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INFERENCE WITHOUT SMOOTHING FOR LARGE PANELS WITH
CROSS-SECTIONAL AND TEMPORAL DEPENDENCE

JAVIER HIDALGO AND MARCIA SCHAFGANS

Abstract. This paper addresses inference in large panel data models in the presence of both

cross-sectional and temporal dependence of unknown form. We are interested in making inferences

without relying on the choice of any smoothing parameter as is the case with the often employed

“HAC”estimator for the covariance matrix. To that end, we propose a cluster estimator for the

asymptotic covariance of the estimators and a valid bootstrap which accommodates the nonpara-

metric nature of both temporal and cross-sectional dependence. Our approach is based on the

observation that the spectral representation of the fixed effect panel data model is such that the

errors become approximately temporal uncorrelated. Our proposed bootstrap can be viewed as a

wild bootstrap in the frequency domain. We present some Monte-Carlo simulations to shed some

light on the small sample performance of our inferential procedure and illustrate our results using

an empirical example.

JEL classification: C12, C13, C23

Keywords: Large panel data models. Cross-sectional strong-dependence. Central Limit Theo-

rems. Clustering. Discrete Fourier Transformation. Nonparametric bootstrap algorithms.

1. INTRODUCTION

Nowadays we often encounter panel data sets where both the number of individuals, n, and

the time dimension, T , are large or increase without limit. Phillips and Moon (1999) and Pesaran

and Yamagata (2008) provide some theoretical results for the parameter estimators of the model

in this scenario. These works were done under the assumption of no dependence among the cross-

sectional units. Yet, it is well recognized that the latter assumption is not very realistic, and

there has been a surge of work on how to provide valid inferences when this type of dependence is

present. The issues are closely related to Zellner’s (1962) SURE (Seemingly Unrelated Regression)

model, be it that here both dimensions are allowed to increase without limit.

Once one accepts the possibility that the errors of the model may exhibit cross-sectional and/or

temporal dependence, a key component to make valid inferences is the consistent estimation of the

asymptotic covariance matrix of the estimators. For that purpose, we might proceed by explicitly

assuming some specific dependence structure on the error term. In our context this route appears

to be quite cumbersome mainly for two reasons. First, to specify an appropriate model in the

presence of cross-sectional dependence is quite diffi cult as there are ample generic models that are

able to justify such a dependence. Some examples are the Simultaneous Autoregressive (SAR)

model of Cliff and Ord (1973), which has its origins in Whittle (1954), Andrews’(2005) proposal

who captures common shocks across observations and Pesaran’s (2006) factor structure model.

In Conditions C1 and C2 below, we shall give a generalization of the SAR model. Second, in

many settings it may be quite unrealistic to assume that the temporal dependence is the same
1
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for all individuals, so to find a correct specification may be infeasible as n increases with no limit.

In addition it is worth recognizing that the inferential properties based on parameter estimators

that use a specific (wrong) structure may be worse than the least squares estimates (LSE). The

latter observation was first documented in Engle (1974) and latter examined in Nicholls and Pa-

gan (1977), who illustrated the adverse consequences of imposing incorrect temporal dependence

assumptions on inferences, say when the practitioner assumes an AR (1) model instead of the true

underlying AR (2) specification.

As the task of finding an appropriate model for the dependence can be very daunting, one of

our main aims in this paper is then to provide inferences in panel data not only when the error

term exhibits (potentially) both temporal and cross-sectional dependence, but more importantly

doing so without relying on any parametric functional form for such a dependence. Under these

circumstances, one standard methodology is based on the HAC estimator, whose implementa-

tion requires the choice of one (or more) bandwidth parameter(s). While this approach is often

invoked and used in the context of time series regression models, in the presence of cross-sectional

dependence its implementation has recently been considered in Kim and Sun (2013) or Vogelsang

(2015). Unfortunately, the implementation typically requires not only the selection of a bandwidth

parameter but, more importantly, an associated measure of distance between the cross-sectional

units. This route has two major drawbacks. First, it explicitly assumes that there is some type of

ordering among the individuals or cross-sectional units which, as opposed to the time dimension,

is not unambiguous. Even if one accepts the existence of such an ordering, there is no theoret-

ical reason to restrict it to a single measure as various economics and/or geographical distance

measures may be required. For instance, simply relying on the geographic “as the crow flies”

distance measure for ordering is questionable as one cannot expect that two cross-sectional units

located in the Rockies would behave the same as if they were in the Midwest. Clearly, a distance

measure which captures the topography and other economic measures may be required. Second,

even the selection of a bandwidth parameter to account for the temporal dependence may become

impossible as we recognize that it might not be the same for all individuals. Any cross-validation

algorithm used to determine the bandwidth parameter for temporal dependence may then need

to be performed for each individual. In Section 2.1 we shall describe these and other drawbacks

in more detail.

To deal with the potential caveats of the HAC estimator, we shall propose a cluster based

estimator which is able to take into account both types of dependence, extending the work of

Arellano (1987) and Driscoll and Kraay (1998) in a substantial way. Our approach is based

on the observation that the spectral representation of the fixed effect panel data model (2.1) is

such that the errors become approximately temporal uncorrelated although heteroscedastic. As

the asymptotic distribution of the LSE might provide a poor approximation to the finite sample

distribution when we employ the cluster estimator, we present and examine a bootstrap algorithm

which does not require the choice of any bandwidth parameter, contrary to the sieve or moving

block bootstraps. In fact, our proposed bootstrap can be viewed as a wild bootstrap but in the

frequency domain.

