DP of 

hair follicles has been hypothesised as a possible niche for SKPs and has provided some evidence 

in support of SKPs representing an endogenous dermal precursor population (Biernaskie et al. 

2009, Kellner and Coulombe 2009). Despite evidence in favour of this, the production of SKPs 

from glabrous regions of skin (for example, foreskin) has proved the DP cannot be the only origin 

(Toma et al. 2005, Ruetze et al. 2013). Consequently, a variety of skin regions, including both 

glabrous and nonglabrous regions, have been used in the literature to produce SKPs, as well as a 

variety of mammalian species, such as mouse, human, pig and rat (Toma et al. 2001, Fernandes et 

al. 2004, Toma et al. 2005, Zhao et al. 2009, Ruetze et al. 2013).  

The literature has mainly focused on using adult skin or older embryonic skin to produce these 

SKPs. Fernandes et al. (2004) found that they could not be produced from embryonic skin younger 

than 14 days (Toma et al. 2001, Fernandes et al. 2004, Toma et al. 2005). This chapter revisited 

the question of whether SKPs could be created from embryonic DCs (between E12.5 and E15.5). 

These SKPs have therefore been termed dSKPs to highlight their dermal origin as opposed to the 

whole skin origin often used in the literature (Fernandes et al. 2004, Toma et al. 2005).  

In this study, characterisation and comparison of different aged dSKPs was achieved via 

immunofluorescent staining of Fibronectin, Vimentin, Nestin (all commonly accepted markers of 

SKPs), Sox2, OCT4 (both stem cell related markers) and Wnt 5a (associated with the DP) 

(Fernandes et al. 2004, Toma et al. 2005, Kellner and Coulombe 2009, Liu et al. 2013, Li et al. 

2016). In addition, RT-PCR was conducted for genes known to be expressed in SKPs (Fernandes et 

al. 2004). However, the most stringent test for SKPs is their ability to differentiate so, in this 
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chapter, the dSKPs between E13.5 and E15.5 were pushed to differentiate to adipocytes and 

osteoblasts using differentiation media (Toma et al. 2001, Fernandes et al. 2004). 

dSKPs that were produced from E13.5 dermis were the material which most of this chapter 

focused on. Again, due to the ease of dermal separation from the epidermis and muscle as well as 

their predicted primitive nature (Driskell and Watt 2015). E15.5 skin had been shown by 

Fernandes et al. (2004) to produce SKPs so was used as a positive control. In addition, E14.5 dSKPs 

were produced in order to investigate the effect of hair follicle initiation (which begins at E14.5) 

on SKPs and to provide an intermediate stage between the positive control and experimental 

dSKPs (Sennett and Rendl 2012, Fu and Hsu 2013). 

Chapter 4 investigated the questions of whether the E13.5 DCs contained any cells with a more 

stem-like profile and showed that small subpopulations were able to differentiate into adipocytes 

and osteoblasts. However, further work is needed to determine if this population is restricted to 

only differentiate to lineages of the skin. This chapter will aim to further investigate the question 

of early embryonic DC plasticity by evaluating if E13.5 DCs are able to produce dSKPs and show 

the same multipotency as SKPs from older skin in the literature. Consequently, this is testing 

whether the hypothesis (that the common ‘fibroblast’ precursor in the early dermis is responsible 

for producing all cell types of the dermis) is true.  
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5.2 Materials and Methods 
Figure 5.1 summarises the methods and approaches for this chapter (See Chapter 2 for detailed 

methods). This group of experiments focused on looking at the plasticity of E13.5 DCs by 

determining their capacity to create dSKPs and involved comparisons with older embryonic dSKPs. 

 

 

 

 

 

 

 

 

 

5.3 Results 

5.3.1 Formation of dSKPs 
When introduced into culture in 1X SKP proliferation media, freshly isolated cells from the dermis 

of all the ages tested (E12.5-E15.5) formed spheres, provisionally termed dSKPs because, at least 

morphologically, they all resembled SKPs. These spheres formed after only 2 days and increased 

progressively in size and number over the course of 8 days (Figure 5.2). A key difference between 

early (E12.5 and E13.5) and late (E14.5 and E15.5) dSKPs was that only a few cells were still 

adhered after 8 days in the early dSKP cultures, whereas a larger number were still adhered in the 

cultures containing later-age dSKPs. 

Figure 5.1: A schematic summary of the approaches used to characterise the expression and differentiation of 
E13.5-E15.5 dSKPs; and the expression profiles of E12.5 dSKPs, E13.5 and E14.5 dermis. See Chapter 2 for more 
detailed methods. 
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One difference between E12.5 and E13.5 DCs (in their ability to make these dSKPs) was that E12.5 

DCs appeared to produce a greater number of dSKPs than E13.5 DCs (data not shown). However, 

further quantification of this is required for conclusive findings. Quantification of E13.5-E15.5 

dSKPs was conducted and indicated there was a small decrease in the efficiency of dSKP 

formation as the DCs increased in age (Figure 5.3). 

Figure 5.2: The formation of E12.5, E13.5, E14.5 and E15.5 dSKPs when cultured in 1X SKP proliferation media for 8 
days. See Supplementary Table S5 for repeats. 
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5.3.2 Characterisation of dSKPs 

5.3.2.1 Immunofluorescent Staining 
dSKPs ranging from E12.5 to E15.5 were cultured and cryosectioned for immunofluorescent 

staining of the characteristic SKP markers: Nestin, Fibronectin and Vimentin (Figure 5.3) 

(Fernandes et al. 2004, Toma et al. 2005). Each age was represented by at least 10 dSKPs and all 

ages expressed Fibronectin and Vimentin consistently throughout the sections (as shown by 

repeats), even when there was variation in the size of dSKPs. Fibronectin was expressed 

extracellularly and Vimentin was expressed in the cytoskeleton. However, Nestin staining was less 

consistent (with no expression present on some occasions) but overall showed cytoskeletal 

staining in all ages of the dSKPs. In addition, there was some tendency for Nestin to be expressed 

in the outer regions of the dSKPs (as opposed to the centre) and this sometimes correlated to the 

dSKPs being larger. Also, E14.5 dSKPs and E15.5 dSKPs appeared to have slightly increased Nestin 

expression compared to E12.5 dSKPs and E13.5 dSKPs. 
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Further immunofluorescent staining was done to investigate the link SKPs have with stem cells 

(OCT4 and Sox2) and the DP (Wnt 5a) (Fernandes et al. 2004, Kellner and Coulombe 2009, Liu et 

al. 2013, Li et al. 2016). OCT4 was not expressed in the nucleus in all ages tested (E14.5 dSKPs 

were not tested), Sox2 was not expressed in the nucleus of E12.5 and E13.5 dSKPs (E14.5 and 

E15.5 dSKPs were not tested) and no specific Wnt 5a staining was shown in E14.5 and E15.5 dSKPs 

(E12.5 and E13.5 dSKPs were not tested) (Figure 5.5). OCT4 and Sox2 antibodies have been shown 

to be expressed in the nucleus of TERA2.cl.sp12 cells and DP cells of Lister Hooded rat follicles, 

respectively (Supplementary Figure S9). 

Facial dermis is known to have a neural crest origin in contrast to dorsolateral dermis (the skin 

region of choice for this project) which has a somite origin (Jinno et al. 2010). Therefore, dSKPs 

were produced from E14.5 whisker pad (a region of the facial skin) DCs, as a comparison of skin 

regions, and they showed similar immunofluorescent staining for Nestin, Vimentin, Fibronectin 

and OCT4 (Supplementary Figure S4).  

