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INFERENCE WITHOUT SMOOTHING FOR LARGE PANELS WITH
CROSS-SECTIONAL AND TEMPORAL DEPENDENCE

JAVIER HIDALGO AND MARCIA SCHAFGANS

ABSTRACT. This paper addresses inference in large panel data models in the presence of both
cross-sectional and temporal dependence of unknown form. We are interested in making inferences
without relying on the choice of any smoothing parameter as is the case with the often employed
“HAC” estimator for the covariance matrix. To that end, we propose a cluster estimator for the
asymptotic covariance of the estimators and a valid bootstrap which accommodates the nonpara-
metric nature of both temporal and cross-sectional dependence. Our approach is based on the
observation that the spectral representation of the fixed effect panel data model is such that the
errors become approximately temporal uncorrelated. Our proposed bootstrap can be viewed as a
wild bootstrap in the frequency domain. We present some Monte-Carlo simulations to shed some
light on the small sample performance of our inferential procedure and illustrate our results using

an empirical example.

JEL classification: C12, C13, C23

Keywords: Large panel data models. Cross-sectional strong-dependence. Central Limit Theo-

rems. Clustering. Discrete Fourier Transformation. Nonparametric bootstrap algorithms.

1. INTRODUCTION

Nowadays we often encounter panel data sets where both the number of individuals, n, and
the time dimension, T', are large or increase without limit. Phillips and Moon (1999) and Pesaran
and Yamagata (2008) provide some theoretical results for the parameter estimators of the model
in this scenario. These works were done under the assumption of no dependence among the cross-
sectional units. Yet, it is well recognized that the latter assumption is not very realistic, and
there has been a surge of work on how to provide valid inferences when this type of dependence is
present. The issues are closely related to Zellner’s (1962) SU RE (Seemingly Unrelated Regression)
model, be it that here both dimensions are allowed to increase without limit.

Once one accepts the possibility that the errors of the model may exhibit cross-sectional and/or
temporal dependence, a key component to make valid inferences is the consistent estimation of the
asymptotic covariance matrix of the estimators. For that purpose, we might proceed by explicitly
assuming some specific dependence structure on the error term. In our context this route appears
to be quite cumbersome mainly for two reasons. First, to specify an appropriate model in the
presence of cross-sectional dependence is quite difficult as there are ample generic models that are
able to justify such a dependence. Some examples are the Simultaneous Autoregressive (SAR)
model of Cliff and Ord (1973), which has its origins in Whittle (1954), Andrews’ (2005) proposal
who captures common shocks across observations and Pesaran’s (2006) factor structure model.
In Conditions C'1 and C2 below, we shall give a generalization of the SAR model. Second, in

many settings it may be quite unrealistic to assume that the temporal dependence is the same
1



2 JAVIER HIDALGO AND MARCIA SCHAFGANS

for all individuals, so to find a correct specification may be infeasible as n increases with no limit.
In addition it is worth recognizing that the inferential properties based on parameter estimators
that use a specific (wrong) structure may be worse than the least squares estimates (LSE). The
latter observation was first documented in Engle (1974) and latter examined in Nicholls and Pa-
gan (1977), who illustrated the adverse consequences of imposing incorrect temporal dependence
assumptions on inferences, say when the practitioner assumes an AR (1) model instead of the true
underlying AR (2) specification.

As the task of finding an appropriate model for the dependence can be very daunting, one of
our main aims in this paper is then to provide inferences in panel data not only when the error
term exhibits (potentially) both temporal and cross-sectional dependence, but more importantly
doing so without relying on any parametric functional form for such a dependence. Under these
circumstances, one standard methodology is based on the HAC' estimator, whose implementa-
tion requires the choice of one (or more) bandwidth parameter(s). While this approach is often
invoked and used in the context of time series regression models, in the presence of cross-sectional
dependence its implementation has recently been considered in Kim and Sun (2013) or Vogelsang
(2015). Unfortunately, the implementation typically requires not only the selection of a bandwidth
parameter but, more importantly, an associated measure of distance between the cross-sectional
units. This route has two major drawbacks. First, it explicitly assumes that there is some type of
ordering among the individuals or cross-sectional units which, as opposed to the time dimension,
is not unambiguous. Even if one accepts the existence of such an ordering, there is no theoret-
ical reason to restrict it to a single measure as various economics and/or geographical distance
measures may be required. For instance, simply relying on the geographic “as the crow flies”
distance measure for ordering is questionable as one cannot expect that two cross-sectional units
located in the Rockies would behave the same as if they were in the Midwest. Clearly, a distance
measure which captures the topography and other economic measures may be required. Second,
even the selection of a bandwidth parameter to account for the temporal dependence may become
impossible as we recognize that it might not be the same for all individuals. Any cross-validation
algorithm used to determine the bandwidth parameter for temporal dependence may then need
to be performed for each individual. In Section 2.1 we shall describe these and other drawbacks
in more detail.

To deal with the potential caveats of the HAC estimator, we shall propose a cluster based
estimator which is able to take into account both types of dependence, extending the work of
Arellano (1987) and Driscoll and Kraay (1998) in a substantial way. Our approach is based
on the observation that the spectral representation of the fixed effect panel data model (2.1) is
such that the errors become approximately temporal uncorrelated although heteroscedastic. As
the asymptotic distribution of the LSE might provide a poor approximation to the finite sample
distribution when we employ the cluster estimator, we present and examine a bootstrap algorithm
which does not require the choice of any bandwidth parameter, contrary to the sieve or moving
block bootstraps. In fact, our proposed bootstrap can be viewed as a wild bootstrap but in the
frequency domain.

The remainder of the paper is organized as follows. In the next section, we discuss the regu-

larity conditions for our model and describe the main results. Section 3 discusses two bootstrap
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algorithms and we demonstrate their validity. Section 4 presents a Monte Carlo simulation ex-
periment to shed some light on the finite sample performance of our cluster estimator and we
illustrate the finite sample benefits of the bootstrap algorithm. We also compare the relative
performance of the cluster estimator with various H AC estimators and we provide an empirical
implementation. Section 5 gives a summary. The proofs of our main results are given in Appendix

A, which employs a series of lemmas given in Appendix B.

2. THE REGULARITY CONDITIONS AND MAIN RESULTS

We consider the panel data model
Ypt = B'xp + Np+or+up, p=1,...n t=1,.,T, (2.1)

where 3 is a k x 1 vector of unknown parameters, ;; is a k X 1 vector of covariates, a; and 7,
represent respectively the time and individual fixed effects and {upt}tez, p € NT, are sequences
of zero mean errors with variance F (ugt) = 012), p € NT. We shall assume that the sequences
{Tptyeqs P € N*, are mutually independent of the error term {upthyeszs P € N+, although not
necessarily independent from the fixed effects 7, or ;. More specific conditions describing the
temporal and cross-sectional dependence structures of the sequences {upt}tez and {:Ept}tez, pE
NT, will be given in Conditions C1 and C2 below respectively.

Our first aim in the paper is to perform inferences on the slope parameters 8 in the presence
of a very general and unknown spatio-temporal dependence structure. To that end, we first need
to extend a Central Limit Theorem provided in Phillips and Moon (1999), see also Hahn and
Kuersteiner (2002). The reason being that in their work the sequences of random variables, say
{Q,Z)pt}tez, p € NT, are assumed to be independent, that is {¢pt}tez and {wqt}tEZ

independent for any p # ¢, which is ruled out in our context as we permit cross-sectional depen-

are mutually

dence. In addition, as we allow for “strong-dependence”, we cannot use results and arguments
based on any type of “strong-mizing” conditions, so that results in Jenish and Prucha (2009, 2012)
cannot be implemented in our framework either. We also extend the results in Hidalgo and Schaf-
gans (2017) by allowing the errors w,; to exhibit temporal dependence as well. A second aim of
the paper is to extend the work of Arellano (1987) and Driscoll and Kraay (1998) by examining
a cluster estimator for the asymptotic covariance of the slope parameters estimators that does
not require the ordering of the observations (in the cross-sectional dimension) or the selection of
a bandwidth parameter.

Our estimator is the usual fixed effect estimator and a reformulation thereof based on the
frequency domain formulation of the model. The usual fixed effect estimator of 3 is given by
the LSE after removing the fixed effects 7, and ot from the model. Denoting for any generic

sequence {gpt}thl, p =1,...,n, the required transformation by

Spt = Spt — St — Sp. G5 (2.2)
T n

1 1 <& 1
St = npzjlgpt; §p~—thlgpt; ..:ﬁZZ%t,

t=1 p=1

Fall

we rewrite (2.1) as

Upt = B'Tpt +Upt, p=1,..,n and t =1,...,T. (2.3)



4 JAVIER HIDALGO AND MARCIA SCHAFGANS

The fixed effect estimator, B, is then given by
-1

n T n T
DD Tnily DD Tt | - (2.4)
p=1t=1

p=1t=1

In view of Conditions C1 and C2 below, it is obvious that we can take Ex,; = 0 as , is invariant
to additive constants, say j; or vy, to xpy.

The frequency domain formulation of (2.4) employs the Discrete Fourier Transform (DFT) of
our model (2.3). This formulation, as will become clear later, proves instrumental in describing
both the cluster estimator of the asymptotic covariance matrix of B, or E given in (2.7) below,

and the bootstrap algorithm described in Section 3. Denoting the DFT for generic sequences
{gpt};_grzla p Z ]-7 by

it . T
\7§7P T1/2 ngte T, )= 11 7T = [T/2]7 )‘] = T: (25)

and since J; p (A\j) = Tep (—Ar—j), j =1, ..., T, we can reformulate (2.3) as
jﬂ,p ()‘J) = ﬁlji,p ()‘j) + jﬂ,p ()‘j) , P= 1’ ey 1S .] = 17 "'7T7 (26)

and [ is then estimated by

-1
n T-1 n T-1
2.0 Tep ) Tiy (SN || 20 20 Top ) T (249) |- (27)
p=1 j=1 p=1 j=1

Under suitable regularity conditions it is well known that, B is an approximation of B in that
B—B =0p (T -1/ 2) when n = 1. It is worth recalling that the reason not to include the frequencies
Aj for j =0, or T, is related to the centering of the sequences {ﬁpt};‘ll, p=1,...,n, around their
sample means 7! Zthl ﬁpteit)‘f as Zle etre =0if 1 <0 <T—1.

We introduce the following regularity conditions.

C1: {upt},eys P E NT, are zero mean sequences of random variables such that

(i) Upt = de gpt k> Z kdp < oo, di=: Sup, |d/€ (p)| )

where E (§pt | Vp.i— 1) = O E (fpt | Vpt— 1) = ng and finite fourth moments, with Vp4
denoting the o—algebra generated by {fps, s < t}.
(ii) For all t € Z and p € NT,

(e.) n
2
Ept = Z ae (p) €uts sup Z lag (p))? < oo, supz lag (p)|” < oo,
=1 peN*t 4 21,5

where the sequences {€u}cq, £ € N*, are zero mean independent identically distributed
(7id) random variables.

(iii) The fourth cumulant of {upt},c,, p € NT, satisfies

T

lim sup g | Cum (wpt, ; Upty s Upts s Upo)| < 00.
o0
peENT t1,t2,t3=1
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C2: {xpt}tez, p € NT, are sequences of random variables such that:

o0 oo
(i) T =Y k(D) Xppps D kew <00, c, = sup, [lex ()]
k=0 k=0

where || B|| denotes the norm of the matriz B and E (X, | Tpi—1) = 0; Cov (xp | Tpi-1) =
Yyp and E prt||4 < oo, with Tp,+ denoting the o—algebra generated by {Xps7 s < t}.

(ii) The sequences of random variables {Xpt}teZ’ p € NT, are such that
oo @] n
Xpt = > _be(@)me,  sup > |be(p)* <00, sup»_ b (p)|* < o0,
/=1 peENT T >1 =1
where the sequences {ny},cq. £ € NT, are zero mean iid random variables.
(iii) Denoting Xy p = E (xp],), we have that

n—oo n

1 n
0<%, = lim —) %, (2.8)
p=1

and the fourth cumulant of {Tpt},c,, P € NT, satisfies that

T

lim sup E | Cum (Tpt, a3 Tpta b Tpts,c; Tpo,d)| < 00, a,b,e,d=1,...,k,
T—o0 eN+
p t1,t2,t3=1

where xpt, denotes the a —th element of xp.

For generic sequences {2pt},c;, P € NT. we denote

¢, (p,q) = Cov (zpt; 2t) , for any p,q > 1.