The remainder of the paper is organized as follows. In the next section, we discuss the regu-

larity conditions for our model and describe the main results. Section 3 discusses two bootstrap
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algorithms and we demonstrate their validity. Section 4 presents a Monte Carlo simulation ex-

periment to shed some light on the finite sample performance of our cluster estimator and we

illustrate the finite sample benefits of the bootstrap algorithm. We also compare the relative

performance of the cluster estimator with various HAC estimators and we provide an empirical

implementation. Section 5 gives a summary. The proofs of our main results are given in Appendix

A, which employs a series of lemmas given in Appendix B.

2. THE REGULARITY CONDITIONS AND MAIN RESULTS

We consider the panel data model

ypt = β′xpt + ηp + αt + upt, p = 1, ..., n, t = 1, ..., T , (2.1)

where β is a k × 1 vector of unknown parameters, xpt is a k × 1 vector of covariates, αt and ηp
represent respectively the time and individual fixed effects and {upt}t∈Z, p ∈ N+, are sequences

of zero mean errors with variance E
(
u2
pt

)
= σ2

p, p ∈ N+. We shall assume that the sequences

{xpt}t∈Z, p ∈ N+, are mutually independent of the error term {upt}t∈Z, p ∈ N+, although not

necessarily independent from the fixed effects ηp or αt. More specific conditions describing the

temporal and cross-sectional dependence structures of the sequences {upt}t∈Z and {xpt}t∈Z, p ∈
N+, will be given in Conditions C1 and C2 below respectively.

Our first aim in the paper is to perform inferences on the slope parameters β in the presence

of a very general and unknown spatio-temporal dependence structure. To that end, we first need

to extend a Central Limit Theorem provided in Phillips and Moon (1999), see also Hahn and

Kuersteiner (2002). The reason being that in their work the sequences of random variables, say{
ψpt
}
t∈Z, p ∈ N

+, are assumed to be independent, that is
{
ψpt
}
t∈Z and

{
ψqt
}
t∈Z are mutually

independent for any p 6= q, which is ruled out in our context as we permit cross-sectional depen-

dence. In addition, as we allow for “strong-dependence”, we cannot use results and arguments

based on any type of “strong-mixing”conditions, so that results in Jenish and Prucha (2009, 2012)

cannot be implemented in our framework either. We also extend the results in Hidalgo and Schaf-

gans (2017) by allowing the errors upt to exhibit temporal dependence as well. A second aim of

the paper is to extend the work of Arellano (1987) and Driscoll and Kraay (1998) by examining

a cluster estimator for the asymptotic covariance of the slope parameters estimators that does

not require the ordering of the observations (in the cross-sectional dimension) or the selection of

a bandwidth parameter.

Our estimator is the usual fixed effect estimator and a reformulation thereof based on the

frequency domain formulation of the model. The usual fixed effect estimator of β is given by

the LSE after removing the fixed effects ηp and αt from the model. Denoting for any generic

sequence {ςpt}Tt=1, p = 1, ..., n, the required transformation by

ς̃pt = ςpt − ς ·t − ςp· + ς ··; (2.2)

ς ·t =
1

n

n∑
p=1

ςpt; ςp· =
1

T

T∑
t=1

ςpt; ς ·· =
1

nT

T∑
t=1

n∑
p=1

ςpt,

we rewrite (2.1) as

ỹpt = β′x̃pt + ũpt, p = 1, ..., n and t = 1, ..., T . (2.3)
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The fixed effect estimator, β̂, is then given by

β̂ =

 n∑
p=1

T∑
t=1

x̃ptx̃
′
pt

−1 n∑
p=1

T∑
t=1

x̃ptỹpt

 . (2.4)

In view of Conditions C1 and C2 below, it is obvious that we can take Expt = 0 as x̃pt is invariant

to additive constants, say µt or νp, to xpt.

The frequency domain formulation of (2.4) employs the Discrete Fourier Transform (DFT) of

our model (2.3). This formulation, as will become clear later, proves instrumental in describing

both the cluster estimator of the asymptotic covariance matrix of β̂, or β̃ given in (2.7) below,

and the bootstrap algorithm described in Section 3. Denoting the DFT for generic sequences

{ςpt}Tt=1, p ≥ 1, by

Jς,p (λj) =
1

T 1/2

T∑
t=1

ςpte
−itλj , j = 1, ..., T̃ = [T/2] , λj =

2πj

T
, (2.5)

and since Jς,p (λj) = Jς,p (−λT−j), j = 1, ..., T̃ , we can reformulate (2.3) as

Jỹ,p (λj) = β′Jx̃,p (λj) + Jũ,p (λj) , p = 1, ..., n; j = 1, ..., T , (2.6)

and β is then estimated by

β̃ =

 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)J ′x̃,p (−λj)

−1 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)Jỹ,p (−λj)

 . (2.7)

Under suitable regularity conditions it is well known that, β̃ is an approximation of β̂ in that

β̃− β̂ = op
(
T−1/2

)
when n = 1. It is worth recalling that the reason not to include the frequencies

λj for j = 0, or T , is related to the centering of the sequences {ϑpt}Tt=1, p = 1, ..., n, around their

sample means T−1
∑T

t=1 ϑpte
itλ` as

∑T
t=1 e

itλ` = 0 if 1 ≤ ` ≤ T − 1.

We introduce the following regularity conditions.

C1: {upt}t∈Z, p ∈ N+, are zero mean sequences of random variables such that

(i) upt =
∞∑
k=0

dk (p) ξp,t−k,
∞∑
k=0

kdk <∞, dk =: supp |dk (p)| ,

where E
(
ξpt | Vp,t−1

)
= 0; E

(
ξ2
pt | Vp,t−1

)
= σ2

ξ,p and finite fourth moments, with Vp,t
denoting the σ−algebra generated by

{
ξps, s ≤ t

}
.