Finally, E13.5 dSKPs were further stained for the adipocyte markers Dlk1 and C/EBPα and both 

appear to be present throughout the dSKPs (Stephens 2012, Driskell et al. 2013, Falix et al. 2013). 

C/EBPα was expressed in the nuclei (Figure 5.6; arrow head indicates nuclear staining), while Dlk1 

was expressed in the nuclei, perinuclear regions and sometimes in the cytoplasm. 

5.3.2.2 RT-PCR 
Further characterisation of the E13.5, E14.5 and E15.5 dSKPs was carried out using RT-PCR to 

analyse the expression levels of genes linked with embryonic neural crest determination and 

migration (Slug, Twist, Snail, Sox9, P75, Pax3), dermal development (SHOX2, Dermo1), the DP 

(Nexin, Versican, Wnt 5a), stem cell maintenance (Sox2) and neuroepithelial stem cells and SKPs 

(Nestin) (Fernandes et al. 2004, Toma et al. 2005, Sellheyer and Krahl 2010, Liu et al. 2013). E15.5 

dSKPs were used as a positive control. In addition, E14.5 dSKPs were investigated to look at the 

intermediate changes that may be taking place between E13.5 and E15.5. The whole E13.5 dermis 

and whole E14.5 dermis were also analysed to investigate the changes that may have taken place 

Figure 5.6: Immunofluorescent staining of E13.5 dSKPs for characteristic adipocyte markers: Dlk1 (a); C/EBPα (b); 
and control (c). Arrow heads indicate nuclear staining. Repeated once for Dlk1 but no repeats for C/EBPα. The E13.5 
dSKPs were cultured for 12 days before being frozen down for staining. 
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during dSKP formation (Fernandes et al. 2004). Product size was used to confirm the PCR products 

were specific for the gene in question. 

Firstly, a progressive increase in the number of genes expressed between E13.5 dSKPs and E15.5 

dSKPs was shown by the RT-PCR, as well as a distinct difference between the gene expression of 

E13.5 dSKPs and E15.5 dSKPs (Figure 5.7). E13.5 dSKPs expressed Slug, Twist, Sox9, SHOX2, 

Dermo1, Nexin and Nestin and did not express Snail, P75, Versican, Wnt 5a, Sox2 or Pax3. The 

presence of Sox9 and Dermo1 were confirmed (as shown in Figure 5.7.b). E14.5 dSKPs expressed 

Slug, Twist, Sox9, P75 (faintly), SHOX2, Dermo1, Nexin, Nestin, Sox2 but did not express Snail, 

Versican, Wnt 5a or Pax3. Therefore, the differences between E13.5 dSKPs and E14.5 dSKPs were 

the expression of P75 and Sox2 in E14.5 dSKPs. E15.5 dSKPs expressed all the genes, except Pax3. 

Therefore, the differences between E15.5 dSKPs and E13.5 dSKPs were the expression of the 

neural crest-related markers Snail and P75, the expression of the DP markers Versican and Wnt 5a 

and the expression of the stem cell maintenance marker Sox2 in E15.5 dSKPs (Fernandes et al. 

2004). The differences between E15.5 dSKPs and E14.5 dSKPs were very similar to E13.5 dSKPs, 

except P75 and Sox2 had been switched on in E14.5 dSKPs.  

Secondly, there were changes in gene expression that occurred as a result of dSKP formation 

(Figure 5.7). The whole E13.5 dermis expressed Slug, Twist, Sox9, SHOX2, Dermo1, Nexin and 

Nestin but, like E13.5 dSKPs, did not express Snail, Versican, Wnt 5a or Pax3. However, in contrast 

to E13.5 dSKPs, it expressed P75 (faintly) and Sox2. Therefore, E13.5 dSKP formation resulted in 

genes associated with neural crest stem cells (P75) and stem cell maintenance (Sox2) being 

switched off (Toma et al. 2005, Liu et al. 2013). The whole E14.5 dermis expressed all the genes. 

Like E14.5 dSKPs, it expressed Slug, Twist, Sox9, P75, SHOX2, Dermo1, Nexin, Nestin and Sox2 but, 

in contrast to E14.5 dSKPs, also expressed Snail, Versican, Wnt 5a and Pax3. Therefore, E14.5 dSKP 

formation resulted in genes associated with neural crest determination and migration (Snail, 

Pax3) and the DP (Versican, Wnt 5a) being switched off (Fernandes et al. 2004, Toma et al. 2005). 
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Figure 5.7: RT-PCR data for E13.5 dSKPs, E14.5 dSKPs, E15.5 dSKPs, E13.5 dermis and E14.5 dermis (respective order 
of loading from left to right) comparing the gene expression of characteristic SKP, skin, DP, neural crest and stem 
cell markers (a). Repeat RT-PCR for Sox9 in E13.5 dSKP and E13.5 dermis, and Dermo1 for E13.5 dSKP (respective 
order of loading from left to right) (b). In addition to the repeats shown in (b), all genes were repeated once for 
E13.5 dSKP, E15.5 dSKP and E13.5 dermis but not for E14.5 dSKP and E14.5 dermis. β-actin and GADPH were used as 
positive controls and water as the negative control. The dSKPs were cultured for the following number of days 
before RNA extraction was performed:  E13.5 dSKPs=26 days; E14.5=8 days; E15.5=7 days. 



67 
 

5.3.3 Differentiation of dSKPs 

5.3.3.1 Adipogenic Differentiation 
E13.5, E14.5 and E15.5 dSKPs were cultured for 7 days in adipogenic media and the level of 

adipogenic differentiation was characterised using Oil Red O staining and C/EBPα (late marker of 

adipogenesis) immunofluorescent staining (Stephens 2012). Around 50% of E13.5 dSKPs in 

adipogenic media differentiated to adipocytes, indicated by the red staining of lipid droplets and 

nuclear expression of C/EBPα (Figure 5.8.a, i and y, arrow heads indicate adipocytes/nuclear 

staining). No significant staining was apparent in the E13.5 dSKP control (Figure 5.8.b, j and z). 

Less than 15-20% of E14.5 dSKPs in adipogenic media differentiated to adipocytes. This was again 

indicated by Oil Red O staining and nuclear expression of C/EBPα (Figure 5.8.c, m and a1; arrow 

heads indicate adipocytes/nuclear staining). No significant staining was apparent in the E14.5 

dSKP control (Figure 5.8.d, n and b1). Around 50% of E15.5 dSKPs in adipogenic media 

differentiated to adipocytes, indicated by Oil Red O and nuclear C/EBPα expression (Figure 5.8.e, 

q and c1; arrow heads indicate adipocytes/nuclear staining). Less than 1% staining was apparent 

in the E15.5 dSKP control (Figure 5.8.f, r and d1). 3T3-L1 cells were used as a positive control and, 

surprisingly, appeared to undergo less than 1% differentiation to adipocytes when in adipogenic 

media (only shown by Oil Red O staining as there was no nuclear C/EBPα staining) but repeats are 

needed to confirm this negative result (Figure 5.8.g, u and e1; arrow heads indicate adipocytes). 

No significant differentiation was apparent in the 3T3-L1 control (Figure 5.8.h, v and f1). 

Supplementary Figure S7 shows cell culture images of the progression of adipogenic 

differentiation in E13.5, E14.5 and E15.5 dSKPs when in adipogenic media. 
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5.5.3.2 Osteogenic Differentiation 
E14.5 dSKPs were cultured in osteogenic media for the desired 28 days but E13.5 dSKPs, E15.5 

dSKPs and rMSCs were cultured in osteogenic media for only 20 days due to a fungal infection. 