C3: For all p € NT, the sequences {upi},c; and {Tpi},e; are mutually independent and

0< max 3 [lp (p.g)l| < oo, (2.9)
q=1

1<p<n

where ¢ (p,q) == ¢, (P, q) ¢z (P, 9)-
C4: T,n — oo such that n™! = o (T‘g) for any £ > 0.
We now comment on our conditions. Conditions C'1 and C2 indicate that {up},., and {zpt},;,
p € Nt are linear processes and permit the usual SAR (or more generally SARM A) model.
Indeed, by definition of the SAR model, we have

u = (I—(,L)W)ilg
— (I+D)e Z=(¢,®)"

p,g=1’

so that u, = 22:0 ¥, (p) €4, which implies that the SAR model becomes a particular model of that
allowed in Conditions C'1 or C2. However Condition C'1 does permit the sequence 7, |as (p)]
to grow with n, which is not the case with the SAR model. Of course one can allow the weights
ag (p) to depend also on the sample size “n” as is often done in SAR models with weight matrices
W row-normalized, but it does not add anything significant. Our conditions, therefore, appears
to be weaker than those typically assumed when cross-sectional dependence is allowed. It is worth
pointing out that our Conditions C1 and C2 can be relaxed to some extend to allow some type of

mixing condition such as L*—Near Epoch dependence with size greater than or equal to 2. The
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latter condition is often invoked when we allow the errors to have a nonlinear type of dependence

structure or if (2.1) were replaced by a nonlinear panel data model

ypt:g<xpt;5)+np+at+upt7 p:la"'ana t= 17"'7T'

In fact, we expect the conclusions of our results to hold under such a mixing condition as it has
been shown in numerous papers. Conditions C'1 and C2 do permit, though, heterogeneity in its
second moments as E (512,,; |V, 7,571) = O'ép and Cov (Xpt | Tp’t,l) = Yy p- This is a consequence
of our conditions because E ({fot | Vpi1) = Dopoq lae (p)|? clearly depends on p. Furthermore, we
allow for some trending behaviour of the sequences {pt},.;, p € N*, as we allow the mean of z,;
to depend on time.

An important consequence of Conditions C'1 and C2 is that they guarantee that the covari-
ance structure of the sequences {up},c;, and {xpi},c,, p € N, is multiplicative. For instance,
Condition C1 implies that, for all p,q € N,

E (uptquS) = <Z dk gp t—k Z dé é-q s— E)

Z di—ste(p)de(q) t>s
= E({uép) s & (2.10)
Z de(p)ds—4¢(q) t<s

= Yy <p7 Q) FYu;pq (t - S) :

Following the spatio-temporal literature, see Cressie and Huang (1999), we can denote this co-
variance structure as separable. Of course, there are monseparable covariance structures, see
Gneiting (2002), however these are more complicated to model and quite difficult to handle. De-
spite this, there is some work on testing for separability, see Fuentes (2006) or Matsuda and
Yajima (2004). If there were no cross-sectional dependence, i.e. E (fplfql) = agpl (p = q), then
E (uptugs) = ngvu;pp (t—s)1(p=gq). Here, and in what follows, 1(A) denotes the indicator
function.

Observe that the spectral density function of {upt},.; is

Jup(A) = S0u p, Z (deH )) e peNT,

k=—00

which is continuously differentiable as ) > kdr < co. When dj, (p) = dj, for all p, the spectral
density function is the same for all cross-sectional units up to a multiplicative constant. The
arguments also hold for the sequences {z} ez D E NT, denoting its spectral density matrix by
Fop ).

We now comment on Condition C'3. As we assume that the errors and regressors are uncor-
related, we have that the spectral density matrix of the sequences {2yt =: upTpt},cpy P € NT is
given by the convolution of the spectral density matrix of {zp} +c7, and spectral density function
of {upt},cy, that is

fp(A) = 3 Jup ) fapA—v)dv, pe NT, (2.11)
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where Conditions C1 and C2 imply that f, (A) is twice continuous differentiable. Recall that by
Fuller’s (1996) Theorem 3.4.1 or Corollary 3.4.1.2, the Fourier coefficients of f, (\) are given by

T (7) = Vap (5) Yup (45); P € NT, s0 that

sup D e (O] <005 Cov (2415 2g5) = 7y (t = 8) 2 (p,0) -
pq=1,.n )

With the convention that 7, ,, (0) = 7, ,, (0) = 1,

Cov (zpt, 2qt) = ¢ (P, q) =2 0, (P, q) Y5 (P, q) -

We can relax Condition C3 to assume that the sequences {zpt},., and {up},.,, p € N, are
conditional independent in their first and second moments. However, to simplify the arguments
somewhat, we have preferred to keep the condition as it stands. The condition does rule out long
memory dependence on the sequences {Zp},.;, and {up},c, for each p. Even though there are
several results available allowing their temporal dependence to exhibit long memory, see Robinson
and Hidalgo (1997) or Hidalgo (2003), we have decided to assume the temporal dependence of
the regressors and errors to be weakly dependent to simplify the arguments. On the other hand,
because the sequences may exhibit long memory spatial dependence, the condition of strong
mixing for the spatial dependence in Jenish and Prucha (2012) is ruled out. This is the case as

Ibragimov and Rozanov (1978) showed: if the sequence {v,, ,, ()} ._, is not summable, the process

JEZ
{upt}tez ,p € NT, cannot be strong-mizing. The long memory dependence also rules out that the
process is Near Epoch Dependent with size > 1/2, which appears to be a necessary condition for
standard asymptotic results. Nevertheless, the combined cross-sectional dependence, that is the

“weakly-dependent” as

dependence of the sequence {zp; = upta:pt}tez, p € NT, is required to be
we impose (2.9), see also Hidalgo and Schafgans (2017).
Here and in what follows, we have adopted the convention that v,, ,,, (t — s) = E (upttps) /¢, (0, p)

without loss of generality.

Remark 1. [t is worth noticing that (2.9) ensures that ¢ (p,q) = O (q_l_‘s) for some § > 0, so
that

n

.1
lim — Z @ (p,q) < oc.

n—oo n,
p,g=1

The latter displayed expression can be regarded as a type of weak dependence in the cross-sectional
dimension, see also Robinson (2011) or Lee and Robinson (2013). In addition, the ergodicity in

second mean, that is
1 n
ﬁ Z (Sou (p) Q) + P (p7 q)) < C:
p,q=1
implies that ¢, (p,q) = O (¢~**) and ¢, (p,q) = O (¢"**) such that ¢, + s, =1+ > 0.

Remark 2. The condition sup,en+ g as (p)|* < oo guarantees that for any reordering of the
2 _
sequence {]ag (p)\2}£€N+, say {‘aem (p)| }E(T)€N+, we have that ayy (p) = O (é (1) C) for some

¢ > 1/2. Similarly the requirement sup,>, Zzzl lag (p)]2 < 0o will mean that ay (p) = O (p~°) for
some ¢ > 1/2 uniformly in ¢ > 1. Similar arguments follow for {|bg (p)|2}z wi P > 1.
€
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Finally Condition C4 is very weak as £ > 0 effectively means that n increases to infinity at least
as loglog T say. This relaxes significantly the condition given in Pesaran and Yamagata (2008),
who needed that n1/2/T — (0 or even n1/4/T — 0. It appears that most panel data satisfy the
condition.

Before presenting our first main result, denote

P = 2wnlingoﬁ Z Foq (0) 0 (p,q) < 00 (2.12)
p,q=1
Qﬂqu Z f)/pq
{=—0c0
and
V=xtex ! (2.13)

where ¥, > 0 was defined in Condition C2.
It is standard to see that

T
1
® = : lim lim —F Zmptupt

n—oo T—oo N

T

= 7}1_)1201151;0”— thzl :L‘ptzn E (uptugs) - (2.14)
pa=1ts

or, using its spectral domain formulation,

T—1 n T—1 n

: o1
SR | D R MNENERN ] Pap s BV
j=1p=1 Jj=1p=1
=t S BT ) T ) By ()R (219
J=1pq=

We now give our main result of this section.
Theorem 1. Under Conditions C1 — C4, we have that as n,T — oo,
() (Tn)"(B-8) SN (0, V)
() (Tn)'(B-8) 4 N0O,V).
Proof. The proof of this result or any other will be given in Appendix A. O

Recalling our definition of V in (2.13), the results of Theorem 1 indicate that to make inferences
on 3, we need to provide a consistent estimator of ®. A first glance at (2.14) or (2.15) suggests
that this might be complicated or computationally burdensome due to the general spatio-temporal
dependence structure of the data. As we pointed out in the introduction, the standard approach
to deal with dependence, that is to employ a HAC type of estimator, has various and potential
drawbacks in the presence of cross-sectional dependence. While choosing a bandwidth parame-
ter associated with the cross-sectional dependence requires an ordering of individuals which is

non-trivial, individual heterogeneous temporal dependence (as assumed in Conditions C1 and
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C2) would render intractable any cross validation method to choose the temporal bandwidth
parameter.

While Kim and Sun’s (2013) approach is subject to both these criticisms, Driscoll and Kraay
(1989) avoid the need to specify an ordering of individuals by introducing a HAC' estimator of
cross-sectional averages, so that one can consider their estimator as a hybrid between a HAC
and a cluster one: they employ the H AC' methodology to accommodate the temporal dependence
whereas they employ a cluster type of estimator to account for the cross-sectional dependence.
In our Monte-Carlo experiment we compare inferences when using Driscoll and Kraay’s approach
with either a fixed or automated temporal bandwidth choice as suggested in Andrews (1991)
against our proposed methodology. The sensitivity of relying on Kim and Sun’s approach to an
inappropriate ordering is indubitable.

The approach we want to advocate does not require any ordering or the selection of bandwidth
parameter and it permits a more general spatio-temporal dependence structure than that allowed
by either Driscoll and Kraay (1989) or Kim and Sun (2013). It can be regarded as a natural
extension of earlier work by Robinson (1998) in a time series regression model context. In his

case, abstracting from cross-sectional dependence

Applying his estimator to our model then yields the estimator

n T n

T-1
Y Ty O Tep (M) =3 Y A0y (07, (0, (216)
j=1

p=14=—T+1

2

n
=1

where 7, , (j) and 7, , (j) are respectively the standard sample moment estimators of v, ,, (j) and
Yu,p (7). When cross-sectional dependence is allowed, the latter arguments suggest that (2.16) is

not a consistent (cluster) estimator for ®. The reason for this (see also the proof of Proposition
1 below) is that

n

1 T-1
ﬁ Z Z Yz.p (£> Yu,p (E) - ¢

p=1¢=—T+1
as expected since the first moment of (2.16) does not capture the cross-sectional dependence. The
purpose of the next section therefore is to provide a consistent “cluster” estimator for ® in the

presence of cross-sectional dependence.

2.1. Cluster estimator of .

We shall present a simple cluster estimator of ® using the “frequency” domain methodology.
Obviously, there is a time domain analogue, which we shall briefly describe at the end of the
section. Our cluster estimator appears to be the first one which permits time and cross-sectional
dependence and gives a formal justification of its statistical properties. Our estimator therefore
becomes an extension of previous cluster estimators in the literature such as that in Arellano
(1987) or Bester, Conley and Hansen (2011), where only cross-sectional dependence is present.

Our main motivation to propose a cluster estimator using the frequency domain methodology
comes from the well known observation that for all p # ¢, Ju.p (A;) and Jy, 4 (Ar) can be considered

as being uncorrelated although heteroscedastic. The observation was employed in the landmark
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paper by Hannan (1963) on adaptive estimation in a time series regression models. So the fact
that we can consider Jz 5, (\j) Jap (—A;) as a sequence of uncorrelated and heteroscedastic random
variables in 7, although not in p, suggests that, in a spirit similar to White’s (1980) estimator, we

may estimate ® by

v 1 1
®=7 ) 73 2 Jin () Tap (=) 1/227,,3 DT 00| Y @i

Notice that when n = 1, (2.17) becomes the estimator given in Robinson (1998) so that we might
consider ® as a natural extension of his estimator.

Denote the estimator of X, by

n T
Ba= 2o 30D Tap () Ty ().
p=1 j=1
Proposition 1. Under the conditions of Theorem 1, we have that
(@) d—d=o0,(1)
(b) Y, —%,=o0,(1).

Denoting V= i; lci)i; 1 we now obtain the following corollary.
Corollary 1. Under the conditions of Theorem 1, we have that
G (T 2V (B-p) LN O,D)
) (Tn) 2V (5-5) SN0,
Proof. The proof is standard from Theorem 1 and Proposition 1, and so it is omitted. ]

We now describe the time domain analogue of ®. For that purpose, using Zthl eitre = if
1< /¢ <T -1, we have after standard algebra that

n

. 1 T-1
¢ = ﬁ Z Z ;Y\x,pq (Z) ;Y\u,pq (E) )

p,q=1 [¢|]=0
where due to (2.10),
L Tl
Vapq (€) Z xpt:”q 405
1 = Ifl -
Yu,pg (£) T Z UptUg 401 (¢ > 0) Z UgtUp 101 (£ < 0),

~/
and Upt = Ypt — B Tpt, p=1,...,n;t=1,...,T.