(ii) For all t ∈ Z and p ∈ N+,

ξpt =

∞∑
`=1

a` (p) ε`t, sup
p∈N+

∞∑
`=1

|a` (p)|2 <∞, sup
`≥1

n∑
p=1

|a` (p)|2 <∞,

where the sequences {ε`t}t∈Z, ` ∈ N+, are zero mean independent identically distributed

(iid) random variables.

(iii) The fourth cumulant of {upt}t∈Z, p ∈ N+, satisfies

lim
T↗∞

sup
p∈N+

T∑
t1,t2,t3=1

|Cum (upt1 ;upt2 ;upt3 ;up0)| <∞.
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C2: {xpt}t∈Z, p ∈ N+, are sequences of random variables such that:

(i) xpt =
∞∑
k=0

ck (p)χp,t−k,
∞∑
k=0

kck <∞, ck =: supp ‖ck (p)‖ ,

where ‖B‖ denotes the norm of the matrix B and E
(
χpt | Υp,t−1

)
= 0; Cov

(
χpt | Υp,t−1

)
=

Σχ,p and E
∥∥χpt∥∥4

<∞, with Υp,t denoting the σ−algebra generated by
{
χps, s ≤ t

}
.

(ii) The sequences of random variables
{
χpt
}
t∈Z, p ∈ N

+, are such that

χpt =
∞∑
`=1

b` (p) η`t, sup
p∈N+

∞∑
`=1

|b` (p)|2 <∞, sup
`≥1

n∑
p=1

|b` (p)|2 <∞,

where the sequences {η`t}t∈Z, ` ∈ N+, are zero mean iid random variables.

(iii) Denoting Σx,p = E
(
xptx

′
pt

)
, we have that

0 < Σx = lim
n→∞

1

n

n∑
p=1

Σx,p (2.8)

and the fourth cumulant of {xpt}t∈Z, p ∈ N+, satisfies that

lim
T→∞

sup
p∈N+

T∑
t1,t2,t3=1

|Cum (xpt1,a;xpt2,b;xpt3,c;xp0,d)| <∞, a, b, c, d = 1, ..., k,

where xpt,a denotes the a− th element of xpt.

For generic sequences {zpt}t∈Z, p ∈ N+, we denote

ϕz (p, q) = Cov (zpt; zqt) , for any p, q ≥ 1.

C3: For all p ∈ N+, the sequences {upt}t∈Z and {xpt}t∈Z are mutually independent and

0 < max
1≤p≤n

n∑
q=1

‖ϕ (p, q)‖ <∞, (2.9)

where ϕ (p, q) := ϕu (p, q)ϕx (p, q).

C4: T, n→∞ such that n−1 = o
(
T−ξ

)
for any ξ > 0.

We now comment on our conditions. Conditions C1 and C2 indicate that {upt}t∈Z and {xpt}t∈Z,
p ∈ N+, are linear processes and permit the usual SAR (or more generally SARMA) model.

Indeed, by definition of the SAR model, we have

u = (I − ωW )−1 ε

= (I + Ξ) ε, Ξ =
(
ψq (p)

)n
p,q=1

,

so that up =
∑n

q=0 ψq (p) εq, which implies that the SARmodel becomes a particular model of that

allowed in Conditions C1 or C2. However Condition C1 does permit the sequence
∑n

p=1 |a` (p)|
to grow with n, which is not the case with the SAR model. Of course one can allow the weights

a` (p) to depend also on the sample size “n”as is often done in SAR models with weight matrices

W row-normalized, but it does not add anything significant. Our conditions, therefore, appears

to be weaker than those typically assumed when cross-sectional dependence is allowed. It is worth

pointing out that our Conditions C1 and C2 can be relaxed to some extend to allow some type of

mixing condition such as L4−Near Epoch dependence with size greater than or equal to 2. The
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latter condition is often invoked when we allow the errors to have a nonlinear type of dependence

structure or if (2.1) were replaced by a nonlinear panel data model

ypt = g (xpt;β) + ηp + αt + upt, p = 1, ..., n, t = 1, ..., T .

In fact, we expect the conclusions of our results to hold under such a mixing condition as it has

been shown in numerous papers. Conditions C1 and C2 do permit, though, heterogeneity in its

second moments as E
(
ξ2
pt | Vp,t−1

)
= σ2

ξ,p and Cov
(
χpt | Υp,t−1

)
= Σχ,p. This is a consequence

of our conditions because E
(
ξ2
pt | Vp,t−1

)
=
∑∞

`=1 |a` (p)|2 clearly depends on p. Furthermore, we
allow for some trending behaviour of the sequences {xpt}t∈Z, p ∈ N+, as we allow the mean of xpt
to depend on time.

An important consequence of Conditions C1 and C2 is that they guarantee that the covari-

ance structure of the sequences {upt}t∈Z and {xpt}t∈Z, p ∈ N+, is multiplicative. For instance,

Condition C1 implies that, for all p, q ∈ N+,

E (uptuqs) = E

( ∞∑
k=0

dk (p) ξp,t−k

∞∑
`=0

d` (q) ξq,s−`

)

= E
(
ξp1ξq1

)


∞∑
`=0

dt−s+` (p) d` (q) t > s

∞∑
`=0

d` (p) ds−t+` (q) t ≤ s
(2.10)

= ϕu (p, q) γu;pq (t− s) .

Following the spatio-temporal literature, see Cressie and Huang (1999), we can denote this co-

variance structure as separable. Of course, there are nonseparable covariance structures, see

Gneiting (2002), however these are more complicated to model and quite diffi cult to handle. De-

spite this, there is some work on testing for separability, see Fuentes (2006) or Matsuda and

Yajima (2004). If there were no cross-sectional dependence, i.e. E
(
ξp1ξq1

)
= σ2

ξp1 (p = q), then

E (uptuqs) = σ2
ξpγu;pp (t− s)1 (p = q). Here, and in what follows, 1 (A) denotes the indicator

function.

