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Bounding the size of an almost-equidistant set in
Euclidean space

Andrey Kupavskii∗ Nabil H. Mustafa† ‡ Konrad J. Swanepoel§

Abstract

A set of points in d-dimensional Euclidean space is almost equidistant if among
any three points of the set, some two are at distance 1. We show that an almost-
equidistant set in Rd has cardinality O(d4/3).

1 Introduction

A set of lines through the origin of Euclidean d-space Rd is almost orthogonal if among
any three of the lines, some two are orthogonal. Erdős asked (see [12]) what is the largest
cardinality of an almost-orthogonal set of lines in Rd? By taking the union of two sets of
d pairwise orthogonal lines, we see that 2d is possible. Rosenfeld [12] showed that 2d is
the maximum by considering the eigenvalues of the Gramian of the unit vectors spanning
the lines. His result was subsequently given simpler proofs by Pudlák [11] and Deaett [6].

In this note we consider the analogous notion obtained by replacing orthogonal pairs
of lines by pairs of points at unit distance. A subset V of Euclidean d-space Rd is almost
equidistant if among any three points in V , some two are at Euclidean distance 1. We
investigate the largest size, which we denote by f(d), of an almost-equidistant set in Rd.
Although asking for the size of this function is a very natural question, it seems to be
harder than the question of Erdős, which can be refomulated as asking for the largest
size of an almost-equidistant set on a sphere of radius 1/

√
2 in Rd. Before stating our

main result, we give an overview of what is known about f(d).
Bezdek, Naszódi and Visy [5] showed that f(2) ≤ 7, and István Talata (personal

communication, 2007) showed that the only almost-equidistant set in R2 with 7 points is
the Moser spindle. Györey [7] showed that f(3) ≤ 10 and that there is a unique almost-
equidistant set of 10 points in R3, a configuration originally considered by Nechushtan [9].
The Moser spindle can be generalized to higher dimensions, giving an almost-equidistant
set of 2d+ 3 points in Rd [4]. (We mention that Bezdek and Langi [4] considered the
variant of Erdős’s problem where the radius of the sphere is arbitrary instead of 1/

√
2.) A
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construction of Larman and Rogers [8] shows that f(5) ≥ 16. Since there does not exist a
set of d+2 points in Rd that are pairwise at distance 1, it follows that f(d) ≤ R(d+2, 3)−1,
where the Ramsey number R(a, b) is the smallest n such that whenever each edge of the
complete graph on n vertices is coloured blue or red, there is either a blue clique of size a
or a red clique of size b. Ajtai, Komlós, and Szemerédi [1] showed R(k, 3) = O(k2/ log k),
which implies the asymptotic upper bound f(d) ≤ O(d2/ log d). Balko, Pór, Scheuer,
Swanepoel, and Valtr [3] generalized the Nechushtan configuration to higher dimensions,
giving f(d) ≥ 2d + 4 for all d ≥ 3. They also obtained the asymptotic upper bound
f(d) = O(d3/2) by an argument based on Deaett’s paper [6]. Using computer search and
ad hoc geometric arguments, they obtained the following bounds for small d: f(4) ≤ 13,
f(5) ≤ 20, 18 ≤ f(6) ≤ 26, 20 ≤ f(7) ≤ 34, and f(9) ≥ f(8) ≥ 24. Polyanskii [10]
subsequently improved the asymptotic upper bound to f(d) = O(d13/9).

In this note we obtain a further improvement to the upper bound.

Theorem 1. An almost-equidistant set in Rd has cardinality O(d4/3).

Its proof is based on the approach of [3] to show the upper bound O(d3/2), which is
in turn based on Deaett’s proof [6] of Rosenfeld’s result. Before proving Theorem 1 in
Section 3, we establish notation and collect some lemmas in the next section.

2 Preliminaries

We denote the Euclidean norm of x ∈ Rd by ‖x‖ and the inner product of x, y ∈ Rd by
〈x, y〉. The cardinality of a finite set A is denoted by |A|. We call a finite non-empty
subset C of Rd (the vertex set of) a unit simplex if the distance between any two points
in C equals 1. It has already been mentioned in the Introduction that if C is a unit
simplex then |C| ≤ d+ 1. Given any finite V ⊂ Rd, we define the unit-distance graph
G = (V,E) on V to be the graph with vw ∈ E iff ‖v − w‖ = 1. Thus, C ⊂ V is a unit
simplex iff it is a clique in G. We denote the set of neighbours of v ∈ V in G by N(v).