3. THE BOOTSTRAP ALGORITHM

Our motivation to introduce a bootstrap algorithm is due to the findings in our Monte-Carlo
experiment, which suggest that the asymptotic distribution of (Tn)l/ 2y-1/2 (B — B) does not
appear to provide a good approximation of its finite sample distribution. In such situations,

the use of the bootstrap has been advocated as it has been shown to improve the finite sample
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performance. The general spatio-temporal dependence inherent in our model suggests that a valid
bootstrap mechanism may not to be easy to implement since one of the basic requirements for its
validity is that it has to preserve the covariance structure of the data/model. Drawing analogies
from the time series literature, one might be tempted to use the block bootstrap (BB) principle,
as it is no clear how the sieve bootstrap can be implemented under cross-sectional dependence as
there is no clear ordering of the data. Even the BB suffers to some extend from this as we expect
some sensitivity of the block bootstrap to any particular ordering chosen by the practitioner, let
alone its validity. A second potential drawback of the BB method is that the covariance structures
of (z1g, ..., :rpt)/ and (zay, ..., xp+17t)/ do not need to be the same, that is we have a lack of “weak”
stationarity. A third drawback is the sensitivity of the outcome of the moving block algorithm to
the choice of the block size. Although some cross-validation techniques are available, see Politis
and White (2004), it may not be useful for testing purposes and its implementation calls for a
time series type of dependence. These drawbacks are further compounded by the fact that in our
context we even need to choose two block sizes, one to deal with the time dependence and a second
one to deal with the cross-sectional one, which renders its use in empirical applications quite hard
to implement and the outcome can be sensitive to the choice of the bandwidth parameter.

In light of these drawbacks, we propose here a valid bootstrap algorithm with the interesting
features that it is computationally simple (there is no need to estimate, either by parametric or
nonparametric methods, the time and/or cross-sectional dependence of the error term) and it
does not require the choice of any bandwidth parameter for its implementation, thereby avoiding
any level of arbitrariness. We describe two bootstrap algorithms. The first one assumes that the
time dependence is homogeneous among the cross-sectional units, while the second one drops the
latter assumption.

The first bootstrap is described in the following simple & STEPS.

STEP 1: Obtain the residuals
—~ ~ ~I~
Upt = Ypt — B Tpt, p=1,...,n; t=1,...,T

- A . .
(or Upt = Ypt — B Tpt), and compute the periodogram of the centered and scaled residuals

{ﬁpt}le, p=1,..,n,
Tap M) = |Tap V)P G=1,.,T=[T/2, p=1,..,n,

where, denoting 5% (p) =T 23:1 ﬂgt,

T

y ~ 1 Iy -

Upt = (upt T Zupt> /oa (p)-
t=1

Remark 3. [t is worth noticing that the same outcome would have been achieved if we used
551 (p) wpt. This is the case as Z,:T:1 €™ =0 if j # 0,T. The motivation to scale the centered

residuals Uyt by o5 (p) is due to the fact that the variance is not the same for all individuals.

STEP 2: Denoting U; = {apt};}zl, do standard random resampling from the empirical
distribution of {Ut}le, that is we assigned probability T-! to each n x 1 vector Uj.
Denote the bootstrap sample by {Ut*}thl, which is {u;t}thl, p =1,...,n. Compute the
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bootstrap analogue of (2.3) as

1/2
n

Tyow O = B Ty )+ [ -3 Taa ) | 52(0) Faep ).

q=1

forp=1,...,n and j=1,...,T.
STEP 3: Compute the corresponding bootstrap analogue of (2.7) as

n T-1 B n T-1
Z Z ji,p ()\]) jf/,p (_A]) Z Z jx,p jy*,p ( _7) (31)
p=1j=1 p=1j=1

1
with Jgup (Aj) = Tysp (Nj) — 3 22:1 Tyrq (Aj)-
We now comment on the bootstrap. The most important feature is that there is no need to
choose any bandwidth parameter for its implementation. Also uniformly in j = 1,...,7, we have
that

%puﬂ-5am{nmuﬂ+(5—®3@AM»+@—ﬁ)@ﬂ&xmA—&ﬁ
= 0% (D) Zup (V) (140, (1)
and

EZup (Aj) = fup (X)) (14 0(1))
E” (jU*,p( j) Tu p (=Ae) =0, ifj#¢
5% (p) Turp (Aj) = 0 (D) (1 + 0p (1))
/2 _
The last displayed expressions suggest that we can consider <% 2211 Tiq ()\j)> oa (p) Tuxp (N))
as some type of wild bootstrap in the frequency domain because

1/2 2

1 <& ~
E 23 Taa) | Ga®) Turn )] = o2 (0)
q=1

We now state our main result of this section.
Theorem 2. Under Conditions C1 — C4, we have that
(Tn)Y/? (B* — B) 4 N(0,V),  (in probability).

Remark 4. The results of Theorem 2 still hold true ifB were replaced by B, as we have already
established that (Tn)Y? ([~3 - B) = op (1).

The previous results can be extended to incorporate the more realistic situation where the
temporal dynamics might be different for different individuals, as given in Conditions C'1 and C2.
For this we modify the above bootstrap by replacing STEP 2, with STEP 2’ :
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STEP 2’: Denote {nj };‘.le a sequence of independent identically distributed random vari-
ables with mean zero and unit variance. We then compute the bootstrap analogue of (2.3)

as

~! ~ =1,..,
Foew ) = B Ty ) + Tag W) o)y, { P27

where Jysp (Aj) = Tyup (Ar—j) and n; = np_j, for j =T +1,...,T.

Remark 5. We refer to Hidalgo (2003) for a discussion regarding the requirement that n; = np_;
for j = T+ 1,...,T.

The latter bootstrap approach merges ideas in Hidalgo (2003) and Chan and Ogden (2009) and

can be regarded as a wild-type bootstrap approach with increasing dimensional vectors.

The (bootstrap) cluster estimator of the asymptotic covariance is given by

T-1 n n
L1 1 1 )
o = f Z n1/2 231 ‘7%717 ()\J> ja*,p (_)\]) n1/2 E 1: j%,p (_)\J) jﬁ*,p (>\]) . (32)

Proposition 2. Assuming C1 — C4, we have that
P* — b =0, (1).
Together, these results yield the following proposition.

Proposition 3. Under the same conditions of Theorem 2, we have

~k—1/2

(T”)1/2 \4 (B* — E) 4 N(0,1), (in probability),

where V* = i;ltf*i;l.

Proof. The proof is standard after Theorem 2 and Propositions 1 and 2. O

4. FINITE SAMPLE BEHAVIOUR AND EMPIRICAL EXAMPLE

In this section we discuss the finite sample performance of our cluster-based inference proce-
dure in the presence of cross-sectional and temporal dependence of unknown form. We contrast
this performance with HAC-based inference procedures, which unlike ours, require the choice of
smoothing parameters that may be arbitrary and erroneous. We also provide evidence of the po-
tential finite sample improvements of our bootstrap algorithmns and illustrate its implementation
with real data.

In our Monte-Carlo experiments, we consider the following data generating process

Ypt =t + 1 + BTp + upt

forp=1,..,nand ¢t =1,..,T. The time fixed effects o and individual fixed effects n,, are drawn
independently (a; ~ ITDN(1,1) and 7, ~ I[IDN(1,1)) and are held fixed across replications and
B is set equal to zero. We postulate a variety of scenarios for the temporal and cross-sectional

dependence for both the strictly exogenous regressor x,; and error term ;.
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4.1. Simulations with Homogeneous Time Dependence. In the first set of simulations,
we consider the time dependence to be the same (homogenous) for all individuals p = 1,..,n.
In particular, we consider the settings of no temporal dependence, autoregressive and moving

average time dependence, where for the error term

Upt = Pylpt—1 + /1 — p2n,, with p, =0 or 0.7

and
Upt = 71 Npt + 9u77p,t717 with 6, = 0.7,
\/1+ 62

with 7, characterizing the spatial dependence inherent in the error. Several cross-sectional de-
pendence scenarios are considered for u,, (npt): no spatial dependence, weak spatial dependence
and strong spatial dependence. In the absence of cross-sectional dependence, 7, (and wup) is
IIDN(0,1) for p=1,..,n. Two weak spatial dependence formulations are considered. First we
follow Lee and Robinson (2013), where random locations for individual units are drawn along a
line, denoted s = (s1,...8,) with s, ~ IIDU[0,n] for p = 1,..,n. Keeping these locations fixed
across replications, 7, are generated independently as scalar normal variables with mean zero and
covariances cov(m,t, Ngt) = (0.5)lsp=34l (see also Hidalgo and Schafgans, 2017). This ensures that
uy¢ exhibits an exponential cross sectional decay in dependence with distance across individuals
in addition to the assumed time dependence. Second, we consider a polynomial decay of cross
sectional dependence in u,; with distance across individuals. In the latter case, using the linear
time dependence representation, 1, = o, (3_,2; ¢z (p) eer), we chose ¢,(p) = |s¢ — sp|110 with s,
and sy the random locations as before and ey ~ ITDN(0,1); 0, is such that Var(n,;) = 1. For
the strong spatial dependence setting, we use c¢;(p) = |sp — sp|_0‘7 instead, see also Hidalgo and
Schafgans (2017).! The same discussion holds for the independently drawn, strictly exogenous re-
gressor p:, where, to allow for some time heterogeneity, we add p; which is independently drawn

(uy ~ IIDN(1,1)), such that, say, under autoregressive time dependence

Tpt = Py + PgTpt—1 + 1-— pg%'&pta

where ¥,; characterizes the spatial dependence inherent in the regressor.

To evaluate the performance of our proposed cluster estimator, we analyze the empirical size
and power for testing the significance of our parameter, Hy : f = 0 against Hy : 8 # 0, at the
nominal 5% level for various pairs of n and T using 5,000 simulations. In Table 1, the empirical
size based on our cluster estimator of the variance of B rE is reported in the columns labelled V.
In addition to presenting the rejection rates based on the asymptotic critical values, we report
the empirical size based on the naive bootstrap algorithm in the column labelled 17”17, and the
wild bootstrap algorithm in the column labelled Vwb. As inference based on the asymptotic
distribution might not provide a good approximation to the finite sample one, this allows us to
assess the finite sample improvements these bootstrap algorithms may yield. For comparison, we
report the empirical size obtained using a variety of other estimators of the variance; the column
indicates the particular estimator of the variance used. Specifically, we consider the time-cluster

estimator of the variance Ve (Hidalgo and Schafgans, 2017), the individual-cluster estimator

n the polynomial case, we use max(1,|s¢ — sp|) as our measure of distance; not imposing such a censoring

would remove all dependence in settings where for some (¢,p) s; and s, lie very close together.
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of the variance ?cp, and Driscoll and Kraay’s proposal to use a (time) HAC on cross sectional
averages 17}’}? With V = ;193! where @ is defined in (2.17), formulae for the other estimators
of the variance of B rr under consideration are given by 170,5 =: f]; 1<T>th]; L 17cp =: f]; 1<i>cp§]; 1
and ?IZT =: i;lészgl with

®cp =

boy = ;i{
{

1 o 1 o
(T1/2 Z’Zpt> <T1/2 Zépt> } ’
t=1 t=1
(Ame — 1 . K 7|t_8| 212
TS 55 5 3) 31 =19 FER

where Z,; = ZTpupe and K (h) = (1 — |h|) 1 (|h| < 1) is the Bartlett kernel. Unlike our estimator,
‘A/ot ignores any time-dependence, ch ignores any cross-sectional dependence, and AI;ZT restricts
the time-dependence and requires the selection of the lag window, my, for which we implement the
parametric AR(1) plug-in method suggested in Andrews (1991). We also use a fixed lag window,
m’., equalling 5, 7, and 9 (optimal when the time dependence is AR(1) (with p, = p, = 0.7)
for T = 64, 128, and 256 respectively, see also Andrews, 1991). None of these estimators require
an ordering of cross-sectional units, which, as we argued before, may be arbitrary and erroneous.
Below we will consider some simulations to address this issue.

The results from Table 1 reveal that the use of a cluster estimator that ignores time dependence
(VCt) clearly results in a deterioration in size (becoming oversized, reflective of standard errors
being too small) as the time dependence increases, and similarly inference that use a cluster
estimator that ignores cross sectional dependence (ch) result in a deterioration in size as the
cross sectional dependence increases. Our cluster estimator, which accounts for both types of
dependence, does not suffer from these obvious defects and performs remarkably well even in
the presence of strong cross sectional dependence. The rejection rates based on the asymptotic
critical values do tend to be closer to the nominal rejection rates when n and T both increase.
Finite sample improvements in inference can be made by using either of the bootstrap algorithms
as rejection rates based on them are typically closer to the nominal rejection rates, with the
differences typically smaller as sample sizes increase. As the temporal dynamics is the same for
all individuals here, either algorithm is valid and there does not seem to be a clear preference of
these two approaches in terms of their relative closeness to the nominal size.