Observe that the spectral density function of {upt}t∈Z is

fu,p (λ) =
ϕu (p, p)

2π

∞∑
k=−∞

( ∞∑
`=0

d|k|+` (p) d` (p)

)
e−ikλ; p ∈ N+,

which is continuously differentiable as
∑∞

k=0 kdk < ∞. When dk (p) = dk for all p, the spectral

density function is the same for all cross-sectional units up to a multiplicative constant. The

arguments also hold for the sequences {xpt}t∈Z, p ∈ N+, denoting its spectral density matrix by

fx,p (λ).

We now comment on Condition C3. As we assume that the errors and regressors are uncor-

related, we have that the spectral density matrix of the sequences {zpt =: uptxpt}t∈Z, p ∈ N+ is

given by the convolution of the spectral density matrix of {xpt}t∈Z and spectral density function
of {upt}t∈Z, that is

fp (λ) =:

∫ π

−π
fu,p (υ) fx,p (λ− υ) dυ, p ∈ N+, (2.11)
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where Conditions C1 and C2 imply that fp (λ) is twice continuous differentiable. Recall that by

Fuller’s (1996) Theorem 3.4.1 or Corollary 3.4.1.2, the Fourier coeffi cients of fp (λ) are given by

γp (j) = γx,p (j) γu,p (j), p ∈ N+, so that

sup
p,q=1,..,n

∞∑
`=−∞

∥∥γpq (`)
∥∥ <∞; Cov (zpt; zqs) = γpq (t− s)ϕ (p, q) .

With the convention that γu,pq (0) = γx,pq (0) = 1,

Cov (zpt, zqt) = ϕ (p, q) =: ϕu (p, q)ϕx (p, q) .

We can relax Condition C3 to assume that the sequences {xpt}t∈Z and {upt}t∈Z, p ∈ N+, are

conditional independent in their first and second moments. However, to simplify the arguments

somewhat, we have preferred to keep the condition as it stands. The condition does rule out long

memory dependence on the sequences {xpt}t∈Z and {upt}t∈Z for each p. Even though there are
several results available allowing their temporal dependence to exhibit long memory, see Robinson

and Hidalgo (1997) or Hidalgo (2003), we have decided to assume the temporal dependence of

the regressors and errors to be weakly dependent to simplify the arguments. On the other hand,

because the sequences may exhibit long memory spatial dependence, the condition of strong

mixing for the spatial dependence in Jenish and Prucha (2012) is ruled out. This is the case as

Ibragimov and Rozanov (1978) showed: if the sequence
{
γu,pq (j)

}
j∈Z is not summable, the process

{upt}t∈Z , p ∈ N+, cannot be strong-mixing. The long memory dependence also rules out that the

process is Near Epoch Dependent with size > 1/2, which appears to be a necessary condition for

standard asymptotic results. Nevertheless, the combined cross-sectional dependence, that is the

dependence of the sequence {zpt = uptxpt}t∈Z, p ∈ N+, is required to be “weakly-dependent”as

we impose (2.9), see also Hidalgo and Schafgans (2017).

Here and in what follows, we have adopted the convention that γu,pq (t− s) = E (uptups) /ϕu (p, p)

without loss of generality.

Remark 1. It is worth noticing that (2.9) ensures that ϕ (p, q) = O
(
q−1−δ) for some δ > 0, so

that

lim
n→∞

1

n

n∑
p,q=1

ϕ (p, q) <∞.

The latter displayed expression can be regarded as a type of weak dependence in the cross-sectional

dimension, see also Robinson (2011) or Lee and Robinson (2013). In addition, the ergodicity in

second mean, that is

1

n2

n∑
p,q=1

(ϕu (p, q) + ϕx (p, q)) < C,

implies that ϕu (p, q) = O (q−ςu) and ϕx (p, q) = O (q−ςx) such that ςu + ςx = 1 + δ > 0.

Remark 2. The condition supp∈N+
∑∞

`=0 |a` (p)|2 <∞ guarantees that for any reordering of the

sequence
{
|a` (p)|2

}
`∈N+

, say
{∣∣a`(τ) (p)

∣∣2}
`(τ)∈N+

, we have that a`(τ) (p) = O
(
` (τ)−ζ

)
for some

ζ > 1/2. Similarly the requirement sup`≥1

∑n
p=1 |a` (p)|2 <∞ will mean that a` (p) = O (p−ς) for

some ς > 1/2 uniformly in ` ≥ 1. Similar arguments follow for
{
|b` (p)|2

}
`∈N+

, p ≥ 1.
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Finally Condition C4 is very weak as ξ > 0 effectively means that n increases to infinity at least

as log log T say. This relaxes significantly the condition given in Pesaran and Yamagata (2008),

who needed that n1/2/T → 0 or even n1/4/T → 0. It appears that most panel data satisfy the

condition.

Before presenting our first main result, denote

Φ =: 2π lim
n→∞

1

n

n∑
p,q=1

fpq (0)ϕ (p, q) <∞ (2.12)

2πfpq (0) =

∞∑
`=−∞

γpq (`)

and

V = Σ−1
x ΦΣ−1

x , (2.13)

where Σx > 0 was defined in Condition C2.