The following well-known lemma gives a lower bound for the rank of a square matrix
in terms of its entries [2, 6, 11].

Lemma 1. For any non-zero n× n symmetric matrix A = [ai,j ],

rank(A) ≥
(
∑

i ai,i)
2∑

i,j a
2
i,j

.

For the sake of completeness, we include the proofs of the following three lemmas on
the vertices and centroids of unit simplices.

Lemma 2. Let C be a unit simplex with centroid c = 1
|C|
∑

v∈C v. Then

‖v − c‖2 = 1

2

(
1− 1

|C|

)
for all v ∈ C,

and 〈
v − c, v′ − c

〉
= − 1

2 |C|
for all distinct v, v′ ∈ C.
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Proof. We may translate C so that c is the origin o. Write C = {p1, . . . , pk}. By
symmetry, α := ‖pi‖2 is independent of i, and β := 〈vi, vj〉 (i 6= j) is independent of i
and j. Then

0 =

∥∥∥∥∥
k∑

i=1

pi

∥∥∥∥∥
2

= kα+ k(k − 1)β

and
1 = ‖pi − pj‖2 = 2α− 2β.

Solving these two linear equations in α and β, we obtain α = 1
2 −

1
2k and β = − 1

2k .

Lemma 3. Let C be a unit simplex with centroid c = 1
|C|
∑

v∈C v, and let F ⊂ C be a
unit simplex with centroid f = 1

|F |
∑

v∈F v. Then

‖c− f‖2 = 1

2

(
1

|F |
− 1

|C|

)
.

Proof. Let k := |C|, ` := |F |. Then

‖f − c‖2 =

∥∥∥∥∥1`∑
v∈F

(v − c)

∥∥∥∥∥
2

=
1

`2

(
` · 1

2

(
1− 1

k

)
− `(`− 1)

2k

)
by Lemma 2

=
1

2

(
1

`
− 1

k

)
.

Lemma 4. Let A and B be disjoint unit simplices with centroids a = 1
|A|
∑

v∈A v and
b = 1

|B|
∑

v∈B v, respectively, such that A ∪B is also a unit simplex. Then

‖a− b‖2 = 1

2

(
1

|A|
+

1

|B|

)
.

Proof. Let C := A ∪ B have centroid c. Then by Lemma 3, ‖a− c‖2 = 1
2

(
1
|A| −

1
|C|

)
and ‖b− c‖2 = 1

2

(
1
|B| −

1
|C|

)
. It follows that

‖a− b‖2 = (‖a− c‖+ ‖b− c‖)2

=
1

2

(
1

|A|
+

1

|B|
− 2

|C|

)
+

√(
1

|A|
− 1

|C|

)(
1

|B|
− 1

|C|

)
=

1

2

(
1

|A|
+

1

|B|

)

3 Proof of Theorem 1

Let G be the unit-distance graph of a given almost-equidistant set V . Then the comple-
ment of G is K3-free, and the non-neighbours of any vertex form a unit simplex. Let C be
a clique of maximum cardinality in G. Write k = |C|. Each v ∈ V \C is a non-neighbour
of some point in C, and it follows that |V | ≤ |C|+ |C| k = k2 + k. Thus, without loss of
generality, k > d2/3.
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We split V up into two parts, each to be bounded separately. Let

N =
{
v ∈ V : |N(v) ∩ C| ≥ k − k4/3d−2/3

}
.

Note that k4/3d−2/3 = O(d−1/3)k. We first bound the complement of N . Consider the
set

X = {(u, v) ∈ C × V \N : uv /∈ E(G)} .

For each v ∈ V \N , there are more than k4/3d−2/3 points u ∈ C such that u /∈ N(v),
hence |X| > k4/3d−2/3 |V \N |. On the other hand, for each u ∈ C, the set of non-
neighbours of u forms a clique, so has cardinality at most k, and |X| ≤ |C| k = k2. It
follows that

|V \N | < k2/3d2/3. (1)

Next, we estimate |N |. Without loss of generality, 1
k

∑
v∈C v = o and N = {v1, . . . , vn}.

We want to apply Lemma 1 to the n× n matrix A = [〈vi, vj〉], which has rank at most d.

Claim 1. For each i = 1 . . . , n, ‖vi‖2 = 1
2 +O(k−1/3d−1/3), and for each vivj ∈ E(G),

〈vi, vj〉 = O(k−1/3d−1/3).