The simulations point to an interesting result which indicates that there is little evidence
to suggest that small sample inference based on XA/Ct is better than V when there is no time-
dependence. In the presence of strong spatial dependence, the empirical size associated with Vis
closer to the nominal rate compared to ‘7@ for all n, T pairs considered; for n = 50 and T' = 64
the size drops from 0.066 to 0.058. The improvement is even more pronounced when we contrast
the size associated with I7Ct with the bootstrap based rejection rate, say Vnb. While there does
appear to be some evidence to suggest that small sample inference based on ch is better than V

when there is no cross-sectional dependence, certainly when the time dependence is stronger, we
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recognize that we have to be cautious as the empirical size based on the naive bootstrap algorithm
for our cluster estimator does tend to be closer to the nominal rate than ‘701)-

As pointed out, in the absence of time-dependence in wuy:, the size based on our proposed
estimator for the variance of B rr compares well with that based on Ver. Inference based on ?IZT,
which limits the time-dependence and requires the selection of the lag-window myp, also does
not have better size properties than our bandwidth parameter free estimator. In the presence of
strong spatial dependence, for n = 100 and T" = 128 the size associated with V&T equals 0.061
against 0.053 using V and 0.059 using ‘A/Ct. Unsurprisingly, in the absence of time-dependence in
upt, inferences based on either T7Ct, ‘7}7}? and V outperform the ‘A/cp based inference when there
is cross-sectional dependence, as the latter ignores this dependence.

In the presence of time-dependence in u;, improvements in size are observed when using our
proposed estimator for the variance of B rp Vis-a-vis ?&T, which signals that accounting for insuf-
ficient time dependence, through an inappropriate lag-window m(7') required for ‘713?, negatively
impacts the inference on our slope parameter. The size improvements observed when using v
instead of ?&T are larger in the setting where there is autoregressive time dependence compared
to moving average dependence and are larger when the spatial dependence is stronger. Unsur-
prisingly, in the presence of AR(1) time dependence, the sizes associated with ‘Z’ﬁT (automatic)
and 17;}? (fixed) are close as m. is the optimal choice in this setting, see Andrews (1991). On the
other hand, we do observe larger differences in size reflective of the sensitivity to the lag-window

choice, when there is MA(1) or no time dependence at all.

Kim and Sun’s (2013) recent proposal to deal with both temporal and cross sectional depen-
dence does not only suffer from the sensitivity associated with the selection of the lag-window but
the actual ordering of cross-sectional units as well. This is also the case for the estimator based
on (individual) HAC on time averages. We demonstrate this next. Assuming that individuals are
ordered on the basis of sp,, such that s; < sp <--- <'s,,, we consider the following two (individual)
HAC on time averages The first one, ‘A/l%fp = 3 1@2; pEI 1 uses the ranking of each individual,

denoted by the subscript p, to measure distance, whereas the latter, V%”p =3 1@%; ngU L uses

the actual distance measure used to generate the cross-sectional dependence, s, p = 1, ..,n, where

- Rt Nl T AT
CHpp = MZZZZK<mn+1)Zptzqs

p=1q=1 t=1 s=1

R 1 n n
TS 5 5 ) 34 ) BN

plqltlsl

To see the sensitivity to an incorrect ordering of individuals, we randomly reorder the individuals

and implement the erroneous formulae
I ¢~ v P —q’|
- _ —
TS 535 3) 3 D1 Cac ) FHN
p=1g=1 t=1 s=1
I - |s Sq+|
HMn — P q
S 9 % 9 I €L P

1
plq 1t=1s
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TABLE 2. HAC Simulations with Homogenous Time Dependence - Size

HAC | Time Cross-Sectional Time & Cross-Sectional
valid invalid valid invalid
T | iy Vi | Vi Vi | Vi i
(n,T)
AR(1) & Weak Spatial dependence (Polynomial)
(100, 64) 0.131 0.090 0.110 0.131 0.160 0.160 0.217
(100, 128) 0.108 0.080 0.086 0.114 0.121 0.141 0.186
(100, 256) 0.086 0.083 0.080 0.111 0.106 0.136 0.175
AR(1) & Strong Spatial dependence (Polynomial)
(100, 64) 0.154 0.323 0.324 0.655 0.557 0.370 0.585
(100,128) 0.114 0.315 0.291 0.662 0.535 0.360 0.577
(100, 256) 0.086 0.326 0.278 0.662 0.524 0.349 0.567
MA(1) & Weak Spatial dependence (Polynomial)
(100, 64) 0.101 0.091 0.073 0.129 0.113 0.087 0.135
(100, 128) 0.078 0.081 0.060 0.113 0.089 0.073 0.116
(100, 256) 0.074 0.088 0.068 0.124 0.096 0.088 0.120
MA(1) & Strong Spatial dependence (Polynomial)
(100, 64) 0.094 0.321 0.270 0.658 0.509 0.280 0.512
(100,128) 0.085 0.317 0.259 0.644 0.491 0.278 0.498
(100, 256) 0.070 0.323 0.255 0.664 0.493 0.273 0.498

where p* and s,« denote the erroneously assumed location of individual p = 1,..,n. Finally, we
apply HAC in both directions as suggested by Kim and Sun (2013), in particular we consider

mrmn . s—1§mT Mg —1
VHAC,pn =: 3 (I)HAC,;ZEI with

n n T

T
: 1 |t — s p—al ., .
mr,Mn __
VA = 24 2 2 2K <mT+1) K<mn+1

p=1g=1 t=1 s=1

where both the true p and the erroneous locations p* are considered. For m,, we select fixed lag
windows my,, equalling 5, 7 and 8 for n = 50, 100 and 200 respectively; for m7 we select the fixed
lag window m7} as before. Clearly, the individual and time HAC estimators are special cases
hereof with, e.g., égg = (fzﬁ’g’op

With our estimator typically outperforming these HAC estimators (and being robust to incor-
rect specification of the cross-sectional order/distance), we primarily focus here on the relative
performance of the HAC estimators in the presence of both temporal and spatial dependence. In
Table 2 we report the results of these simulations for n = 100 and a variety of choices for T'.

The results in Table 2 indicate that the (individual) HAC estimator of time averages based
on the true location, XA/HP and ‘A/Hps, perform comparably across different time dependencies,
just as the (time) HAC estimator of cross sectional averages, XA/Ht, performs comparably across
different cross-sectional dependencies. As expected, in the presence of strong spatial dependence,
inference based on ‘7Hp is particularly bad as it ignores cross sectional dependence, similarly, to the
aforementioned deterioration of the performance of inference based on ?Ht with time dependence.

There appears some evidence that using the locations s, in place of the rank order enhances the
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size of our test. This evidence, in particular, appears when the accompanying time dependence is
not too strong, or better yet, absent. Incorrect ordering of individuals clearly has a strong impact
on the size with the impact increasing with the level of cross sectional dependence. When keeping
the lag window m,, fixed while increasing the temporal dependence weakens the performance
of the individual HAC on time averages YA/Hp and XA/HpS, just as the performance of the (time)
HAC on individual averages ‘717}? deteriorates with stronger time dependence when keeping my
fixed. Clearly the lag window need to be chosen appropriately to reflect the cross-sectional and/or
temporal dependence. No attempt was made to implement an automated choice for the lag length,

as such an approach is not obvious in general. There appears little evidence that in finite samples,

. AmT7m7L AmT Am”
inference based on V; ACp tends to outperform V" and VHWD.

In Table 3, we present the empirical power for testing the significance of 5 using our proposed
estimator of the variance at the nominal 5% level when 5 = 0.1. In addition to presenting the
rejection rates based on the asymptotic critical values (column labelled XA/), we report the empirical
power based on the naive bootstrap algorithm in the column labelled YA/”b, and the wild bootstrap
algorithm in Vb,

The results indicate that even for small panels, when n = 50 and T' = 64, we have high power
to reject Hg : § = 0 when 8 = 0.1 when using our bandwidth parameter free estimator for the
variance in all cross-sectional and time dependence scenarios. The power appears to be negatively
related to the level of time- and cross-sectional dependence. In the presence of weak (polynomial)
spatial dependence, say, the power decreases from 0.999 in the absence of time dependence to
0.983 under MA(1) time dependence and 0.852 under AR(1) time dependence. In the presence
of AR(1) time dependence (worst case scenario) the power decreases from 0.919 in the absence
of spatial dependence to 0.852 under weak (polynomial) dependence and 0.243 under strong
(polynomial) dependence. As the sample sizes increase, the power approaches one, faster when
the cross sectional and/or temporal dependence is lower. The empirical power of the test based
on using the asymptotic critical values is comparable to the empirical power based on either the

naive or wild bootstrap algorithm.

4.2. Simulations with Heterogeneous Time Dependence. In our second set of simulations,
we allow individual heterogeneity in the time dependence in both the error term and the strictly

exogenous regressor. The error term wu,; is generated as

Upt = Poyplp,t—1 F Tpg OT Upt = Ty + eu,pnp,tfl

with p,,, and 60, individual specific AR and MA coefficients respectively and 7,,, as before,
characterizing the spatial dependence. A similar description holds for the independently drawn,
strictly exogenous regressor z;;, with p, , and 0, denoting the individual specific AR and MA
coefficients respectively and 1,; characterizing its spatial dependence. As before, we allow for
some time heterogeneity in the exogenous regressor as well. Unlike in our first set of simulations,
we allow the variances to exhibit heteroskedasticity as well.

In Table 4, we report the empirical size for testing the significance of our parameter in the
presence of heterogenous time dependence when n = 100 and T = 64, 128, and 256. We
consider here two heterogeneous specifications. For the first specifications we assume that the

time dependence in wuy, and z, for all individuals is AR(1), with corresponding correlations
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TABLE 4. Monte Carlo Simulations with Heterogeneous Time Dependence - Size

Time Mixed AR(1) Mixed AR(1)/MA(D)
Dependence Prp = Pup =04+ #21_1)
P:c,p:Pu,pZO-‘l"’z(I;;jl) forp=1,..,n/2; 0 else
forp=1,..,n Qx,pzeu,pzo.ﬁl-i-%

forp=n/2+1,..,n; 0 else

Estimator | V. Vnb pub ‘7Ct ‘/}cp ‘713? ‘7[3? Vv o ynd pub Ve ﬁop ‘71_?? ‘713?
(n,T) No spatial dependence
(100, 64) 097 .053 .074 .374 .056 .195 .198 | .084 .060 .070 .309 .062 .179 .179
(100, 128) 078 .055 .067 .395 .058 .157 .161 | .066 .051 .060 .312 .061 .143 .141
(100, 256) 069 .056 .063 .382 .059 .117 .124 |.059 .048 .053 .330 .059 .122 .122
Weak dependence (exponential)
(100, 64) 076 .049 .069 .221 .155 .140 .140 |.086 .061 .078 .243 .205 .145 .146
(100, 128) 074 .057 .065 .241 .127 .122 121 |.065 .049 .062 .236 .184 .119 .116
(100, 256) .058 .045 .056 .227 .120 .092 .091 |.065 .053 .059 .266 .215 .116 .112
Weak dependence (Polynomial)
(100, 64) 099 .0564 .074 .350 .087 .185 .189 | .077 .050 .065 .291 .092 .167 .168
(100, 128) 078 .0564 .069 .368 .074 .140 .144 | .065 .047 .056 .315 .082 .144 141
(100, 256) 063 .047 063 .385 .076 .118 .122 |.058 .047 .052 .312 .0v2 .111 .110
Strong dependence (Polynomial)
(100, 64) 103 .061 .084 342 475 191 192 | .087 .062 .080 .274 .464 .168 .169
(100, 128) 077 .053 .064 .352 470 .140 .144 | .066 .052 .061 .276 .413 .130 .131
(100, 256) 068 .052 .063 .340 455 .115 .119 |.062 .056 .062 .272 415 .104 .105

Prp = Pup = 04+ 2&;}1) for p = 1,..,n (equidistant on the interval [0.4,0.9]). For the second
specification we assume that half the individuals have an AR(1) time dependence and half the
individuals have an MA(1) time dependence, with the coefficients ranging from [0.4,0.9] for both
dependence processes.

The results in Table 4, suggest that our cluster estimator of the variance is robust to the presence
of individual specific time dependence. Compared to the homogeneous AR(1) time dependence
(see Table 1), there are only moderate increases in the size of our test associated with our cluster
estimator in both the heterogeneous AR(1) and heterogeneous AR(1)/MA(1) setting. As in the
homogeneous time dependence setting, the rejection rates based on the asymptotic critical values
do tend to be closer to the nominal rejection rates when n and T both increase. While the
rejection rates based on both bootstrap algorithms suggest that finite sample improvements in
inference can be made using these algorithms, we should be more cautious here as only the wild
bootstrap will be valid in the heterogenous setting. The improvements achieved when applying
the wild bootstrap are more modest than those suggested by the naive bootstrap.