Von Kossa staining was used to characterise the osteogenic differentiation. Less than 2% of the 

E13.5 dSKPs in osteogenic media appeared to undergo osteogenic differentiation, shown by the 

dark calcium deposits (Figure 5.9.a and I; arrow heads indicate calcium deposits), and no 

significant staining was indicated in the E13.5 dSKP control (Figure 5.9.b and j). Less than 1% of 

the E14.5 dSKPs in osteogenic media appeared to undergo osteogenic differentiation, shown 

again by calcium deposits (Figure 5.9.c and k; arrow heads indicate calcium deposits). No 

significant staining was indicated in the E14.5 dSKP control (Figure 5.9.d and l). Less than 5% of 

E15.5 dSKPs in osteogenic media appeared to undergo osteogenic differentiation (Figure 5.9.e 

and m; arrow heads indicate calcium deposits) and no significant staining was indicated in the 

E15.5 dSKP control (Figure 5.9.f and n). rMSCs were used as a positive control and less than 10% 

staining was apparent when in osteogenic media (Figure 5.9.g and o; arrow heads indicate 

calcium deposits) and no significant staining was indicated in the rMSC control (Figure 5.9.h and 

p). 

Supplementary Figure S8 shows cell culture images of the progression of osteogenic 

differentiation in E13.5, E14.5 and E15.5 dSKPs when in osteogenic media. 
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5.4 Discussion 

5.4.1 Embryonic dSKPs - Characterisation and Comparison 
For this chapter, dSKPs were produced from dorsolateral skin aged E12.5-E15.5. The dSKPs from 

E13.5-E15.5 dermis were chosen as the focus and their expression profile and differentiation 

potential were characterised. Immunofluorescent labelling showed that Fibronectin, Vimentin 

and Nestin (characteristic SKP markers) were expressed in all ages. However, Sox2, OCT4 (stem 

cell markers) and Wnt 5a (DP marker) did not appear to be expressed (at least not in the nucleus 

for Sox2 and OCT4) in the ages tested (Fernandes et al. 2004, Toma et al. 2005, Kellner and 

Coulombe 2009, Liu et al. 2013, Li et al. 2016). By contrast, the RT-PCR revealed a drastic 

difference in gene expression between E13.5 dSKPs and E15.5 dSKPs as well as, E14.5 dSKPs and 

E15.5 dSKPs. This may be indicative of changes in the DC population at these stages of 

development - the reasons for which will be discussed in this chapter. 

The dSKP differentiation assays showed more cells differentiated to adipocytes than osteoblasts. 

In addition, the level of osteogenic differentiation was very minimal, which raises questions about 

the plasticity of these cells and whether they are restricted only to the cell types of the dermis. 

These are the questions this chapter aims to explore. 

5.4.2 E13.5 dSKPs 
Most of the work done on SKPs has focused on the use of adult skin or older embryonic skin as 

the literature has stated that SKPs cannot be made from embryonic dermis younger than 14 days 

(Toma et al. 2001, Fernandes et al. 2004). This finding, as well as the limited evidence of multi-

differentiation potential found in the previous chapter, sparked the investigation of the plasticity 

of pre-E14 DCs and began with an attempt to produce SKPs from E12.5 and E13.5 dermis. The 

results illustrated in Figure 5.2 appeared to contradict the literature. Both E12.5 and E13.5 DCs 

have produced floating spheres after only 2 days in culture and these spheres go on to increase in 

size and number so that, after about a week, the majority of cells are these floating spheres. This 

was a promising finding as not every cell type is able to form spheres in this way. For example, 

E12.5 epidermal cells in 1X SKP proliferation media did not make spheres even after 20 days in 

culture (Supplementary Figure S2). Toma et al. (2001) had a similar finding with epidermal cells 

(Toma et al. 2001). 

The next step in trying to determine whether these dSKPs were truly SKPs was to characterise 

their expression. The literature has named Nestin, Vimentin and Fibronectin as commonly 

accepted markers of SKPs, while Sca-1, Versican and Wnt 5a are less characterised but have also 

been shown to be expressed in SKPs (Fernandes et al. 2004, Toma et al. 2005). Therefore, this 

project investigated the expression of Nestin, Vimentin, Fibronectin and Wnt 5a (discussed later in 

this chapter) at the protein level, due to available antibodies. Unfortunately, we did not have an 
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antibody for Sca-1 and we were not successful in optimising the Versican antibody we had. 

Immunofluorescent staining showed the expression of Nestin, Fibronectin and Vimentin for both 

E12.5 and E13.5 dSKPs and was, thus, reflective of a characteristic SKP profile (Fernandes et al. 

2004, Toma et al. 2005).  

There has been less investigation in the SKP literature of markers usually associated with stem 

cells: for example, Sox2 and OCT4 (both transcription factors involved in the maintenance and 

self-renewal of embryonic stem cells) (Kellner and Coulombe 2009, Liu et al. 2013, Li et al. 2016). 

In this project, we also wanted to look more generally at the potential multipotency of the dSKPs, 

so immunofluorescent staining of Sox2 and OCT4 was investigated. Neither showed nuclear 

staining for E12.5 or E13.5 dSKPs. The lack of Sox2 expression in E13.5 dSKPs was supported by 

the RT-PCR data. This is surprising, as you would expect the expression of some stem cell markers 

in SKPs. In contrast to these findings, Biernaskie et al. (2009) showed Sox2 was expressed in SKPs 

(derived from neonatal mouse back skin) at both the protein and transcript level (Biernaskie et al. 

2009). In addition, Hill et al. (2012) showed the expression of both OCT4 and Sox2 in an RT-PCR of 

adult SKPs derived from P3 and P12 fibroblast monolayers. However, this is a less traditional 

method of producing SKPs and so may not be comparable (Hill et al. 2012).  

The majority of studies would agree that the most important characteristic of a SKP is its ability to 

differentiate to neural and mesodermal lineages as, by definition, SKPs are a multipotent 

precursor population and, consequently, must have the ability to differentiate to several lineages 

(Toma et al. 2001, Fernandes et al. 2004). In order to explore this crucial characteristic, this study 

pushed E13.5 dSKPs to adipogenic and osteogenic lineages via the use of differentiation media.  

The observation that around 50% of E13.5 dSKPs underwent adipogenic differentiation but less 

than 2% underwent osteogenic differentiation (when in differentiation media) was an unexpected 

finding and implied that the E13.5 dSKPs lacked the MSC-like potential of SKPs. This posed the 

question of why this was lacking. In my hands, E12.5 dSKPs also underwent less than 1-2% 

osteogenic differentiation (Supplementary Figure S5) so it is unlikely that this is related to E13.5 

dSKPs deriving from cells that are further committed. This led me to question why, in this case, 

would a population that is less developmentally advanced in its progression of differentiation 

prove to be less able to become more SKP-like than older embryonic and adult cells?  The 

literature has shown that SKPs made from adult skin and older embryonic SKPs (E15-E19) are 

capable of differentiating to both neural and mesodermal lineages, such as neurons, glial cells, 

smooth muscle cells, osteoblasts and adipocytes (the latter two only shown in adult SKPs) (Toma 

et al. 2001, Fernandes et al. 2004, Kang et al. 2011). It would seem counter-intuitive that these 

early embryonic dSKPs do not show the same level of potency. This is suggestive that either DCs 

(or even just a subpopulation of DCs) are altered during development (for example, as a result of 
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further differentiation) so that they are more able to produce SKPs. Alternatively, perhaps SKPs 

produced from older skin are derived from a population that is only present in the dermis later in 

development. These concepts will be discussed in more detail later in this chapter. 