It is standard to see that

Φ = : lim
n→∞

lim
T→∞

1

nT
E


 n∑
p=1

T∑
t=1

xptupt

 n∑
p=1

T∑
t=1

x′ptupt


= lim

n→∞
lim
T→∞

1

nT

n∑
p,q=1

T∑
t,s=1

E
(
xptx

′
qs

)
E (uptuqs) . (2.14)

or, using its spectral domain formulation,

Φ = lim
n→∞

lim
T→∞

1

nT
E


T−1∑
j=1

n∑
p=1

Jx,p (λj)Ju,p (−λj)

T−1∑
j=1

n∑
p=1

J ′x,p (−λj)Ju,p (λj)


= lim

n→∞
lim
T→∞

1

nT

T−1∑
j=1

n∑
p,q=1

E
(
Jx,p (λj)J ′x,q (−λj)

)
E (Ju,p (−λj)Ju,q (λj)) . (2.15)

We now give our main result of this section.

Theorem 1. Under Conditions C1− C4, we have that as n, T →∞,

(i) (Tn)1/2
(
β̂ − β

)
d→ N (0,V)

(ii) (Tn)1/2
(
β̃ − β

)
d→ N (0,V) .

Proof. The proof of this result or any other will be given in Appendix A. �

Recalling our definition of V in (2.13), the results of Theorem 1 indicate that to make inferences

on β, we need to provide a consistent estimator of Φ. A first glance at (2.14) or (2.15) suggests

that this might be complicated or computationally burdensome due to the general spatio-temporal

dependence structure of the data. As we pointed out in the introduction, the standard approach

to deal with dependence, that is to employ a HAC type of estimator, has various and potential

drawbacks in the presence of cross-sectional dependence. While choosing a bandwidth parame-

ter associated with the cross-sectional dependence requires an ordering of individuals which is

non-trivial, individual heterogeneous temporal dependence (as assumed in Conditions C1 and



INFERENCE WITHOUT SMOOTHING FOR PANELS 9

C2) would render intractable any cross validation method to choose the temporal bandwidth

parameter.

While Kim and Sun’s (2013) approach is subject to both these criticisms, Driscoll and Kraay

(1989) avoid the need to specify an ordering of individuals by introducing a HAC estimator of

cross-sectional averages, so that one can consider their estimator as a hybrid between a HAC

and a cluster one: they employ the HAC methodology to accommodate the temporal dependence

whereas they employ a cluster type of estimator to account for the cross-sectional dependence.

In our Monte-Carlo experiment we compare inferences when using Driscoll and Kraay’s approach

with either a fixed or automated temporal bandwidth choice as suggested in Andrews (1991)

against our proposed methodology. The sensitivity of relying on Kim and Sun’s approach to an

inappropriate ordering is indubitable.

The approach we want to advocate does not require any ordering or the selection of bandwidth

parameter and it permits a more general spatio-temporal dependence structure than that allowed

by either Driscoll and Kraay (1989) or Kim and Sun (2013). It can be regarded as a natural

extension of earlier work by Robinson (1998) in a time series regression model context. In his

case, abstracting from cross-sectional dependence

Φ =: lim
n→∞

2π

n

n∑
p=1

fpp (0) .

Applying his estimator to our model then yields the estimator

2π

n

n∑
p=1

1

T

T∑
j=1

Iu,p (λj) Ix,p (−λj) =
1

n

n∑
p=1

T−1∑
`=−T+1

γ̂x,p (`) γ̂u,p (`) , (2.16)

where γ̂x,p (j) and γ̂u,p (j) are respectively the standard sample moment estimators of γx,p (j) and

γu,p (j). When cross-sectional dependence is allowed, the latter arguments suggest that (2.16) is

not a consistent (cluster) estimator for Φ. The reason for this (see also the proof of Proposition

1 below) is that

1

n

n∑
p=1

T−1∑
`=−T+1

γx,p (`) γu,p (`) 9 Φ

as expected since the first moment of (2.16) does not capture the cross-sectional dependence. The

purpose of the next section therefore is to provide a consistent “cluster” estimator for Φ in the

presence of cross-sectional dependence.

2.1. Cluster estimator of Φ.
We shall present a simple cluster estimator of Φ using the “frequency”domain methodology.

Obviously, there is a time domain analogue, which we shall briefly describe at the end of the

section. Our cluster estimator appears to be the first one which permits time and cross-sectional

dependence and gives a formal justification of its statistical properties. Our estimator therefore

becomes an extension of previous cluster estimators in the literature such as that in Arellano

(1987) or Bester, Conley and Hansen (2011), where only cross-sectional dependence is present.

Our main motivation to propose a cluster estimator using the frequency domain methodology

comes from the well known observation that for all p 6= q, Ju,p (λj) and Ju,q (λk) can be considered

as being uncorrelated although heteroscedastic. The observation was employed in the landmark
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paper by Hannan (1963) on adaptive estimation in a time series regression models. So the fact

that we can consider Jx̃,p (λj)Jû,p (−λj) as a sequence of uncorrelated and heteroscedastic random
variables in j, although not in p, suggests that, in a spirit similar to White’s (1980) estimator, we

may estimate Φ by

Φ̆ =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p (λj)Jû,p (−λj)

 1

n1/2

n∑
p=1

J ′x̃,p (−λj)Jû,p (λj)

 . (2.17)

Notice that when n = 1, (2.17) becomes the estimator given in Robinson (1998) so that we might

consider Φ as a natural extension of his estimator.

Denote the estimator of Σx by

Σ̃x =
1

Tn

n∑
p=1

T∑
j=1

Jx̃,p (λj)J ′x̃,p (−λj) .

Proposition 1. Under the conditions of Theorem 1, we have that

(a) Φ̆− Φ = op (1)

(b) Σ̃x − Σx = op (1) .

Denoting V̂=: Σ̃−1
x Φ̆Σ̃−1

x , we now obtain the following corollary.

Corollary 1. Under the conditions of Theorem 1, we have that

(i) (Tn)1/2 V̂
−1/2

(
β̂ − β

)
d→ N (0, I)

(ii) (Tn)1/2 V̂
−1/2

(
β̃ − β

)
d→ N (0, I) .