In the absence of spatial dependence, inference based on the cluster estimator that ignores such
dependence, ‘A/Cp, has better size properties than ours in these heterogenous settings as well. Our
estimator, though, is robust to the presence of spatial dependence, while inference based on YA/cp
clearly is not. In the presence of strong spatial dependence, the size based on ?cp is 0.475 when

n = 100 and T = 64, whereas our proposal (based on the rejection rates using the wild bootstrap
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algorithm) yields a size of 0.084. Unsurprisingly, inference based on the cluster estimator that
ignores temporal dependence, ‘/}Ct, is oversized in the presence of heterogenous time dependence
as well. While improvements can be made by using a (time) HAC estimator of group averages
‘717}?’ the gains are less in these heterogeneous settings, and our cluster estimator, which does
not require the selection of a lag window m7 and accounts for the heterogeneity, has size closer
to the nominal rate in both the heterogeneous AR(1) and heterogenous AR(1)/MA(1) setting.
In the presence of strong spatial dependence, when n = 100 and 7' = 128 the rejection rates
for our cluster estimator (0.077 using the asymptotic critical values and 0.064 based on the wild

bootstrap algorithm) compare well to a size equalling 0.115 based on IA/}ZT

In our final set of simulations, we generalize the individual heterogeneity in the time dependence
for both the strictly exogenous regressor and the error term to permit a higher order autoregres-
sive/moving average process. Specifically, we consider the following heterogeneous AR(3) and
MA(3) processes for the error term (appropriately adjusted when describing the dependence for
the strictly exogenous regressor)

(1 = pur pL) (L + pupL + pusL?Jupy = 1y or
Upy = (14 0u1pL 4 Ou2 L? + 043 L)1,
with p, ,, and 0,1 5 individual specific (equidistant on the interval [0.4,0.9]) and 7, characterizing
the spatial dependence inherent in the error term. The two heterogeneous specification we consider
here are: one where the time dependence for all individuals is AR(3), and one where we assume
that half the individuals have an AR(3) time dependence and half the individuals have an MA(3)
time dependence. The empirical size of the test for significance of our parameter for these two
heterogeneous specifications are given in Table 5 for n = 100 and 7' = 64, 128, and 256.

Table 5 shows that our cluster estimator of the variance also performs well when we permit
higher order heterogeneous autoregressive/moving average temporal dependence. While inference
based on the cluster estimator that ignores temporal dependence, XA/Ct, is less oversized in these
heterogeneous settings compared to the heterogeneous AR(1) or heterogeneous AR(1)/MA(1)
(indicative that the temporal dependence is weaker here), there is now a much larger difference
in the performance of the (time) HAC estimator of group averages based on ?}ZT (automatic)
and YA/}Z:} (fixed). This is not surprising, since our chosen lag windows my and mJ. still rely on
a, now incorrect, AR(1) dependence assumption. In the presence of strong spatial dependence,
the rejection rates for our cluster estimator in the heterogeneous AR(3) setting (0.064 using the
asymptotic critical values and 0.059 based on the wild bootstrap algorithm when n = 100 and
T = 128) compare again well to the rejection rate based on A}TtT which equals 0.131. While in
the homogeneous AR setting finite sample improvements can be achieved by implementing either

the naive of wild bootstrap algorithm, here we require the use of the wild bootstrap algorithm.

In Table 6, we report the empirical power of the test for significance of 8 at the nominal 5%
level when 5 = 0.1 for the first two heterogeneous time dependence considered: heterogeneous
AR(1) and heterogeneous AR(1)/MA(1).

The results in Table 6 indicate that also in the presence of heterogeneous temporal dependence,
the power to reject Hy : 8 = 0 when 5 = 0.1 is large, even in small panels. As before, the power

appears to be negatively related to the level of time-dependence and cross-sectional dependence.
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TABLE 5. Monte Carlo Simulations with Heterogeneous Time Dependence - Size

prp = 01p = 0.4+ 5rl5ty;
py =02 = 0.3 py = 03 = 0.6

Mixed AR(3) Mixed AR(3)/MA(3)
(1= p1pL) (1 + poL + psL?)
(1 - pl,pL)(l + p2L + p3L2) Pep = Puyp = Pp for p= 1, TL/2,
Pap = Pup = Pp forp=1,...,n =0 else
(14 601,L + 021 + 03L3)
Pl,p:0-4+2&;_11)5 Opp="0up=0, forp=n/2+1,..
py = 0.3;p3 = 0.6 =0 else

Estimator | V. V® Vb Vo Vg ‘A/;ZT ‘A/IZT VooV vt Yo Vg ‘A/]TtT Vi

(n,T) No spatial dependence

(100,64) |.063 .051 .061 .156 .053 .156 .139 |.067 .056 .058 .177 .055 .130
(100,128) | .061 .054 .054 .172 .058 .150 .121 |.058 .051 .055 .181 .057 .114
(100,256) | .057 .052 .058 .164 .056 .135 .093 |.053 .047 .054 .174 .053 .093

Weak dependence (exponential)

(100,64) |.066 .051 .064 .142 .230 .143 .128 |.064 .054 .063 .139 .212 .127
(100, 128) | .068 .064 .063 .150 .207 .149 .113 |.059 .056 .053 .139 .190 .122
(100,256) | .060 .059 .057 .148 .225 .147 .093 |.060 .049 .059 .146 .206 .110

Weak dependence (Polynomial)

(100,64) |.066 .052 .060 .153 .093 .149 .131 |.067 .048 .061 .174 .092 .128
(100,128) | .057 .048 .053 .159 .083 .141 .109 |.057 .049 .047 .165 .074 .106
(100,256) | .051 .048 .047 .156 .078 .132 .091 |.054 .047 .049 .173 .076 .092

Strong dependence (Polynomial)

(100, 64) .069 .051 .069 .148 .531 .144 .133 |.072 .058 .066 .183 .510 .142
(100,128) | .064 .051 .059 .157 .525 .141 .114 |.062 .052 .058 .180 .498 .118
(100,256) | .059 .055 .060 .162 .517 .131 .100 |.056 .051 .056 .175 .510 .099

125
105
.081

127
.105
.087

122
.098
.080

132
.106
.086

The most noteworthy finding here is that in the presence of strong (polynomial) spatial dependence
the power is larger in the heterogeneous AR(1) setting than in the homogeneous AR(1) setting,
see also Table 3. When n = 100 and 7' = 64, in the heterogeneous AR(1) setting the size equals
0.386 versus 0.318 in the homogenous AR(1) setting.

4.3. Empirical Example: Bid-Ask-Spread of Stocks. The empirical example is taken from
Hoechle (2007), who introduced the Stata programme ztscc that implements the VIZ;T robust
standard errors for panel regressions with cross-sectional dependence. Following Hoechle (2007),

we consider the following linear panel regression model
BAp = oo+ BraVoly + BySizep + B3 TRMS S, + B4 TRMS p + epy

to investigate whether information differentials can partially explain the cross-sectional differences
in quoted bid-ask spreads, as suggested by Glosten (1987). The dependent variable is the relative
bid-ask spread, BA, and the independent variables are the stock’s abnormal trading volume, aVol,
the stock’s size decile, Size, the monthly return of the MSCI Europe total return index in USD




INFERENCE WITHOUT SMOOTHING FOR PANELS 25

TABLE 6. Monte Carlo Simulations with heterogeneous time dependence - Power

B =0.1
Time Mixed AR(1) Mixed AR(1)/MA(1)
Dependence Pap = Pup =04+ #21_1)
Prp = Pup =04+ 2(%_11) for p=1,..,n/2; 0 else
—1—n/2
forp=1,..,n Orp = 0up =04+ I2)(n/2—/1)
forp=mn/2+1,..,n; 0 else
Estimator |4 ynb b V Vb /wb
(n,T) No spatial dependence
(100 64) 939 .898 923 969 957 963
(100, 128) 993 991 992 998 997 998
(100, 256) 1.00 1.00 1.00 1.00 1.00 1.00
Weak dependence (exponential)
(100, 64) 931 .896 923 879 .845 873
(100, 128) 997 995 .996 992 989 992
(100, 256) 1.00 1.00 1.00 1.00 1.00 1.00
Weak dependence (Polynomial)
(100, 64) .906 .843 .876 945 925 937
(100, 128) 990 984 .989 .996 994 995
(100, 256) 1.00 1.00 1.00 1.00 1.00 1.00
Strong dependence (Polynomial)
(100, 64) .386 .300 353 441 387 424
(100, 128) 498 429 464 .646 .608 .633
(100, 256) .753 723 .745 .862 .851 .861

(in %), TRMS, and its square, TRMS?, as a simply proxy for the stock market risk.? Using
monthly data from December 2000 to December 2005 on 195 stocks selected from the MSCI
Europe constituents, Hoechle (2007) revealed that the impact of accounting for cross-sectional
dependence on the standard errors of the parameter estimators was large whether individual
stock fixed effects were included or not. No time fixed effects were considered, as TRMS is
constant across stocks. In order to implement our frequency domain based cluster estimator of
the covariance matrix, we modify the sample slightly.> To permit the computational advantage
of the Discrete Fast Fourier Transform based on a prime factor algorithm we ignored the last
observation, so that T' = 60.

In Table 7 we provide various estimates of the standard errors for the fixed effect estimator
together with their associated p-values for their individual significance. Aside from using Driscoll

and Kraay’s HAC' estimator, V};", we provide standard errors based on our cluster estimator,

2 .y . Askpt—Bidpt
The bid-ask spread, BA, is defined as 100'70.5(‘451‘-17#31(1?&’

defined 100 (In (Volp:) — % >, In(Volys)) , where Vol denotes the number (in thousands) of stocks traded on the
last trading day of month ¢.

and the stock’s abnormal trading volume, aVol, is

3While the xtsce procedure allows for unbalanced panel datasets, our focus on the frequency domain specification
makes it more natural to focus on balanced panels. To reduce the impact, we have replaced missing observations
for the bid-ask spread by their predicted values based on the unbalanced FE estimates. We have dropped one stock

due to missing data on abnormal trading volume and 23 stocks that that do not cover the whole period.
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TABLE 7. Bid-Ask-Spread of Stocks

aVol Size TRMS? TRMS

Parameter estimates, Bj —.0012 —.1389 .0030 —.0047
Standard error

v 0007 .0298  .0009  .0050
v 0009 .0365  .0008  .0081
1% 0005 .0237  .0011  .0084
Ver 0009  .0333  .0008  .0078
Vo 0008 .0358  .0005  .0042
p-value (significance)
v 068 000 000  .349
Vo 168 .000  .000  .558
V  asymptotic 022 .000 .006 576
naive bootstrap .056 .000 .012 .583
wild bootstrap .003 .000 .008 .624
Veu 198 .000 .000 543
Vo 148 000  .000  .262
n =195 T = 60

‘7, together with cluster estimators that either ignore time dependence, 170“ or ignore spatial
dependence, ‘701,. For the lag window required for the HAC' estimator, we consider two choices:
my. (fixed) equal to the 8 months lag chosen by Hoechle and mp (automatic) which implements
the parametric AR(1) plug-in method. As our simulations suggest finite sample improvements can
be made using our bootstrap algorithms, we report p-values associated with our proposal based
on the asymptotic distribution and as obtained using the naive and wild bootstrap algorithms.
As in Hoechle, the HAC standard errors (with m% = 8) of all parameter estimates, with the
exception of the variable Size, are considerably larger than the usual LSF standard errors. As the
associated p-values for the significance of a Vol exceed the 5% level of significance, consequently,
there is only weak evidence that information differentials help explain differences in quoted bid-
ask spread ceteris paribus once spatial dependence is accounted for using the HAC standard
errors. This result, however, is sensitive to the particular choice of m7,, with the p-values and
standard errors for a Vol decreasing when larger window lags are considered. Our cluster estimator,
which does not require the selection of a window lag and thereby does not restrict the time
dependence, has p-values (and standard errors) for aVol that are smaller than those indicated
by HAC with window lag m7. suggesting that the window lag indeed may have been chosen too
small. Computing the p-values using the wild bootstrap algorithm (indicated here in view of
observed heterogeneity in the sample) lends further support of this. The automated window lag,
based on implementing the parametric AR(1) plug-in estimator, on the other hand suggests that
much less time dependence should have been taken into account as my = 1; this suggests that
the parametric plug-in method does not work particularly well in this case. While our cluster
based inference therefore finds evidence that information differentials help explain differences in
quoted bid-ask spread ceteris paribus, cluster based inference that ignore either cross sectional or

temporal dependence, on the other hand, do not permit the support of Glosten’s hypothesis.
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The results in Table 7 also lend support for return differentials between small and large stocks
(Size) (e.g., see also Fama and French, 1993) and a correlation between stock market risk (TRMS?)
and the bid-ask spread. While the p-values associated with their significance are small regardless of
which estimator for the covariance of the fixed effect estimator is used, it is clear that the standard
errors based on using the HAC estimator for Size and TRMS? exhibit a high sensitivity to the
particular choice of the window lag, m}. versus my, which renders the limitation of bandwidth
based inference obvious. When removing the restriction on the time dependence imposed by
Driscoll and Kraay’s HAC estimator, we obtain standard errors on TRMS and TRMS? that
are larger than the presented HAC' standard errors in accordance with results obtained in our

simulations.