The differentiation assays in this project involved plating the SKPs in 2D. Therefore, changes in 

gene expression during the adherence of SKPs was tested. Supplementary Figure S5 shows 

immunofluorescent staining of E12.5 and E13.5 dSKPs cultured in 1X SKP adherence media after 

48 hours (in 2D). Fibronectin and Vimentin expression still seem to be retained and H3K9me3 (a 

histone modification associated with silenced genes) appeared to display a gradient of expression, 

indicating that cells migrating at the edge of the explant are undergoing more gene expression 

changes than those in the centre (Krishnan, Horowitz, and Trievel 2011). Therefore, 2D culture 

appears to induce some changes in gene expression but the characteristic SKP markers seem to 

be maintained. Consequently, the lack of osteogenic differentiation of E12.5 and E13.5 dSKPs 

does not seem to be the result of the effects of 2D culture. However, changes in the expression of 

other SKP markers should be tested to confirm this. 

In light of E13.5 dSKPs not acting like ‘true’ SKPs, E14.5 dSKPs and E15.5 dSKPs were produced as a 

comparison. Aside from Fernandes et al. (2004) showing SKPs older than E14 produced ‘true’ 

SKPs, these time points were especially of interest due to the significant changes that occur in the 

skin, such as hair follicle formation and the speculated neural crest migration around E14.5 (Mort, 

Hay, and Jackson 2010, Sennett and Rendl 2012). Formation of these late embryonic dSKPs in cell 

culture was very similar to E12.5 and E13.5, with the exception of more adhered cells in E14.5 and 

E15.5 dSKPs. Immunofluorescent characterisation was indicative of the same expression profile of 

Nestin, Fibronectin and Vimentin staining for both E14.5 and E15.5 dSKPs and no nuclear OCT4 

was expressed by E15.5 dSKPs.  

However, when E13.5, E14.5 and E15.5 dSKPs were quantified, a small reduction in dSKP-forming 

ability was directly correlated with the increasing age of the dermis. An interesting finding from 

this data was that regardless of the number of cells originally seeded (ranging between 100,000 

and 500,000) between 3,000 and 4,000 dSKPs appeared to form irrespective of age (data not 

shown). Perhaps this is a flaw of the quantification technique used, which was quite rudimentary 

and requires more repeats (a more accurate technique would be to use fluorescent activated cell 

sorting (FACS)), or it is indicative of dSKPs representing a subpopulation present even at the more 

homogeneous stage of E13.5. This may be true of E14.5 and E15.5 dSKPs, where a greater number 

of cells remained adhered, but very few adhered cells were observed in E13.5 dSKPs after 8 days. 

This would imply the full population of cells became SKPs and yet the dSKP counts did not reflect 

this. One possible explanation is that the aggregation of cells has produced these dSKPs rather 

than single cell proliferation. Kawase et al. (2004) showed this to be a real possibility when 
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chimeric spheres formed from a culture of an equal number of wildtype and GFP ear skin cells 

(Kawase et al. 2004). However, other groups have established the clonality of SKPs either via 

clonal expansion or BrdU (Fernandes et al. 2004, Joannides et al. 2004). Unfortunately, due to 

time constraints, this was not tested in this project. 

Returning to the characterisation of these dSKPS: so far, we have seen very little difference 

between the expression profiles of the early (E12.5, E13.5) and late (E14.5, E15.5) embryonic 

dSKPs. This led to a broader investigation of dSKP gene expression (via RT-PCR) for genes 

associated with embryonic neural crest determination and migration (Slug, Twist, Snail, Sox9, P75, 

Pax3), dermal development (SHOX2, Dermo1), the DP (Nexin, Versican, Wnt 5a), stem cell 

maintenance (Sox2) and neuroepithelial stem cells and SKPs (Nestin) (Fernandes et al. 2004, Toma 

et al. 2005, Sellheyer and Krahl 2010, Liu et al. 2013). There were three key findings from the RT-

PCR.  

Firstly, and perhaps unsurprisingly, changes seemed to take place between the whole E13.5 

dermis to E13.5 dSKP and the whole E14.5 dermis to E14.5 dSKP. However, genes (for example, 

neural crest, stem cell and DP markers) were switched off in this process of whole dermis to dSKP 

formation which may be more surprising (Figure 5.7). This could be a sign of dedifferentiation but 

this contradicts the literature which discusses a neural crest and/or DP origin for SKPs (Fernandes 

et al. 2004, Kellner and Coulombe 2009). Consequently, one would expect these markers to be 

retained. Alternatively, it could mean that dSKPs were derived from a dermal population not 

expressing these distinctive markers but, again, this goes against the literature. This is a limiting 

factor of performing RT-PCR on the full dermis: it is hard to know if the full population shares the 

expression of the gene in question or if it is only a small number of cells. Lineage tracing 

techniques would be more informative regarding the origin of SKPs which will be further 

discussed later in this chapter. 

Secondly, there appeared to be a distinct difference in gene expression between E13.5 and E15.5 

dSKPs: most clearly shown by the absence of Snail, P75, Versican, Wnt 5a and Sox2 in E13.5 

dSKPs. These genes are associated with the neural crest, DP and stem cells (Fernandes et al. 2004, 

Liu et al. 2013). Considering the whole E13.5 dermis does not express most of these genes (due to 

the lack of hair follicles and neural crest migration at this stage), it is not that surprising the E13.5 

dSKPs reflect this. Nonetheless, this lack of expression is significant if it means E13.5 dSKPs are 

unable to differentiate like a ‘true’ SKP. It is particularly significant that the neural crest markers, 

Snail and P75, were not expressed in E13.5 dSKPs but were in E15.5 dSKPs. This implies that the 

neural crest migration (speculated to occur around E14.5) has influenced the dermis at E15.5 

(Mort, Hay, and Jackson 2010). This potentially means E15.5 DCs have a broader differentiation 

capacity, as a result of the external influence of the neural crest migration. Thus, the original 
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hypothesis - that the dermis contains a common precursor responsible for producing all cell types 

of the dermis - may not be entirely true and perhaps should be changed to the following: the 

dermal embryonic common precursor population is more limited in the lineages it can produce 

and requires the influence of other cells not present at this early stage of development. This 

influence from other cells could be the neural crest. In a similar line of thinking, the lack of the DP 

markers in E13.5 dSKPs and dermis (naturally, due to lack of hair follicles at this stage) could mean 

the epidermal involvement in hair follicle formation is the influencing cell population in this new 

hypothesis. These two possibilities will be further explored later in this chapter. 

Finally, there seemed to be a progressive acquisition of this characteristic SKP gene expression 

profile from E13.5 to E15.5 dSKPs (as shown by the intermediate profile of E14.5 dSKPs), implying 

that the emergence of dSKPs with ‘true’ SKP characteristics is a gradual process rather than a 

binary one. One of the reasons E14.5 dSKPs were investigated in addition to E15.5 dSKPs was to 

look at the influence the emergence of hair follicles had on SKP formation (Sennett and Rendl 

2012, Fu and Hsu 2013). Apparently, this significant event in development had minimal impact on 

dSKPs as only P75 expression was switched on at this stage. However, it may have a role in 

priming the changes that result in the distinct expression profile of E15.5 dSKPs. 