Proof. The proof is standard from Theorem 1 and Proposition 1, and so it is omitted. �

We now describe the time domain analogue of Φ. For that purpose, using
∑T

t=1 e
itλ` = 0 if

1 ≤ ` ≤ T − 1, we have after standard algebra that

Φ̆ =
1

n

n∑
p,q=1

T−1∑
|`|=0

γ̂x,pq (`) γ̂u,pq (`) ,

where due to (2.10),

γ̂x,pq (`) =
1

T

T−|`|∑
t=1

x̃ptx̃
′
q,t+`;

γ̂u,pq (`) =
1

T

T−|`|∑
t=1

ûptûq,t+`1 (` > 0) +
1

T

T−|`|∑
t=1

ûqtûp,t+`1 (` < 0) ,

and ûpt = ỹpt − β̃
′
x̃pt, p = 1, ..., n; t = 1, ..., T .

3. THE BOOTSTRAP ALGORITHM

Our motivation to introduce a bootstrap algorithm is due to the findings in our Monte-Carlo

experiment, which suggest that the asymptotic distribution of (Tn)1/2V̂−1/2
(
β̃ − β

)
does not

appear to provide a good approximation of its finite sample distribution. In such situations,

the use of the bootstrap has been advocated as it has been shown to improve the finite sample
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performance. The general spatio-temporal dependence inherent in our model suggests that a valid

bootstrap mechanism may not to be easy to implement since one of the basic requirements for its

validity is that it has to preserve the covariance structure of the data/model. Drawing analogies

from the time series literature, one might be tempted to use the block bootstrap (BB) principle,

as it is no clear how the sieve bootstrap can be implemented under cross-sectional dependence as

there is no clear ordering of the data. Even the BB suffers to some extend from this as we expect
some sensitivity of the block bootstrap to any particular ordering chosen by the practitioner, let

alone its validity. A second potential drawback of the BB method is that the covariance structures

of (x1t, ..., xpt)
′ and (x2t, ..., xp+1,t)

′ do not need to be the same, that is we have a lack of “weak”

stationarity. A third drawback is the sensitivity of the outcome of the moving block algorithm to

the choice of the block size. Although some cross-validation techniques are available, see Politis

and White (2004), it may not be useful for testing purposes and its implementation calls for a

time series type of dependence. These drawbacks are further compounded by the fact that in our

context we even need to choose two block sizes, one to deal with the time dependence and a second

one to deal with the cross-sectional one, which renders its use in empirical applications quite hard

to implement and the outcome can be sensitive to the choice of the bandwidth parameter.

In light of these drawbacks, we propose here a valid bootstrap algorithm with the interesting

features that it is computationally simple (there is no need to estimate, either by parametric or

nonparametric methods, the time and/or cross-sectional dependence of the error term) and it

does not require the choice of any bandwidth parameter for its implementation, thereby avoiding

any level of arbitrariness. We describe two bootstrap algorithms. The first one assumes that the

time dependence is homogeneous among the cross-sectional units, while the second one drops the

latter assumption.

The first bootstrap is described in the following simple 3 STEPS.

STEP 1 : Obtain the residuals

ûpt = ỹpt − β̃
′
x̃pt, p = 1, ..., n; t = 1, ..., T

(or ûpt = ỹpt − β̂
′
x̃pt), and compute the periodogram of the centered and scaled residuals

{ǔpt}Tt=1, p = 1, ..., n,

Iǔ,p (λj) = |Jǔ,p (λj)|2 j = 1, ..., T̃ = [T/2], p = 1, ..., n,

where, denoting σ̃2
û (p) = T−1

∑T
t=1 û

2
pt,

ǔpt =

(
ûpt −

1

T

T∑
t=1

ûpt

)
/σ̃û (p) .

Remark 3. It is worth noticing that the same outcome would have been achieved if we used
σ̃−1
û (p) ûpt. This is the case as

∑T
t=1 e

itλj = 0 if j 6= 0, T . The motivation to scale the centered

residuals ûpt by σ̃û (p) is due to the fact that the variance is not the same for all individuals.

STEP 2 : Denoting Ǔt = {ǔpt}np=1, do standard random resampling from the empirical

distribution of
{
Ǔt
}T
t=1
, that is we assigned probability T−1 to each n × 1 vector Ǔt.

Denote the bootstrap sample by {U∗t }
T
t=1, which is

{
u∗pt
}T
t=1
, p = 1, ..., n. Compute the
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bootstrap analogue of (2.3) as

Jy∗,p (λj) = β̃
′Jx̃,p (λj) +

 1

n

n∑
q=1

Iǔ,q (λj)

1/2

σ̃û (p)Ju∗,p (λj) ,

for p = 1, ..., n and j = 1, ..., T .

STEP 3 : Compute the corresponding bootstrap analogue of (2.7) as

β̃
∗

=

 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)J ′x̃,p (−λj)

−1 n∑
p=1

T−1∑
j=1

Jx̃,p (λj)Jỹ∗,p (−λj)

 (3.1)

with Jỹ∗,p (λj) = Jy∗,p (λj)− 1
n

∑n
q=1 Jy∗,q (λj).

We now comment on the bootstrap. The most important feature is that there is no need to

choose any bandwidth parameter for its implementation. Also uniformly in j = 1, ..., T , we have

that

Iǔ,p (λj) = σ̃2
û (p)

{
Iu,p (λj) +

(
β̃ − β

)2
Ix,p (λj) +

(
β̃ − β

)
Jx,p (λj)Ju,p (−λj)

}
= σ2

u (p) Iu,p (λj) (1 + op (1))

and

EIu,p (λj) = fu,p (λj) (1 + o (1))

E∗ (Ju∗,p (λj)Ju∗,p (−λ`)) = 0, if j 6= `

σ̃2
û (p)Ju∗,p (λj) = σ2

u (p) (1 + op∗ (1)) .