5. CONCLUSIONS

In this paper we expand the literature on inference in panel data models in the presence
of both temporal and cross-sectional dependence without relying on any parametric functional
form of such dependences. While a standard methodology, based on the HAC estimator, is
often invoked and used in the context of time series regression models, in the presence of cross-
sectional dependence its implementation has only recently been considered, see Kim and Sun
(2013), Driscoll and Kraay (1998) or Vogelsang (2015). To deal with various serious caveats of
the HAC estimator, we propose a cluster based estimator which is able to take into account
both types of dependence, extending the work of Arellano (1987) and Driscoll and Kraay (1998)
in a substantial way. Our approach is based on the realization that the spectral representation
of the fixed effect panel data model is such that the errors become approximately temporally
uncorrelated and heteroscedastic. As the cluster estimator may not be reliable in small samples,
and therefore it may not provide a good approximation to make accurate inferences, we present
and examine a bootstrap algorithm in the frequency domain. Simulation results reveal that our
estimator performs quite well, even in the presence of strong spatial dependence, and our bootstrap
algorithms provide small sample improvements. In light of the sensitivity of the H AC estimator
to the choice of the window lag and, more importantly, the associated measure of distance between

the cross-sectional units, we feel that our approach offers a welcome contribution in this literature.

ArPENDIX A. PROOF OF MAIN RESULTS

We first introduce some notation. For a generic function h, we shall abbreviate h (\;) by h (j)

. T
and for generic sequences {wpt} wep P=1..n,

(Y G
j¥,~(3)*T1/2Z ;Z%t e,
t=1 q=1
Using expression (10.3.12) of Brockwell and Davis (1991), we also have the useful relation

Jup(3) = Bup(=1) Tep (7) + Yup (7) (A1)
‘-71710 (]) = BIJJ (717) jX,P (])+Yx,p (])’ p= ]-a"'ana
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where By p (§) =: Buyp (€), By () =t Bayp (64) and

T2 T
Yl = Same (z{ 3 -3 ee) (12
t=1—¢ t=1
00 T—¢ T
V) = Tawe® (ma{ -3 lue ).
/=0 t=1—¢ t=1

Finally, we shall make use of the well know result
EJyp (3) Txg (k) = ¢, (p,0)1(j =k) (A.3)
EJep (7) Teq (k) = 0, () 1(j =Fk).

A.1. PROOF OF THEOREM 1.
We begin with part (i). Without loss of generality assume that x,; is scalar. Using (2.2) and

standard arguments, we obtain

1 /2 Z TptUpt

t=1 p=1
T n
- 1/2 ZZ LptUpt = 1/2 ZZ Tp+Tp —T.) upt (A.4)
t=1 p=1 t=1 p=1
T
1/2 ZZ Up + Up — W) Tpt + 0p (1)
t=1 p=1

Because the second and third terms on the right of (A.4) are handled similarly, we shall only look

at the second. Now
2

T n
Z Z L-tUpt = Z Z E (j‘tj's) Yu,pq (t - S) Pu (p7 q)

t=1p=1 t,s=1p,q=1
1 " r
= 2 Z ©r (P2, 92) o (P15 q1) Z Yapsgs (&= 8) Yuprg (= 8)
D2,92,p1,q1=1 t,s=1
T - i
< Cﬁ Z |(px (P276]2)| Z ‘qu (P17Q1)|
p2,q2=1 p1,q1=1
= o(Tn).

The latter displayed expression holds true because Conditions C'1 and C2 imply that

T
Z sup ’71,:0(1 (t— s){ + sup ‘7u,pq (t — s)’ <C, (A.5)
fam1 P P

whereas Condition C'3, see also Remark 1, implies that*

4For two nonnegative sequences {a,} and {B,}: > apB, < C implies that Y, Y. B8, = 0(n) if 3 (ap + ,) =
o(n).
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so that
n n
Y eulpp) Y ¢u(ap)=o(n?). (A7)
p1,p2=1 q1,92=1

Proceeding similarly with Y7 > g1 Tp.upt and T.. S > p=1 Upt, We can conclude that the
left hand side of (A.4) is

1/2 szpt“pt +op(1) LN (0, ®)

t=1 p=1

by Lemma B.8. This concludes the proof of part (i) of the theorem.

We now show part (ii). Proceeding similarly as in part (i), we shall examine

n T-1 n T-1
1/2 Z Z jafp juvp - 1/2 Z Z jz,p ) (AS)
p=1j=1 p=1 j=1
n T-1
1/222‘7%7’ —J)-
p=1 j=1

The first term of (A.8) converges in distribution to A/ (0, ®) by Lemma B.9. So, to complete the
proof it suffices to show that the last two terms of (A.8) are o, (1). We examine the second term

only, with the third term being handled similarly. By standard algebra and (A.1), this term is

n3/2 Zl T1/2 ZB z,p )jx,p(') Jeq (—J)
n3/2 Z T1/2 Z By (3) Txp (1) {Fuq (=3) = Buyg () Teq (—5)}
P,q=1
n3/2 Z T1/2 Z up () Teq (—3) {Teq (=F) = Bag (3) Txp ()} (A.9)
pg=1 Jj=1

n 1 T-1
n3/2 Z 72 jx,q (=7) — By g (J) Txp (7))
p,q=1 j=1
X (Jug (=7) = Bug (7) Teq (=3))} -

We examine the second term of (A.9) first. Using (A.3), we have that its second moment is
bounded by

1 n 1 T—1 »
7 2 Pulan@) e (pnpe) 5 ) s | fepim ()]

P1,P2,q1,92=1 j=1 P1,P2
n

1 n
= T?’L3 Z qu(q17Q2) Z sox(p1,p2)

q1,q2=1 p1,p2=1
= o0 (T_l) ,

by Lemma B.1 and (A.6). Likewise the third and fourth terms of (A.9) are o, (T~'/2). So to

complete the proof we need to examine the first term of (A.9), whose second moment is bounded
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by
1 T—-1 n n
773 2D | frpg (DI fupg DI Y @aprip2) Y eulare) =o(1)
j=1 P4 p1,p2=1 q1,92=1

by (A.7) and using (sup,, , |fe,pq (7)] +5UP, , [ fupq (7)|) < C. This concludes the proof of the

theorem. 0

A.2. PROOF OF PROPOSITION 1.
We begin with part (a). We need to show that, for any ki, ke = 1,..., k,

T-1

Dpy gy = ! Z{(nl/QZj,pkl ) Tap ( J) ( 1/22\73’p,k2 (—7) ,p(]))}

]7

—> (I)kth .
To simplify the notation we shall assume that k = 1. Now, after observing that
T () = T () = (B=B) Tz ()

we have that & = <i>1,1 is

1T 1
1{( 1/22@,,, ) Tup (= )(1/22@,19 Ju,p())}
T

Jj=1 p= p=1
2
. 21 T-1 1 n
+(8-8) 7 (W > Try (j)) . (A.10)
j=1 p=

The third term of (4.10) is O, (I'~') by Lemma B.7 and B—pB= Op ((nT)fl/Z). The second
term of (A.10) is also o, (1) by Cauchy-Schwarz’s inequality if we show that the first term converges

in probability to ®. Since
Tzp () = Top (4) — Tz (), (A.11)

this result holds true if we show that

T-1 n n
> { (nfm > e (3) Fup <j)) (nf/g > Tep (=3) Tup <j>) } S (A.12)
1

and
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A.13). The first term on the left of (A.13), which can be rewritten as

—~

First we examine

N
|

1

n1/2\7§,~ (]) ju,' _J 1/2 Z jx,p j“’p ( )

=l

1

J
has its first moment given by
T-1 n

2 S B (e () e (=) B (T (=) Ty ()
j=1 p=1
C T-1 n n C
- ey ennYano{i+G]
j=1p=1r=1

using Lemma B.1. Using (A.6), we conclude that the last displayed expression is o (1). Next, we

observe that Lemma B.5 implies, for instance, that
E (Ja, (=3) Tup (3) Ta (=k) Tug (k) = B> (T (=5) Tup (7))

" e ora) {1<j - k)+§}.

= sou(p,Q)% >

p1,q1=1
The variance of the first term on the left of (A.13), therefore, is bounded by

1 T—-1 n 1 n n c
ﬁz Z(p(pvcﬂﬁ Z @u(plyq1) Z @x(plan){l(j:k)—{—T}:O(T1)

Jk=1p,g=1 p1,q1=1 p1,q1=1
using Condition C3 and (A.7). Hence the first term on the left of (A.13) is o, (1). The same
conclusion holds true for the second term of (A.13).
To complete part (a), we examine (A.12). Using (A.1), we have that (A.12) holds true if the
following expressions (A.14) — (A.16) are oy, (1) :

1 T-1
Tn Z { (ZB x,p Bup (4) Jxp (J) Jep (]))

Z Bm,p (_J) BU,p (J) jx,p (]) j&,p (_]) - &, (A-14)
p=1
1 T-1 n
7 2 | D B (75) T (1) Y (=) ZB,p ) JTep (=) Yap (D) | (A5)
7j=1 p=1
1 T-1 n
T 2 | 22 Yer () Yup () ZY,p Y (4) (A.16)
j=1 \p=1

We begin by showing that (A.14) is o, (1). First, the expectatmn of (A.14) is

S|

S o, ;ZB,p Bup () Bog (=) Bug (7) — @ = O (1)
q=1

because, by continuous differentiability of fy pq (A) fupq (A), we have that

T-1 2T

D Bup (=) Bra (<) Bup (1) Bua (1) = | foa V) Fupa ) dX = O (7).
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Next, because (A.3) implies that

E{(Txpr (3) Tepr (—3) T () Tesan (=3) — E ()
(jx,pz (—k) Tt ps (k) T2 (—k) Ttz (k) = E ()}
= ¢, (P1,02) 02 (01, 82) P (q1.P2) Py (P1,92) 1 (§ = k)
+¢5 (P1,P2) 02 (1, 42) 0o (P1:P2) 0o (01, 42) 1 (G = k)

o0
+20, (1, p2) 0, (q1,02) > e (p1) e (p2) o (@) e (q2) 1 (j = k)
=1

s Kagha,
+;0e p1) ¢ (p2) co (q1) ce (g2 ;dz p1) de (p2) de (q1) de (g2) (1 (j= k)+%),

we have, by standard algebra, that the second moments of (A.14) are o (1), when recognizing

> de(pr)de (p2)de (@) de(g2) < D de(p1)de(p2) Y de (q) de (g2)
(=1 — _

= ¢y (p1,p2) ou (01, 62) (A.17)

D erp)ee(p)ee(@)ee(ae) < D colpr)ee(p) | cel@m)ee(q)
/=1 /=1

—
= @, (p1,p2) ¢: (01, q2) (A.18)

and

l1-a
Z @y (P1,12) Pu (P1,02) < (Z (p1/a pl,p2) (Z 801/1 “( P1,(J2)

p1=1 p1=1 p1=1
= O(l) (A.19)

since 221:1 ©a (P1,P2) ¢y (P1,p2) = O (1) implies ¢, (p1,p2) = O (Pfa) and ¢, (p1,p2) = O (pfﬁ)
with a + 5 > 1.

Next consider (A.15). Because sup,, Bz (—j) Bup (§)| < C, the second moment of (A.15) is
bounded by

Tn2 S Y B )T (B Yo () Ve (1)

J,k=1p1,q91,p2,92=1

E{Yu,m (_ ) u,q1 (k )jﬁ,pQ (=J) ‘-757112 (k)}’ .

From here, proceeding as with (A.14) but using Lemmas B.1 and B.2 as needed, we easily conclude

that (A.15) = o, (1) by Markov’s inequality, since for instance

E{Txp (3) Tcar (=K) Yoy (7) Yago (—K)}

= E(Jxp (5) Txar (=) E (Yapy (5) Yago (=)
+E (T (J) zp2 (1)) E(Txaqr (—F) Ya g, (=F))
+E (Txp () Yoo (=K) E(Txq1 (=F) Yap, (7))

+cum (jXJ’l (4) s I (—Fk) i Y po (4) i Yo (—Fk)) .
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The proof of part (a) now concludes since (A.16) = o, (1) by standard algebra and Lemmas B.1
and B.2.
Part (b). Using Lemma B.6 and (A.11), it suffices to show that

n T

n T
AN T () e SN T () Tep () = 0 (1)

p=1j5=1 p=1 j=1

This holds true proceeding as with the proof of part (a) and by recognizing that, by the continuous
differentiability of fr, (A), T2 fop () = fo fap () dA = gy O

A.3. PROOF OF THEOREM 2.
Because Lemma B.7 implies that (Tn)_1 Zp 1 ZT ! Tz p (4) EiN Y; and abbreviating ]/”; (5) =
L Zq 1 Ziq (4), it suffices to show

n T-1
T1/2n1/2 Z Z jx,p ( ( ) — fl/2 (4 )) Tup (—J) = 0p= (1) (A.20)
p=1 j=1
n T-1 o~
(if) T1/2n1/2 Z Z Tap (A 22 (5) Jusp(—3) = N (0,®) (in probability) (A.21)
p=1 j=1

We begin with part (ii). The left hand side of (A.21) is

n T-1
T1/2 1/2 szl/2 () Txp (G) Turp (—3) (A.22)
p=1 j=1
n T-1
b O 0 S () (T ()~ Bap () Tp (1) i (=3
p=1 j=1

The second (bootstrap) moment of the second term of (A.22) is

T Z qu Uu,pq j:c,p( ) ( )jxyp( )) (jx,q( ) Bx,q (*‘7) jx#] (*‘7)) (A'23)

p,q=1 j=1

using

T
" . ~ . ~ 1 ~
E* (Jurp (7) Tur g (=) = Oupgl (= k)5 Oupg = T Z%tuqh (A.24)

t=1

By Lemma B.1 and (A.1),

. , , c
E (*797711 (J) — ( )jx,p( )) (jrq( J) — Bz.p (—7) Jx.p (_J)) = f%ﬁx ®»,9);

G = 0 (0 0) (1 +0, (T—1/2)> .