Proof of Claim 1. Let Ci := N(vi) ∩ C, ki := |Ci|, and ci :=
1
ki

∑
v∈Ci

v. Then ki ≥
k − k4/3d−2/3. By Lemma 4 applied to A = {vi} and B = Ci, ‖vi − ci‖2 = 1

2

(
1 + 1

ki

)
,

hence ‖vi − ci‖ = 1√
2
+O(k−1). By Lemma 3 applied to C and F = Ci,

‖ci‖ =

√
1

2

(
1

ki
− 1

k

)
≤

√
1

2

(
1

k − k4/3d−2/3
− 1

k

)
= O(k−1/3d−1/3).

By the triangle inequality,

‖vi‖ = ‖vi − ci‖+O(‖ci‖) =
1√
2
+O(k−1/3d−1/3),

and ‖vi‖2 = 1
2 +O(k−1/3d−1/3). Also, 2 〈vi, vj〉 = ‖vi‖2+‖vj‖2−1 = O(k−1/3d−1/3).

Claim 2. For each i = 1, . . . , n,

n∑
j=1

vivj /∈E(G)

〈vi, vj〉2 = O(k2/3d−1/3).

Proof of Claim 2. The non-neighboursN\N(vi) of vi form a unit simplex with cardinality
t := |N \N(vi)| ≤ k and with centroid c, say. If t = d + 1, remove one point vj from
the unit simplex, which decreases the sum by 〈vi, vj〉2 = O(1). Thus, without loss of
generality, t ≤ d, and there exists a point p ∈ Rd such that p−c is orthogonal to the affine
hull of N \N(vi), ‖p− c‖ = 1/

√
2t, the set {vj − p : vj ∈ N \N(vi)} is orthogonal, and

‖vj − p‖ = 1/
√
2 for each non-neighbour vj of vi. Then, by the finite Bessel inequality,∑

vj∈N\N(vi)

〈vi, vj − p〉2 ≤
1

2
‖vi‖2 ,
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hence by applying Cauchy–Schwarz a few times,∑
vj∈N\N(vi)

〈vi, vj〉2 =
∑

vj∈N\N(vi)

(
〈vi, vj − p〉+ 〈vi, p− c〉+ 〈vi, c〉

)2
≤ 3

∑
vj∈N\N(vi)

(
〈vi, vj − p〉2 + 〈vi, p− c〉2 + 〈vi, c〉2

)
≤ 3

(
1

2
‖vi‖2 + t ‖vi‖2 ‖p− c‖2 + t ‖vi‖2 ‖c‖2

)
≤ 3(‖vi‖2 + t ‖vi‖2 ‖c‖2). (2)

By Claim 1, ‖vi‖2 = 1
2 +O(k−1/3d−1/3) and

‖c‖2 =
∥∥∥1
t

∑
vj∈N\N(vi)

vj

∥∥∥2 = 1

t2

( ∑
vj∈N\N(vi)

‖vj‖2 +
∑

vj ,vj′∈N\N(vi)

vj 6=vj′

〈
vj , vj′

〉)

≤ 1

t2

(
t

(
1

2
+O(k−1/3d−1/3)

)
+ t(t− 1)O(k−1/3d−1/3)

)
=

1

2t
+O(k−1/3d−1/3).

Therefore,

t ‖c‖2 = 1

2
+O(tk−1/3d−1/3) = O(k2/3d−1/3).

Substitute this back into (2) to finish the proof of Claim 2.

We now finish the proof of the theorem. By Claim 2,

n∑
j=1

〈vi, vj〉2 = ‖vi‖4 +
∑

vj∈N(vi)

〈vi, vj〉2 +O(k2/3d−1/3)

= nO(k−2/3d−2/3) +O(k2/3d−1/3) by Claim 1.

Also by Claim 1,
∑n

i=1 ‖vi‖
2 = Ω(n). Therefore, by Lemma 1,

d ≥ rank(A) ≥

(
n∑

i=1
‖vi‖2

)2

n∑
i,j=1
〈vi, vj〉2

=
Ω(n2)

n
(
nO(k−2/3d−2/3) +O(k2/3d−1/3)

) ,
hence n = O(nk−2/3d1/3) + O(k2/3d2/3). Since O(k−2/3d1/3) = o(1), it follows that
|N | = n = O(k2/3d2/3). Recalling (1), we obtain that

|V | = |N |+ |V \N | = O(k2/3d2/3) = O(d4/3).
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