The last displayed expressions suggest that we can consider
(

1
n

∑n
q=1 Iǔ,q (λj)

)1/2
σ̃û (p)Ju∗,p (λj)

as some type of wild bootstrap in the frequency domain because

E∗

∣∣∣∣∣∣∣
 1

n

n∑
q=1

Iǔ,q (λj)

1/2

σ̃û (p)Ju∗,p (λj)

∣∣∣∣∣∣∣
2

= σ2
u (p)

1

n

n∑
q=1

fu,q (λj)

σ2
u (q)

(1 + op (1))

= σ2
u (p) fu,p (λj) (1 + op (1)) .

We now state our main result of this section.

Theorem 2. Under Conditions C1− C4, we have that

(Tn)1/2
(
β̃
∗ − β̃

)
d∗→ N (0,V) , (in probability).

Remark 4. The results of Theorem 2 still hold true if β̃ were replaced by β̂, as we have already

established that (Tn)1/2
(
β̃ − β̂

)
= op (1).

The previous results can be extended to incorporate the more realistic situation where the

temporal dynamics might be different for different individuals, as given in Conditions C1 and C2.

For this we modify the above bootstrap by replacing STEP 2, with STEP 2 ′ :
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STEP 2 ′: Denote
{
ηj
}T̃
j=1

a sequence of independent identically distributed random vari-

ables with mean zero and unit variance. We then compute the bootstrap analogue of (2.3)

as

Jy∗,p (λj) = β̃
′Jx̃,p (λj) + Jǔ,p (λj) σ̃û (p) ηj ,

{
p = 1, ..., n
j = 1, ..., T ,

where Jy∗,p (λj) = Jy∗,p (λT−j) and ηj = ηT−j , for j = T̃ + 1, ..., T .

Remark 5. We refer to Hidalgo (2003) for a discussion regarding the requirement that ηj = ηT−j
for j = T̃ + 1, ..., T .

The latter bootstrap approach merges ideas in Hidalgo (2003) and Chan and Ogden (2009) and

can be regarded as a wild-type bootstrap approach with increasing dimensional vectors.

The (bootstrap) cluster estimator of the asymptotic covariance is given by

Φ̆∗ =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p (λj)Jû∗,p (−λj)

 1

n1/2

n∑
p=1

J ′x̃,p (−λj)Jû∗,p (λj)

 . (3.2)

Proposition 2. Assuming C1− C4, we have that

Φ̆∗ − Φ̆ = op∗ (1) .

Together, these results yield the following proposition.

Proposition 3. Under the same conditions of Theorem 2, we have

(Tn)1/2 V̂
∗−1/2

(
β̃
∗ − β̃

)
d∗→ N (0, I) , (in probability),

where V̂∗ = Σ̃−1
x Φ̆∗Σ̃−1

x .

Proof. The proof is standard after Theorem 2 and Propositions 1 and 2. �

4. FINITE SAMPLE BEHAVIOUR AND EMPIRICAL EXAMPLE

In this section we discuss the finite sample performance of our cluster-based inference proce-

dure in the presence of cross-sectional and temporal dependence of unknown form. We contrast

this performance with HAC-based inference procedures, which unlike ours, require the choice of

smoothing parameters that may be arbitrary and erroneous. We also provide evidence of the po-

tential finite sample improvements of our bootstrap algorithmns and illustrate its implementation

with real data.

In our Monte-Carlo experiments, we consider the following data generating process

ypt = αt + ηp + βxpt + upt

for p = 1, ..., n and t = 1, ..., T . The time fixed effects αt and individual fixed effects ηp are drawn

independently (αt ∼ IIDN(1, 1) and ηp ∼ IIDN(1, 1)) and are held fixed across replications and

β is set equal to zero. We postulate a variety of scenarios for the temporal and cross-sectional

dependence for both the strictly exogenous regressor xpt and error term upt.
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4.1. Simulations with Homogeneous Time Dependence. In the first set of simulations,
we consider the time dependence to be the same (homogenous) for all individuals p = 1, .., n.

In particular, we consider the settings of no temporal dependence, autoregressive and moving

average time dependence, where for the error term

upt = ρuup,t−1 +
√

1− ρ2
uηpt, with ρu = 0 or 0.7

and

upt =
1√

1 + θ2
u

ηpt + θuηp,t−1, with θu = 0.7,

with ηpt characterizing the spatial dependence inherent in the error. Several cross-sectional de-

pendence scenarios are considered for upt (ηpt): no spatial dependence, weak spatial dependence

and strong spatial dependence. In the absence of cross-sectional dependence, ηpt (and upt) is

IIDN(0, 1) for p = 1, .., n. Two weak spatial dependence formulations are considered. First we

follow Lee and Robinson (2013), where random locations for individual units are drawn along a

line, denoted s = (s1, ...sn)′ with sp ∼ IIDU [0, n] for p = 1, .., n. Keeping these locations fixed

across replications, ηpt are generated independently as scalar normal variables with mean zero and

covariances cov(ηpt, ηqt) = (0.5)|sp−sq | (see also Hidalgo and Schafgans, 2017). This ensures that

upt exhibits an exponential cross sectional decay in dependence with distance across individuals

in addition to the assumed time dependence. Second, we consider a polynomial decay of cross

sectional dependence in upt with distance across individuals. In the latter case, using the linear

time dependence representation, ηpt = σp (
∑∞

`=1 c` (p) e`t), we chose c`(p) = |s` − sp|−10
+ with sp

and s` the random locations as before and e`t ∼ IIDN(0, 1); σp is such that V ar(ηpt) = 1. For

the strong spatial dependence setting, we use c`(p) = |s` − sp|−0.7 instead, see also Hidalgo and

Schafgans (2017).1 The same discussion holds for the independently drawn, strictly exogenous re-

gressor xpt, where, to allow for some time heterogeneity, we add µt which is independently drawn

(µt ∼ IIDN(1, 1)), such that, say, under autoregressive time dependence

xpt = µt + ρxxp,t−1 +
√

1− ρ2
xϑpt,

where ϑpt characterizes the spatial dependence inherent in the regressor.