Hence it easily follows that the expected value of equation (A.23) is o (1) and consequently the
second term of (A.22) is o,+ (1). We observe that (A.23) is a nonnegative expression.
Turning to the first term of (A.22), let us denote

=i (n) = 1/2pr5 v G0) = Buy () fuly () (A.25)
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Standard algebra then yields that the first term of (A.22) is

1 1 <&

—_ = n
1/2 T S,t
T / t,s=1

M=

g(]) ei(t = T1/2 Z ¢ st T3/2 Z n ) A'26)

j=1 t,s=1 t,s=1

where to simplify the notation we assume that ¢, (p,p) = ¢, (p,p) = 1 for all p = 1,...,n and
¢ (r) is the rth Fourier coefficient of G (j). The right hand side of (A.26) now can be written as

1
?5/2 Z 1/2 Z Xptt Pt + Z T1/2 Z nl/2 prt“p tre T z:lxp,t+€upt : (A.27)
D

Aso(r)=0 (r*2) by Conditions C'1 and C'2, given the independence of the sequences of random

. 1 . . .
variables — > =1 XptUp e and ﬁ > p=1 Xp,tteUp in t for completion of the proof it suffices
to show that.

T—¢ 1 &
Af, = 1/2prtupt+e—>/\f 0,—— lim — > ¢ (p.g)

T e
Observe that E* ‘A;n’4 =0, (1).
The second bootstrap moment of A}, is
T L
- Z Xthqt Z up,r+ﬁuq r+l = Z Xthqt Z Up,r+LUq,r+0 (1+ Op (1),

pql pql

by standard algebra and Theorem 1. Now, Conditions C'1 and C2 imply that

n T—2 n
1 1 T—-/1
n Z (E (Xthqt) T Z E (Up,r+wq,r+£)> =TT n ¢ (p,q).

p,q=1 r=1 p,q=1

Moreover, because E (uphtJréum,t+fup275+€u1p78+f) =EB (upltumtupzsutIzS)

Z XptXqt Z“ptuqt

2

pq 1
1 n 1 T2
- 2 Z E (thqutxpztxqzt) T2 Z E (up, gy tUpystigys)
P1,q1,p2,92=1 t,s=1
1 n 1 =
- ﬁ Z 72 Z Xp1tXQ1t) E (Xp2tXQ2t) + B (Xpltxqgt) E (ngthlt)

P1,q1,p2,q2=1 t,s=1
FE (XputXpat) B (XautXaat) T W (Xpot5 Xaut; Xpot; Xaat)
X {E (upyttqyt) E (Upysugys) + E (Upttiss) B (tpystiqt)
+E (tp,1Upys) E (tgyttgys) + cum (Up,t; Ug,t; Upgs; Ugys) }

1
) Z Z Xp1th1t E (sztxqzt) E (uptugyt) E (upystigys) (1 +0(1))
P1,91,p2,92=11,5=1

2
= TT_E%ZsO(p,q) (1+0(1))

p,g=1
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as B (upstgr) = @ (P, @) Vg (1 — 8), Z;—:s:l Vupg (r—5)| = O(T) and (A.19). This shows

that the second moment converges to the square of the first moment, and hence E* ‘Af,n‘2 —

TZl pq 1@(}77 )—Op(l)

Thus, it remains to show the Lindeberg’s condition to complete the proof of part (ii). To that

end, it suffices to show that

1 n
n? > E (gt are) = 0p (1)

p=1
The left hand side of the last displayed expression is
A 1 1 n 41 T—¢ .
a: Z ol 2 ke = 3 Il X ke (1 0, (1)
p=1 t=1

= O0p(n71),
which completes the proof of part (ii).
Next we prove part (i). The left side of (A.20) is

T-1

s o 3 (T2 G) = £ () B ) T () o () (A.28)

p=1 j=1
n T-1
TWWZZ (FY2G) = 132 () (Trp () = By () T (3)) e (—3)
=1 j=

We shall only show explicitly that the first term of (A.28) is op+ (1), the second term following
similarly if not easier proceeding as with the second term of (A.22) and Lemma B.1. Now by

(A.24), the first term of (A.28) has second bootstrap moments given by

T Z nT Z {/\1/2 — £ 0 )}2 fa (9) Z UpttiqtTyp (7) Txq (=3 -

P,q=1
Because the last dlsplayed expression is a nonnegative expression, to show that it is o, (1), it

suffices to show that its first moment converges to zero. To that end, we first observe that

(RPG) - 120 < ZI 2 () = fu ()] = 0p (1) (A.29)
using standard arguments and Theorem 1. Moreover, as for instance

1 & . :
n Z TptZatTxp (7) Tx,q (=) = 0p (nT)

pq=1
because the left side is a nonnegative expression that has an expectation which is o (n), we have

by arguing as in the proof of Proposition 1 that

n

- Z Upt Txp (J) Ut Tx,q (—7) = % Z Upt Txp (J) Ut Tx,q (—7) (1 +0p (1))

Pq 1 p,g=1

The proof of part (i), and thereby the theorem, therefore, is completed if

Z upttgtTxp (7) Txq (=3) | = O (n).

p,g=1
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But the left hand side of the last displayed expression is

Z Pu (0, @) E (Txp () Txq (—3))

p,g=1
= Z Pu (p7 Q) T Z FE (.I'ptxqs) efz(tfs))\j
p,q=1 t,s=1
= C) (@) e, (p,9) =0 (n)
p,q=1
by Condition C'3, which completes the proof. .

A.4. PROOF OF PROPOSITION 2.
As with the proof of Proposition 1, we shall assume that &£ = 1. Now, after observing that

Farp () = T () = (B = B) Tz ()

we have that ®* equals the sum of the following expressions (A4.30) — (A.32) :

T-1 n
1 y 1 : _ .
T u(]) (n1/2 § jﬁp (.7) ju*J) (_-7) 1/2 E :j$7P ju p( ) - (ASO)

j=1 p=1
2(8°=B) 2B | i 2o Tew ) | | i D0 Trw (<) e () | (A3D)
7j=1 p=1 p=1
2
9 1 T-1 1 n .
(B =B) 22 | o T )] - (A.32)
j=1 p=1

That (A.32) is op+ (1) follows straightforwardly by Theorem 2 and Lemma B.7 and (A.31) is
op+ (1) by Cauchy-Schwarz’s inequality if we show that (A.30) is 0p« (1). To that end, using (A.11)
and (A.24), we have

* 1 o
E*(A30) = qu Z Tz p (7) Trq (=) Cupg — @
p,q=1
1 T-1 R n
+ﬁ Z fu (5) Z %, (J) Tz, (=) Oupq-
Jj=1 p,q=1

Because Gupg = ¢y (p,q) (14 0, (1)) and & — & = o0, (1) by Proposition 1, proceeding as in the

proof of Theorem 2 part (i), it suffices to examine the behaviour of

1

Z fu (4 Z {eu (@) Tap (7) Tog (—=5)} — @ (A.33)
J 1 p,q=1
1 T-1

+Tj:1 fu () Tz (5) T ( pqzl ¢, (0, Q). (A.34)

(A.34) is op (1) as we now show. As it is a nonnegative sequence, it suffices to show that its first

mean converges to zero. Using (A.1) and then Lemmas B.1 and B.2, we have that its first moment
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is proportional to

n

% > s%(z%@% > ¢u(p.g) =o0(1)
p,g=1

p,q=1

by (A.6). Because the first moment of (A.33) is o (1), it then remains to show that the (boot-
strap) variance of (A.30), with Jz , (j) replaced by J,, (j), converges to zero. Using (A.24), the

(bootstrap) variance is

T-1 n
1 . 1 . .
T2 J/CB (7) n2 Z Tp1 (1) Toar (=) Tops (=3) Tr,as () OupipsOusqrae
J=1 P1,q1p2,q2=1
rag (L0, (1) =
» ~ ~
s %:j {Fi) Futh)

x Z Pu (P1,@1) Pu (P2, @2) T py (1) Trigy (=) Tapa (=) Tage (K) ¢

P1,q1p2,92=1
with Lemma B.4 guaranteeing
cum” (u;;lt) uzltv u;;gt? UZ;Qt) = R4,¢¥y, (pla q1) Pu (p27 QQ) (1 +op (1)) .

From here we proceed as before after noticing that &, p,p, = ¢, (p1,p2) (1 +0p(1)). This com-
pletes the proof of the proposition. O

A.5. PROOF OF PROPOSITION 3.
As with the proof of Theorem 2, it suffices to show that

T-1 n
. d* . e
T1/2n1/2 Z ZJ G —j)n; = N (0,®) (in probability). (A.35)
7j=1p=1

Because 7; are normally distributed it suffices to show

T-1 n
" P
E T1/2n1/2 Z ij,p ju,p ) — .
j=1p=1

This is the case as we now show. The left hand side of the last displayed expression is

n

T-1
%ZZ@pﬁﬂwmwmm

=1p,q=1

T-1 n
= S T () T () T () Tua () + 0 (1)

j=1p,q=1
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as Upt — Upt = <B - B) zp and B—B= O, (Tﬁl/anl/Q). Using (A.11) and proceeding as in the
proof of part (a) of Proposition 1, we now have that the right hand side is

o Z ZJx,p ) Toq (=3) Tuip (=) Tug (—5)
j=1p,q=1
T—-1 n

+%Z Z ‘7$7p(j)jx ( )ju,p( )jwq(_j)

p,q=1
+1Z Z ‘757' (]) jf,'(_j)ju,p( )juq( )+0p(1)

The first term converges in probability to ®, whereas the second term follows by Cauchy-Schwarz’s
inequality if the third term is also o, (1). But that term is o, (1) proceeding as in the proof of
part (a) of Proposition 1 using Lemma B.5. Again observe that the expression is nonnegative.

This concludes the proof. ]

ArrPENDIX B. LEMMAS

First denoting Yy, (j) = { ?:_11!—@ _ Zthl} é-ptef’it)\j and Uy, (j) = { th_lé_z _ Z?:l} Xptefit/\j’
we have that Y, , (j) and Y, (j) given in (A.2) can be decomposed as

Yup () = Y6+ Y3 () (B.1)
Yop () = Y80 +YE (),
where
1 < :
Y () = T/ Y ode(p)e T, ()5 YE) () T1/2 Z dy (p) €™ Xy (5)
£=0 (=T+1
1 < :
Y30 = Zim D@ e W, () YE (G Tl/z Z ce (p) e "MWy, (7).
/=0 (=T+1
Lemma B.1. Assuming C1 and C2, we have that for p,q =1,..,n and some vy, v, > 0 finite,
. VwPw (P, Q)
E <Y(1%7( )YS}I (—k:)) = —@7F5 ) w=uorz (B.2)
E(YZH)YE(H) = o) e, 1 =F: w=uors. (B3

Proof. We examine only the case when w =: u, with the proof for w =: x similarly handled. We
begin with (B.3). Because for £ > T', E (Y, (j) Yeq (—k)) =2T¢, (p,q) 1 (j = k), we obtain that
the left hand side of (B.3) is

2 Y de (0)de, (@) (P 9) 1 = k).

The conclusion then follows because Condition C1 implies that Y%, sup, |d¢ (p)| = o (T71).
Next we consider (B.2). By definition, the left side is

. Vu
Z de, (P) dey (@) E(Yep (5) Yo (—K)) = 0y (2%(1)7
51752
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since Yy, () = {Z?:lfé - Z?:Tfﬁrl} Epe™ when £ < T, so that

¢
E(Yop(§) Yoq (—k)) =20, (p,q) Y "),
t=1
We now conclude because ;2 £sup, |dy (p)| < oo by Condition C'1. O

Lemma B.2. Assuming C1 and C2, we have that for p,q=1,..,n,

T ¢
(a) E (Yv(f,;)o (7) Je.q (—k)> = ¢u(pq) % > dy (p)e Y et
(=0 t=1
B (Yq(fz)) (4) Te.q (—M) = ¢u(P,9)1(j=k)o(T7?)
T ¢
(b) B (Ya:%z)) (1) Txa (_k)) = ¢, (p,q) % Z co (p) e Z ik
/=0 t=1

B (Y () T (-F) = 0u(p.a) 1 =k)o(T72).