Overall, the RT-PCR data confirmed what the differentiation assays had led us to believe: the 

E13.5 dSKPs are not ‘true’ SKPs. However, it has raised some issues with the literature that states 

embryonic skin younger than 14 days cannot produce spheres, when they did so in this project. In 

addition, these findings have raised questions regarding the original hypothesis: the common 

dermal precursor is capable of producing all cell types of the dermis and warrants further 

discussion. 

5.4.3 The New Hypotheses 
In response to E13.5 dSKPs being shown to not be a ‘true’ SKP, the hypothesis (that the dermis 

contains a common precursor responsible for producing all cell types of the adult dermis) has 

come in to question. This leads us to discuss three new hypotheses that may better explain these 

findings. Firstly, that the dermal embryonic common precursor population is more limited in the 

lineages it can produce and requires the influence of other cells not present at this early stage of 

development and this influencing population may be the epidermis (particularly with regards to 

its role in hair follicle formation) (Sennett and Rendl 2012, Fu and Hsu 2013). Secondly, this 

influencing population could also be the neural crest migration which is speculated to occur 

around E14.5 (Mort, Hay, and Jackson 2010). Finally, the third hypothesis relates again to the 

population being more restricted but that this restriction is ‘lifted’ as the cells progress further 

down the path of differentiation. 
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5.4.3.1 The New Hypothesis: Epidermal Influence 
The first morphological sign of pelage hair follicle formation is at E14.5 in mice when epidermal 

placodes become visible in response to a dermal signal (Sennett and Rendl 2012, Fu and Hsu 

2013). Therefore, E14.5 is a significant time point in skin development and hair follicle induction is 

an obvious explanation of why dSKPs differ between E13.5 and E15.5 stages. 

Hair follicle cells (more specifically, the DP cells) have been shown to provide a niche for SKPs. 

SKPs produced from the DP not only express Sox2 (in accordance with the DP and lower DS in 

anagen) but are capable of initiating hair follicle formation, dermal differentiation and migrate to 

the DP and DS area in vivo. They therefore display similar expression profiles and functional 

properties to the Sox2 positive cells of the DP. This is indicative of SKPs being ‘real’ in vivo which is 

a point of much debate (Biernaskie et al. 2009, Hunt, Jahoda, and Chandran 2009, Kellner and 

Coulombe 2009, Ruetze et al. 2013). Biernaskie et al. (2009) discussed the idea that the adult 

dermal precursors that SKPs may derive from (for example, Sox2 expressing cells of the DP) were 

themselves derived from embryonic mesenchymal precursors that acquired the expression of 

Sox2 as a result of interaction with the epidermal precursors. These epidermal precursors may in 

fact be the Nestin expressing cells shown to migrate from the bulge area (an epidermal stem cell 

niche) to the DP (Fernandes et al. 2004, Uchugonova et al. 2011). This concept also fits with the 

finding that the formation of the epidermal placode (observed at E14.5) subsequently leads to the 

formation of the dermal condensate that later forms the DP. Therefore, this reinforces the idea of 

an epidermal influence and crosstalk with the DCs, particularly those that eventually become the 

DP (Sennett and Rendl 2012, Fu and Hsu 2013). In addition, Hunt et al. (2008) showed that the 

vibrissa DP was a site of 1,000-fold enrichment for papillaspheres (which have very similar 

characteristics to SKPs) compared to whole facial skin of rats (Hunt et al. 2008). This indeed 

supports the new hypothesis that the influence of the epidermis is important in dermal 

development and by extension SKP formation (Biernaskie et al. 2009). In keeping with the idea 

that hair follicles provide the niche for ‘true’ SKPs, Figure 5.5 unsurprisingly indicated no nuclear 

Sox2 staining in the early dSKPs and the RT-PCR data supported this. However, the 

immunofluorescent data also indicated that no Wnt 5a (another DP marker) was labelled in the 

later dSKPs. This may be due to the antibody used, especially as the RT-PCR data showed Wnt 5a 

was expressed in E15.5 dSKPs but was not expressed in the earlier dSKPs. Similar findings were 

also shown for Versican (another DP marker) in the RT-PCR (Fernandes et al. 2004).  

Unfortunately, there is one great flaw in this hypothesis: glabrous (hairless) skin is capable of 

producing SKPs (Toma et al. 2005, Ruetze et al. 2013). This does not mean the epidermis and 

dermis do not influence each other but it cannot have as significant a role on the common dermal 

precursor as previously thought. Ruetze et al. (2013) compared the quantities of SKPs produced 

from anatomical locations with differing hair follicle densities-scalp, breast, abdomen and foreskin 
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(glabrous). They found no link between the numbers of SKPs and density and also found Sox2 

negative cells were capable of producing spheres. Therefore, alternative sources of SKPs to the DP 

must exist (Ruetze et al. 2013). This brings in the idea that SKP populations are heterogeneous as 

multiple sources within the dermis will most likely result in SKPs with varying characteristics. 

Agabalyan et al. (2017) have discussed this heterogeneity in the context of Sox2 positive cells 

from the hair follicle displaying unique qualities of induction not shared by dermal progenitor cells 

outside of the hair follicle (Agabalyan et al. 2017). 

This calls into question the location of this other SKP niche. Perivascular cells have been their 

speculated location due to the papillary dermis showing a 5-fold increase in its ability to produce 

SKPs than the reticular dermis, the fact that the papillary dermis is more vascularised than the 

reticular dermis and because the SKPs expressed CD146 (a vascular endothelium marker) (Li et al. 

2003, Ruetze et al. 2013). However, further work is needed to confirm this.  

Overall, despite the evidence supporting epidermal influence on the dermis leading to ‘true’ SKPs, 

it cannot be the reason, or at least not the sole reason, for the differences seen in DCs and dSKPs 

at different embryonic stages. Experiments using glabrous skin have negated the epidermal 

influence hypothesis and, with this, we turn to the neural crest migration. 

5.4.3.2 The New Hypothesis: Neural Crest Influence 
The neural crest (a transient, stem-like population) is speculated to migrate to the dorsolateral 

skin at around E14.5 and so, yet again, E14.5 shows itself to be a crucial time point in embryonic 

skin development (Mort, Hay, and Jackson 2010). Previously, migrating neural crest cells were 

thought to terminally differentiate once they had reached their peripheral destination. However, 

it has been postulated that some of these multipotent neural crest precursor cells are maintained 

(possibly as SKPs) in some tissues into adulthood: for example, in the bulge area of the whisker 

follicle (Sieber-Blum et al. 2004, Fernandes, Toma, and Miller 2008, Liu and Cheung 2016). In 

addition to this, the similarities of the SKP gene expression profile to embryonic neural crest cells 

and the gradual acquisition of neural crest markers with increasing age of embryonic dSKPs (P75 

switched on in E14.5 dSKPs, and Snail in E15.5 dSKPs) were the reasons behind this new 

hypothesis (Hagner and Biernaskie 2013).  

As previously mentioned, Fernandes et al. (2004) were not able to produce SKPs with embryonic 

skin younger than E14 and found an increase in the ability to produce SKPs between E15 and E19 

(Fernandes et al. 2004). This goes against the trend observed in Figure 5.3 of a small decline in 

SKP yield correlating with increased age but this was only looking between E13.5 and E15.5 dSKPs. 

This increase in SKP yield with age (from E15) has been linked to SKPs having a neural crest origin 

on the basis that they have similar characteristics to neural crest stem cells: for example, the 

ability to migrate along the neural crest migratory pathways when transplanted in ovo (Fernandes 
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et al. 2004, Toma et al. 2005). Therefore, it has been hypothesised that SKPs will only form after 

neural crest migration has taken place. 

5.4.3.2.1 Exploring the Origin of SKPs 
The high levels of similarities between SKPs and neural crest stem cells has led to the investigation 

of whether SKPs are neural crest-derived (Toma et al. 2005).  

Fernandes et al. 2004, have used Wnt1-Cre/R26R neural crest reporter mice (cells expressing Wnt 

1 will express β-galactosidase, allowing visualisation) to track the location of neural crest-derived 

cells in the skin. All SKPs produced from neonatal whisker pads of these reporter mice showed β-

galactosidase expression. This, therefore, indicated neural crest-derived cells were present. This is 

not surprising considering facial skin is well-known to be neural crest-derived, confirmed by 

Fernandes et al. (2004); in which vibrissae DP expressed β-galactosidase in E18.5 facial skin 

(Fernandes et al. 2004). This project used dorsolateral skin, the mesenchyme of which is not 

neural crest-derived like the facial skin (Wong et al. 2006, Jinno et al. 2010). Therefore, this 

finding does not tell us much about the origin of the SKPs used in this project. However, Wong et 

al. (2006) investigated adult dorsal skin also using Wnt1-Cre/R26R mice to track neural crest-

derived cells. They showed that β-galactosidase was expressed in the bulge area, the pigmented 

melanocytes and the nerves of adult back skin but not in the DP, DS or outer and inner root 

sheaths. In addition, all the SKPs produced from the back skin of these adult mice expressed β-

galactosidase and this expression was maintained even after passaging (Wong et al. 2006). The 

data discussed here supports the hypothesis that SKPs are neural crest-derived and the DP is one 

niche for them. However, one drawback of this technique is that the expression of neural crest 

markers (for example, Wnt 1) may be acquired as a result of the changes to cell properties and 

gene expression that can occur in culture (Shoshani and Zipori 2015). Therefore, expression of 

neural crest markers may not necessarily mean these SKPs are neural crest-derived. This is a 

strong possibility as dorsal trunk skin has been shown to be somite-derived using a Myf5-Cre line 

and, when SKPs produced from the same region of skin were tested, they also showed a somite 

origin (Jinno et al. 2010). Perhaps, this reflects SKPs produced from an additional dermal source 

that is not neural crest-derived.  

Despite the differences in origin, Liu and Cheung (2016) showed that facial and trunk SKPs have 

similar transcriptomes, differentiation capabilities and functions (Liu and Cheung 2016). This 

would imply the neural crest migration has minimal impact on SKP formation, which questions the 

seeming importance of neural crest markers’ expression. Jinno et al. (2010) postulated that neural 

crest-like cells may arise from alternative origins to the neural crest. Many cells and tissues (for 

example, the dermis) are derived from both neural crest and mesodermal origins, depending on 

their anatomical location (Fernandes, Toma, and Miller 2008, Jinno et al. 2010). This could be one 
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solution to the conundrum of SKP origin. Alternatively, these dorsal SKPs may be derived from 

neural crest stem cells that do not express Wnt 1 (Fernandes, Toma, and Miller 2008). 

Even though the origin of SKPs is yet to be fully ascertained, the concept of the neural crest 

migration raises an important point that the cell populations in the skin are not static during 

development and this is something to consider when researching this area. 

Overall, SKPs from the dorsal skin appear to have neural crest and somite origins. It is unknown 

whether this represents two separate SKP niches in the dermis of differing origins, whether this is 

a result of changes in cell properties and gene expression (due to the culture environment) or 

because of converging developmental pathways (Shoshani and Zipori 2015). All that can be drawn 

from this project’s findings is that the lack of neural crest and DP markers in SKPs is significant for 

its ability to function. However, more work is needed to elucidate the possible role of the neural 

crest migration. 

5.4.3.3 The New Hypothesis: Differentiation of Early Embryonic DCs Eliminates the 

Restricted dSKP Phenotype 
The advancement in differentiation of the DCs between E13.5 and E15.5 is obviously another key 

reason for differences between these cells. It could, therefore, be postulated that this is simply 

the reason for the differences in the dSKPs they produce. However, this way of thinking would 

imply that cells further down a pathway of differentiation are able to produce ‘true’ dSKPs, in 

contrast to more primitive, less differentiated cells, which are not. This defies the longstanding 

idea of younger cells being more plastic and stem-like than older cells. However, this suggests 

embryonic cells may be subjected to a greater level of regulation early on in development, such as 

the regulation of transcription factors (Frum and Ralston 2015). The correct development is 

crucial to life and survival so it would not be surprising if more regulatory mechanisms were in 

place during these critical stages of cell fate decisions.  

This still leaves the question of how SKPs express neural crest markers if the neural crest 

migration is not involved in SKP formation. The expression of these genes could be a result of the 

changes in cell properties and gene expression that can occur during cell culture. According to this 

theory, older embryonic cells have less regulatory mechanisms in place to prevent these changes 

and are thus able to express markers not observed in early embryonic dSKPs (Shoshani and Zipori 

2015). 

Another question this hypothesis raises is why these regulatory mechanisms would be lifted later 

on in development. Surely unwanted differentiation is something the body still wants to prevent, 

even in adults. One explanation for this is the need for the body to regenerate and replenish cells 

that are lost through injury or cell turnover (Dahl 2012). Thus, there is a need for resident somatic 

stem cell populations or a need for transdifferentiation or dedifferentiation of committed cells to 
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provide the correct cell types to replenish the lost cells (Fernandes et al. 2004). Hence, why 

regulatory mechanisms may be lifted in later development. 

5.4.4 What are E13.5 dSKPs? 
Now that it has been established that E13.5 dSKPs are not ‘true’ SKPs, we needed to address what 

they actually are. The differentiation assays showed an increased disposition towards the 

adipogenic cell fate compared to osteogenic. Therefore, E13.5 dSKPs were stained for the 

adipogenic markers Dlk1 and C/EBPα as a comparison to the E13.5 DC spheroid 3D culture model 

discussed in Chapter 4 (Figure 4.2) (Stephens 2012, Driskell et al. 2013). E13.5 dSKPs appeared to 

express Dlk1 and nuclear C/EBPα throughout (like the E13.5 DC spheroids), which strongly implies 

the presence of preadipocytes. This further confirmed the findings that E13.5 dSKPs are not ‘true’ 

SKPs, as a multipotent stem cell population should not be expressing preadipocyte markers 

without differentiation media. In addition, it implies a predisposition of these DCs to an 

adipogenic cell fate, perhaps as the ‘default’ cell type. However, this does not agree with the 

findings of Chapter 4, where freshly collected E13.5 DCs did not show extensive differentiation 

when cultured in adipogenic media. Therefore, even though E13.5 dSKPs are not ‘true’ SKPs, the 

production of dSKPs in culture appears to have led to changes in the properties of the DCs (as 

displayed by their different differentiation potentials). 

Interestingly, this favouring of adipogenic over osteogenic differentiation in the E13.5 dSKPs was 

also shown by the E13.5 DC population (Chapter 4). Therefore, one could make a connection 

between this subpopulation of E13.5 DCs (that were capable of differentiation) and the E13.5 

dSKPs. Perhaps this subpopulation of E13.5 DCs were the cells the E13.5 dSKPs derived from in 

culture. 