Proof. As in the proof of Lemma B.1 we shall only show part (a). To that end, we first notice
that Condition C'1 implies that

T
E(Tep(4) Teq (=F)) = %T(l];;q) (1 G=k)1U>T)+ Z etNi-r1 (0 < T)) .
t=T—+1

From here the proof concludes by standard algebra. O

Lemma B.3. Assuming C1 and C2, we have that

lcum (€63 Epati Epati Epat) | < |Rael o (P1,12) @4 (D3, D4)

|cumn (Xp, 13 Xpati Xpsts Xpat) | < 15| 02 (P1,02) @, (D3, D4) (B.4)

Proof. Using inequality (A.17), the proof follows easily since by definition

cum (€5,65 ot Epat Epat) = Fag > ar (p1) ae (p2) ae (ps) ar (pa) -
/=1

The proof is similar for the second expression in (B.4), where inequality (A.18) is used instead of
(A.17). O

Lemma B.4. Assuming C1 and C2, for some 7 > 2,

C |"€47§| P, (p17p2) "2 (p37p4)
(ta—t1)" (t3 —t1)" (ta —t1)"

C |H47X| P (p17p2) P (p3ap4)
(t2 —t1)" (t3 —t1)" (ta —t1)"

Proof. As in the proof of Lemma B.3, we handle the first displayed inequality only. Without loss

|Cum (upltl 3 Upatas Upstss up4t4)’ <

|cum (l‘mh; Tpatas Lpstss $P4t4)’ <

of generality we take t; < to < t3 < t4. Condition C'1 and the definition of the fourth cumulant
then yield that

o
cumn (tpy 1y Upgty; Upstsi Upats) = dic (01) dicytn—ty (P2) dits—t, (P3) dicrra—ty (1)
k=1

Xcum (é.plt; gpzt; épgt; £p4t) .
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From here we conclude using Lemma B.3 and the fact that Condition C'1 implies that sup,, |dy (p)| =
O (k~7) for some 7 > 2. O

Lemma B.5. Assuming C1 and C2, we have that for w =: u or x,

B Tain (1) Tage (=) = Fus D20 1) {16 = 1)+ 5 | (B.5)
and
B (Fun () T (1) T () Tugn (~K) (B.6)
~ pu e ) {1416 =1 + S
Proof. Consider w =: u, say. By (A.1), we have that the left hand side of (B.5) is

E((Bupy (=3) Tepr () + Yupy () Bups (k) Tepy (—F) + Yups (=F))),

which using (A.3) equals the right hand side of (B.5) by Lemmas B.1 and B.2.
Next, the left hand side of (B.6) is

E(Jupy (3) Tups (=) E(Tups (k) Tups (=K)) + E (Fupy () Tups (k) E (Fupy (=5) Tups (—F))
+E (\7“7171 (J) Tupa (—k) E (\7%173 (k )ju7p2 (=) + cum (ju7p1 (J); Tups (—7) i Jups (k) s Tu,pa (—k)).
Using (B.5), the first three terms of the last displayed expression are proportional to

Jupips (7) fu.pspa (7) Pu (P1,02) o (P3,04) 1 (j = k),

while the absolute value of the last term is bounded by

T T
1 Kl @ (P1,P2) Py (P3;P4)
2 Z \cum (up1t1;up2t2;up3t3;up4t4)| < C 2 Z (t _Z )T (t — tu)r (t’ ¢ )7-
t1,ta,t3,ta=1 t1,ta,ts ta=1 2 1 3 1 4 1
C
< Pu (P1,02) 9o (P3,Pa)
because 7 > 2 using Lemma B.4. From here the conclusion follows easily. O

Lemma B.6. Assuming C2 — C4, we have that for some n > 0,
2

Zz wp (1) = fop () | =0 (n77). (B.7)
Proof. Standard algebra yields that the left hand side of (B.7) is bounded by
2 2
E Z{Jz,p () Tap (=3) = B (T (1) T (=) } ZEI,p ~ frp )

p—l

Now %Z EZ,p,(j) — fop(§) = O (n7") is standard as f;, () is twice continuously differen-
tiable and Condltlon C4 holds. Using Lemma B.5 ensures that the first term of the last displayed
expression is

C < C _

=D #ia) <1+T> =0 (n™")

p,q=1

by Condition C3, see also Remark 1. O
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Lemma B.7. Under C1 — C3, we have that

T_1 2 2
I [l , 1< ,
7o 22T @] (T = e (B.3)
j=1 p=1 =1
2 2
1 T—-1 1 n T 1 n
COIN D MU I N BTED SFREV] IRONEP (B.9)
i=1 \ " p=1 - p=1
Proof. Noticing that
1 < ,
Ezz—x,p (.7) 7 P (.7) = Ix, (])a
p=1

ZI =

’ﬂ\w
&2\

We shall examine the first term of the last displayed expression, with the second one being handled

similarly, if not easier. Now, by definition

n

] —%Z jz,q )7

so that Lemma B.5, in particular (B.6), implies that

n

. 1 . C
EZ? (j) = v > @ (p1,p2) ¢, (p3, 1) {1+1 U=k + T} =o(1)
P1;-.spa=1

because n 2 > p1.pe=1 P (P1,p2) = 0(1) by ergodicity. This completes the proof of (B.8).
Regarding (B.9), it suffices to show that

(T2 (1 » 2
T YT ) - ETp ()| = 0p(1) (B.10)
j=1 p=1
1T 1 n ) n
7o Zz,p ()~ E@ap () | =D E@ap () = 0p(1), (B.11)
Jj=1 p=1 p=1

because the continuous differentiability of f;, () implies

1 T-1 1 n
P BTG - [ gggonzfz,p (1)
j:1 p:l
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by standard arguments. Now (B.10) holds true because Lemma B.5, in particular expression
(B.6), yields that

2
1 & , , 1 < . : . :
E EZIm,p (]) _E(Ix,p (])) = ? Z E{jx,p (]) jag,p (_]) _E(jw,p (]) jalc,p (_.7))
p=1 p,q=1
X Tq (1) Tag (=3) = E (g (7) Taq (=3)) }
1 < C
= 5> wi(p,q){2+T}
pg=1
= o(1)
by Condition C3. Next (B.11) follows by Cauchy-Schwarz’s inequality. O

The next lemma extends a Central Limit Theorem in Phillips and Moon (1999) when their

independence condition fails.

Lemma B.8. Let {up},.; and {zp},.,, p € N, satisfy Conditions C1—C3. Then asn,T — oo,

T n
1 1 d
T1/2 Z nl/2 prt“pt = N(0,2). (B.12)
t=1 p=1

Proof. First, Hidalgo and Schafgans’ (2017) Theorem 1 implies that

1 — d
Znt = WZthuPt SNO,Q),t=1,..,T, (B.13)
p=1

and also for any r,s > 0,
R d
75 D Xparrbpers — N (0,Qrs)
p=1

Now, Phillips and Moon’s (1999) Theorem 2 cannot be employed as the latter result requires that
the left hand side of (B.13), that is {z,},-,, is a sequence of independent random variables.

Dropping the subscript “p” for notational convenience, we have that
wwy = (Dy (L) &) (Co (L) X¢) » (B.14)
where

Dy (L) =) _deL'  Co(L)=> el
(=0 =0

by Conditions C'1 and C2. We now employ a “second-order” BN decomposition similar to that in
Phillips and Solo (1992, p. 978-979). First, we notice that standard algebra yields that the right
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hand side of (B.14) is

Zdwzft Xt T ( DI ) deck€e—eXt—r

(=0 k=0+1 k=0{=k+1

= Zdeczft Xt ¥ D <Z decoyr€i—oXt—k— z) +> (Z dekHXt—kft—k—e)
k=1

(=1 \k=0

= Zdz%ft Xt—g T Z <Z deceyrL ) Exen+ ) (Z CrdpreL > XtSt—e
=0

=1 (=1 \k=0

= fo(L)&x + Z Ji (L) Exo— + de ) Xe&i—es

where fi, (L) = Y02 decesx L and go (L) = > 32 ckdiyeLF. Observe that fo (L) = go (L).

Next, because for a generic polynomial h (L) = >.0°,h/L’, we have the identity h (L) =
h(1)— (1 — L) h(L), where h (L) = Y72 he L with hy = Y20° . h,, we can write the right hand
side of the last displayed equality as

fo (UftXt‘i“fthk( Xt— k+XtZg€ )&t (B.15)
k=1 /=1
— L) Z dvckft—kXt—k -(1-1) ﬁ (L) Eexe—r — de ) XeSt—t-
k=1 k=1

Now, we observe that

dNCk = fg(L), fk ngkL with vy, = Z dpcpii,
=0 p=L+1
o0 o0
Ge(L) = Y @pel’ with@pe= > cpdpss,
k=0 p=k+1

and & Y oy fi (1) x4—p and x; > o4 9¢ (1) &_, are martingale differences which are mutually un-
correlated.

Given (B.15) , we can write the left hand side of (B.12) as the sum of six terms. The contribution
due to the fourth term of (B.15),

o 11§ -1/2
Z dey, T1/2 p1/2 pr,t—kxp,t—k =0y (T / )
k=1 p=1

2 ~

because F ( 173 Zgzl Ept—kXp t_k) < C and by summability of the sequence {dck}k _ The
b b} E

contribution due to the fifth and sixth terms of (B.15) similarly is o, (1).

So, we need to examine the contribution due to the first three terms of (B.15) on the left side
of (B.12), that is

1 & 1 < 1 & 1 &
1) T1/2 Z /2 Zﬁptxpt t TR Z 172 ngtxpt

T n
1 1 ~
T Z /2 prtxpt’ (B.16)
t=1 p=1
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where
o0
%pt = ka( Xp,t—k3 fpt - ng §p7t £
k=1 /=1

The result that the first term of (B.16) converges to a normal random variable follows by (the
proof of ) Hidalgo and Schafgans’ (2017) Theorem 1 and Phillips and Moon’s (2002) Theorem 2 as
n~1/2 Z _1 £yt arve independent sequences in ¢. Because the second and third terms of (5.16)

are similar, we only handle the second one explicitly. Now that term is

K 1 T 1 n
Z Tk ( T1/2 Z 1/2 Z gthp,t kTt Z fk T1/2 Z W Z é.thp,tfk’ (B17)
k=1 t=1 p=1

k=K+1

By summability of fi (1) and given that

2

1l 1 & 11
1/2 Z 1/2 ngtxp,t—k -7 Z - Z ¢ (g <C
T t=1 " p=1 T t=1 n P,q

by Condition C'3, we obtain that by choosing K large enough the second term of (B.17) is o, (1).
The first term of (B.17) on the other hand converges to a normal random variable proceeding as

with the first term of (B.16). The proof is then completed using Bernstein’s lemma. O

Lemma B.9. Under the same conditions of Lemma B.8, we have that

T n
11 | |
T1/2 Z nl/2 Z Twp (3) Tup (—J) 4, N(0,2). (B.18)
j:1 p=1

Proof. Using (A.1) and (B.5) of Lemma B.5, we have that the left hand side of (B.18) is governed
by

% Z %/2 Bup (7) Buyp (—5) Txp () Tep (—3)

T/ ot
— 1§1 i Eay (n;7) )N B.19
7172 j:1Tt’s:1~s,t i7)e ) (B.19)
where
ot (nij) = — /2 ng ) XpsEpti 9o () = Bayp (4) Bup (=3) - (B.20)

Because {Xpt} teZ and {§pt} e P E N*, are mutually independent iid zero mean sequences, we
have that Z,; (n) is independent of Z, ,, (n) if s # r and ¢ # m and uncorrelated if s # r and
t =mor s=r and t # m. By Lemma B.8, it follows that Z; (n;j) —q N (0, v (j)), where

Vi) = nlggo; Z fopa (7) fupa (7) ¢ (P, 4)

p,q=1

and E ||, (n)||* < C.
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Next, the right hand side of (B.19) is

91/2 T

T3/2 Z 1/2 Z Xpsé-pt ng () PRICDRY

J=1

C
- T1/2Z 1/2 Z¢ Xpsfpt< T) (B.21)

using Brillinger’s (1981) Exercise 1.7.14(b), where ¢, (s) denotes the s — th Fourier coefficient of
gp (A;) defined in (B.20). Note also that Parseval’s equality, see Fuller’s (1996) Theorem 3.1.6,
implies that

Z 705 [ 20ar=o [" 1,0 f 0

Now, the right hand side of (B.21) can be written as

T—-1T-¢

1 1
T1/2 Z n1/2 Z Pp (0) Xpr&pr + Ti/2 Z Z nl/2 Z Sp (O) (Xptpite + Xp,erelpt)
=1 t=

From here, we conclude the proof proceeding as we did in Lemma B.8 since, say,

1 n
W Z ¢p (E) Xptép,t—i—ﬁ
p=1

is a sequence of independent random variables in the ¢ dimension which converges to a Gaussian
random variable by arguments similar to those in the proof of Hidalgo and Schafgans’ (2017)
Theorem 1 and

T—1T—¢
T1/2 Z Z 1/2 Z¢p ) XptSp.ire = 0p (1)
t=b t=1
by choosing b large enough since ¢, (£) = O (6*2). O
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