5.4.5 Differentiation of ‘true’ SKPs? 
The RT-PCR data strongly implied that the E15.5 dSKPs were ‘true’ SKPs due to their distinct gene 

expression profile which corresponded with the literature (Fernandes et al. 2004). On the other 

hand, E14.5 dSKPs had a less SKP-like profile. Based on this, they are, therefore, unlikely to be 

‘true’ SKPs (Figure 5.7).  In order to confirm this hypothesis, these older embryonic dSKPs were 

pushed to differentiate to adipogenic and osteogenic lineages. Unfortunately, though, the data 

does not show what one would have expected.  

The E14.5 dSKPs appeared to undergo less than 15-20% differentiation to adipocytes and less 

than 1% to osteoblasts. This low level of differentiation is not too surprising since there was very 

little difference in the gene expression with E13.5 dSKPs. However, the reduction in adipogenic 

differentiation compared to the E13.5 dSKPs is odd (50% adipogenic differentiation in E13.5 

dSKPs). This may be simply due to experimental error (these differentiation assays were not 

repeated as many times as we would have liked due to time constraints) or perhaps this is a 
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significant finding of the changes that occur at E14.5, such as the emergence of hair follicles and 

concomitant arrival of Wnt/β-catenin signalling as a key communicator between the epidermis 

and dermis (as discussed previously in this chapter and Chapter 3) (Sennett and Rendl 2012, Fu 

and Hsu 2013). Wnt/β-catenin signalling has an interesting role in relation to adipocyte 

development. It has been shown to have a role in promoting and repressing adipogenesis, 

depending on the location of its source and its family member (Donati et al. 2014, Mastrogiannaki 

et al. 2016). It could therefore be postulated that a possible reason for this decline in adipogenic 

differentiation is the arrival of Wnt/β-catenin signalling between the epidermis and dermis. In 

order to investigate this further, the levels of LEF-1 (transcription factor downstream of Wnt/β-

catenin signalling) in the different aged dSKPs could be monitored, for example, using qRT-PCR 

(Driskell and Watt 2015). 

For E15.5 dSKPs, around 50% of cells appeared to differentiate to adipocytes and 5% to 

osteoblasts. This is comparable to E13.5 dSKPs, although there is a minimal increase in osteogenic 

differentiation. However, it is still not what you would expect from a ‘true’ SKP. A ‘true’ SKP 

should consist of a stem cell population capable of differentiating to mesodermal and neuronal 

lineages (Toma et al. 2001, Fernandes et al. 2004). Consequently, all cells should differentiate 

when exposed to environmental cues and, thus, despite the gene expression profile being so 

convincingly a SKP, it cannot be said with certainty that these E15.5 dSKPs are ‘true’ SKPs. Their 

behaviour (shown in this project) is different to that described in the literature and there are a 

number of possible explanations for this (Toma et al. 2001, Fernandes et al. 2004). 

Firstly, the differentiation media used in this project may not be optimal. There were a number of 

issues getting the positive control cells to differentiate to adipocytes and this unpredictability 

continued, even when a more successful media and alternative positive control cell line were 

used. Similarly, the osteogenic media used did not consistently push rMSCs (positive control cell 

line) to differentiate, despite having done so originally.  

Secondly, the osteogenic assays were subject to fungal infections which cut the culture time short 

for E13.5 dSKPs, E15.5 dSKPs and rMSCs. Perhaps another week would have shown a significant 

increase in osteogenesis but it would unlikely be enough to warrant ‘true’ SKP status. In addition, 

the presence of fungus in wells neighbouring those that were stained may have impacted the 

cells’ ability to differentiate. Obviously, repeats of all the differentiation assays are essential to 

properly draw conclusions but time constraints did not allow this. 

Thirdly, passaged SKPs are commonly used in the literature for differentiation assays (Fernandes 

et al. 2004, Toma et al. 2005). This project successfully passaged E12.5 dSKPs twice 

(Supplementary Figure S3) but passaging slowed down the process of SKP formation and more 

cells were adhered to the flask than at P0. This may lead to a refinement of the population, 
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resulting in a population consisting only of cells capable of differentiation. Toma et al. (2005) 

compared P16 SKPs (maintained in culture for 1 year) with lower passage SKPs and showed they 

expressed the same markers (Nestin, Fibronectin and Vimentin) and were capable of 

differentiating to neurons, glial cells, smooth muscle cells. In addition, P0 SKPs were pushed to 

differentiate and showed very similar results to passaged SKPs (Toma et al. 2005). In contrast, 

Wang et al. (2014) showed SKPs lost their sphere-forming abilities after 3 or 4 passages (Wang et 

al. 2014). Thus, it would be interesting to compare passaged and P0 embryonic dSKPs in 

differentiation assays to elucidate if there is a difference between the differentiation abilities of 

these particular embryonic dSKPs.  

Another difference is the location of the skin used. This project has used dorsolateral skin, 

whereas Fernandes et al. (2004) used facial and dorsal skin, Toma et al. (2005) used foreskin and 

Toma et al. (2001) used abdomen and back skin. Therefore, comparisons drawn from the 

literature need to take this into account but it should not be the reason for this lack of 

differentiation. 

Finally, clonal expansion was often used to culture SKPs in addition to the ordinary culture 

technique and these clonally expanded SKPs were then used in differentiation assays. For 

example, when Toma et al. (2005) differentiated ordinary SKPs between P3 and P9 to neuronal 

lineages, only 9.4% ± 0.2% of the cells differentiated. Whereas, when clonally expanded SKPs 

were pushed to differentiate, all the clones were able to do so (Toma et al. 2005). Fernandes et al. 

(2004), among others, showed similar findings of only subpopulations of ordinary SKPs 

differentiating to neuronal lineages compared to clonally expanded SKPs, where all clones 

differentiated to neuronal and mesodermal lineages (Fernandes et al. 2004). As discussed in 

Chapter 4, clonal expansion creates a stressful environment, inducing changes in cell properties, 

gene expression and refinement of the SKP population (Shoshani and Zipori 2015). This may result 

in an increased ability to differentiate. Toma et al. (2005) demonstrated this as, when SKPs 

(between P3 and P9) were dissociated and clonally expanded, only 40% of these isolated SKP cells 

proliferated (Toma et al. 2005). This highlights a major refinement of an already selectively 

cultured population when clonal expansion is used.  

Nonetheless, the literature is unclear as to the percentage of cells within these clonally expanded 

SKPs that are able to differentiate. It only references ‘subpopulations’, which may mean a 

majority or minority of cells, with no lower magnification images included for clarification (Toma 

et al. 2001, Fernandes et al. 2004, Toma et al. 2005). Therefore, while this project has deemed 

E13.5 dSKPs, E14.5 dSKPs and E15.5 dSKPs as falling short of a ‘true’ SKP’s definition, it may not 

have held them to the same standard as the literature. 
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5.5 Conclusions  
To conclude, this chapter has shown that E13.5 dSKPs have a distinct gene expression profile that 

differs to the characteristic SKP profile shown in E15.5 dSKPs and in the literature (Fernandes et 

al. 2004). This difference in gene expression, lack of differentiation to adipogenic and osteogenic 

lineages and expression of adipogenic markers has led to the conclusion that E13.5 dSKPs are not 

‘true’ SKPs. These findings indicate that this population is more restricted in the lineages it can 

differentiate to (than was previously thought) and that it may rely on the influence of external 

populations not yet present at E13.5. The epidermis (in relation to hair follicle formation) and 

neural crest migration were both discussed as possible candidates for this influential population 

but the epidermis was ruled out by experiments using glabrous skin. The neural crest, however, is 

still a possibility that requires further investigation. In addition, the changes differentiation leads 

to in the embryonic DCs was discussed as a possible explanation for the restricted differentiation 

profile. However, the fact that this E13.5 DC population was unable to produce a ‘true’ SKP in 

vitro may not necessarily mean this population has the same level of lineage restriction in vivo. 

This is the flaw of using in vitro conditions, particularly in 2D. 

Finally, E14.5 and E15.5 dSKPs were shown not to be ‘true’ SKPs due to their lack of MSC-like 

potential. However, this raised questions over the extent of differentiation required to class as a 

‘true’ SKP.  
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6. Final Discussion, Conclusions and Future Directions 
The first project aim was to elucidate the different Wnt family members expressed in E13.5 skin 

and their localisation. The findings of this project and expression analysis data from our laboratory 

suggest that skin development involves different Wnt family members, each with different roles. 

This is highlighted by their different spatial and temporal expression. The literature has shown 

Wnts are secreted but has not yet elucidated the diffusion range and mechanism for individual 

Wnt family members (Mikels and Nusse 2006, Port and Basler 2010, Solis, Lüchtenborg, and 

Katanaev 2013). Consequently, research on the diffusion range of individual Wnt family members 

and the mechanisms that influence this range would aid the understanding and manipulation of 

this pathway and, by extension, its role in dermal development. In addition, looking more 

specifically at the distinct papillary and reticular dermal Wnt expression profiles in embryonic 

dermis, using flow cytometry, would complement and further the work done in adult skin by 

Mastrogiannaki et al. (2016). The findings of this project did show some of the Wnt family 

members tested were expressed in the epidermis (Wnt 2 and Wnt 11), in agreement with the 

microarray data, but none showed dermal expression and especially no differential expression in 

the papillary and reticular dermis. More work needs to be done in this area, so future 

investigation should explore all the Wnt family members and look at their expression over a range 

of time points (particularly those around E13.5 due to their role in hair follicle formation at these 

stages) (Fu and Hsu 2013). To further explore the roles of Wnt family members, the use of 

knockout and overexpression mouse strains for different Wnt family members would be a helpful 

tool in deciphering the function of the individual family members, particularly during 

development. For example, a Wnt 5a-/- mouse strain was used to elucidate Wnt 5a’s essential role 

in anorectal development and a mouse strain that overexpressed Wnt 5a in the epidermis only 

(using a K14 promoter) was used to investigate Wnt 5a’s role in psoriasis (Tai et al. 2009, Zhu et al. 

2014). A similar approach can be used in the context of skin development. In addition, it would be 

worth exploring whether, at the other time points not studied here, Nestin (which was later 

shown to be expressed in the dSKPs) shows the same expression profile in embryonic dorsolateral 

skin as in the embryonic scalp (Sellheyer and Krahl 2010).   

The second aim of this project was to investigate the plasticity of the embryonic dermis at E13.5. 

This was approached by looking at their differentiation potential when cultured immediately after 

dissection and when pushed to become a SKP. The E13.5 DC differentiation experiments indicated 

that this population is less plastic than might have been anticipated but there is a small 

subpopulation that is more MSC-like and capable of adipogenic and/or osteogenic differentiation. 

When in ordinary media, the 3D and 2D culture showed contrasting results, which calls into 

question which type of cell culture, 2D or 3D, is more representative of in vivo. In future, it would 

be interesting to compare the 2D differentiation experiments shown here (freshly dissected DCs 
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and dSKPs) with 3D versions in order to elucidate how much of an influence the culture 

environment has on the stem cell properties of the embryonic DCs. In addition, investigating 

different embryonic time points and different lineages, such as chondrogenic, myogenic and 

neuronal, would help to further the understanding of the plasticity of embryonic DCs. To further 

analyse the E13.5 DC population, a TCF/LEF-1 reporter mouse strain could be used in conjunction 

with flow cytometry to isolate the papillary and reticular DC populations and, thus, allow the 

comparison of the differentiation potential and SKP forming ability of these separate populations. 

Disappointingly, the dSKPs produced in this project did not match up with the definition of a ‘true’ 

SKP due to their lack of differentiation to multiple lineages. Passaging and clonal expansion of 

SKPs prior to differentiation were popular methods in the literature and have been postulated as 

reasons for the discrepancy with this project’s findings. It could, therefore, be interesting to try 

these techniques on the embryonic dSKPs. However, to be confident in these differentiation assay 

conclusions, they need optimising, repeating and expanding to alternative lineages. Optimisation 

could involve 3D culture, as mentioned above, which may prove to be a more representative 

technique. Moreover, in the literature, adult SKPs have been tested for their functionality in vivo 

so this could be a more representative approach to investigate the capabilities of these embryonic 

dSKPs than 2D differentiation (Fernandes, Toma, and Miller 2008). 

The findings of this project question the hypothesis (that the dermis contains a common 

precursor responsible for producing all cell types of the adult dermis), contradict the idea that the 

embryonic dermis contains a large MSC-like progenitor population and, thus, queries the 

capabilities of this common dermal precursor. This led to the postulation that the epidermis 

and/or neural crest influence the DCs, enabling a wider differentiation potential. The neural 

crest’s role in the embryonic dermis, particularly in the dorsolateral dermis, warrants further 

investigation. This could be achieved by performing similar lineage tracing experiments with 

Wnt1-Cre/R26R mouse strains but looking at embryonic time points (E12.5-E15.5) rather than 

adult (Fernandes et al. 2004, Wong et al. 2006). Additionally, Nestin (a marker associated with 

SKPs) has been shown to be expressed in the DP (among other locations) and the DP has been 

postulated as one source of SKPs (Toma et al. 2001, Sellheyer and Krahl 2010). On this basis, it 

would be interesting to see if those cells expressing Nestin in the E13.5 dermis are those going on 

to produce dSKPs. This could be investigated using lineage tracing, as previously discussed.  
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7. Supplementary Information 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Von Kossa staining to characterise the osteogenic differentiation of E12.5 DCs 
when cultured in osteogenic media (a) and DC control media (b) for 28 days. 
Macroscopic images of the staining are also shown (c and d). Arrow heads indicate 
calcium deposits. No repeats. 

Figure S2:  E12.5 epidermal cells cultured in 1X SKP proliferation media. No repeats. 

Figure S3: E12.5 dSKPs in culture after one and two passages (in 1X SKP proliferation media). No repeats. 
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Figure S7: Cell culture images of the process of adipogenic differentiation of E13.5 DCs, E13.5, E14.5 and E15.5 
dSKPs when cultured in adipogenic media. Arrow heads indicate adipocytes. E13.5 DC and E13.5 dSKP repeated 
once; E14.5 and E15.5 dSKP no repeats. The dSKPs were cultured for the following number of days before being 
plated in 2D: E13.5=8 days, E14.5=7 days, E15.5=7 days. 

Figure S6: Von Kossa staining to characterise the osteogenic differentiation of E12.5 dSKPs when cultured in 
osteogenic media (a) and DC control media (b) for 28 days. Arrow heads indicate calcium deposits. No repeats. 
E12.5 dSKPs were cultured for 9 days prior to culture in osteogenic media. 
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Figure S9: (a) OCT4 antibody staining of TERA.cl.sp12 cells courtesy of Hannah Broderick; 
(b) Sox2 antibody staining of a Lister Hooded rat hair follicle courtesy of Dr Elisa Carrasco. 
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