To evaluate the performance of our proposed cluster estimator, we analyze the empirical size

and power for testing the significance of our parameter, H0 : β = 0 against HA : β 6= 0, at the

nominal 5% level for various pairs of n and T using 5,000 simulations. In Table 1, the empirical

size based on our cluster estimator of the variance of β̂FE is reported in the columns labelled V̂ .

In addition to presenting the rejection rates based on the asymptotic critical values, we report

the empirical size based on the naive bootstrap algorithm in the column labelled V̂ nb, and the

wild bootstrap algorithm in the column labelled V̂ wb. As inference based on the asymptotic

distribution might not provide a good approximation to the finite sample one, this allows us to

assess the finite sample improvements these bootstrap algorithms may yield. For comparison, we

report the empirical size obtained using a variety of other estimators of the variance; the column

indicates the particular estimator of the variance used. Specifically, we consider the time-cluster

estimator of the variance V̂Ct (Hidalgo and Schafgans, 2017), the individual-cluster estimator

1In the polynomial case, we use max(1, |s` − sp|) as our measure of distance; not imposing such a censoring
would remove all dependence in settings where for some (`, p) s` and sp lie very close together.
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of the variance V̂Cp, and Driscoll and Kraay’s proposal to use a (time) HAC on cross sectional

averages V̂ mT
Ht . With V̂ = Σ̃−1

x Φ̆Σ̃−1
x where Φ̆ is defined in (2.17), formulae for the other estimators

of the variance of β̂FE under consideration are given by V̂Ct =: Σ̃−1
x Φ̂CtΣ̃

−1
x , V̂Cp =: Σ̃−1

x Φ̂CpΣ̃
−1
x

and V̂ mT
Ht =: Σ̃−1

x Φ̂mT
Ht Σ̃−1

x with

Φ̂Ct =
1

T

T∑
t=1


 1

n1/2

n∑
p=1

ẑpt

 1

n1/2

n∑
p=1

ẑpt

 ,
Φ̂Cp =

1

n

n∑
p=1

{(
1

T 1/2

T∑
t=1

ẑpt

)(
1

T 1/2

T∑
t=1

ẑpt

)}
,

Φ̂mT
Ht =

1

nT

n∑
p=1

n∑
q=1

T∑
t=1

T∑
s=1

K

(
|t− s|
mT + 1

)
ẑptẑqs,

where ẑpt = x̃ptûpt and K(h) = (1− |h|)1 (|h| ≤ 1) is the Bartlett kernel. Unlike our estimator,

V̂Ct ignores any time-dependence, V̂Cp ignores any cross-sectional dependence, and V̂
mT
Ht restricts

the time-dependence and requires the selection of the lag window, mT , for which we implement the

parametric AR(1) plug-in method suggested in Andrews (1991). We also use a fixed lag window,

m∗T , equalling 5, 7, and 9 (optimal when the time dependence is AR(1) (with ρu = ρx = 0.7)

for T = 64, 128, and 256 respectively, see also Andrews, 1991). None of these estimators require

an ordering of cross-sectional units, which, as we argued before, may be arbitrary and erroneous.

Below we will consider some simulations to address this issue.

The results from Table 1 reveal that the use of a cluster estimator that ignores time dependence

(V̂Ct) clearly results in a deterioration in size (becoming oversized, reflective of standard errors

being too small) as the time dependence increases, and similarly inference that use a cluster

estimator that ignores cross sectional dependence (V̂Cp) result in a deterioration in size as the

cross sectional dependence increases. Our cluster estimator, which accounts for both types of

dependence, does not suffer from these obvious defects and performs remarkably well even in

the presence of strong cross sectional dependence. The rejection rates based on the asymptotic

critical values do tend to be closer to the nominal rejection rates when n and T both increase.

Finite sample improvements in inference can be made by using either of the bootstrap algorithms

as rejection rates based on them are typically closer to the nominal rejection rates, with the

differences typically smaller as sample sizes increase. As the temporal dynamics is the same for

all individuals here, either algorithm is valid and there does not seem to be a clear preference of

these two approaches in terms of their relative closeness to the nominal size.

The simulations point to an interesting result which indicates that there is little evidence

to suggest that small sample inference based on V̂Ct is better than V̂ when there is no time-

dependence. In the presence of strong spatial dependence, the empirical size associated with V̂ is

closer to the nominal rate compared to V̂Ct for all n, T pairs considered; for n = 50 and T = 64

the size drops from 0.066 to 0.058. The improvement is even more pronounced when we contrast

the size associated with V̂Ct with the bootstrap based rejection rate, say V̂ nb. While there does

appear to be some evidence to suggest that small sample inference based on V̂Cp is better than V̂

when there is no cross-sectional dependence, certainly when the time dependence is stronger, we
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recognize that we have to be cautious as the empirical size based on the naive bootstrap algorithm

for our cluster estimator does tend to be closer to the nominal rate than V̂Cp.

As pointed out, in the absence of time-dependence in upt, the size based on our proposed

estimator for the variance of β̂FE compares well with that based on V̂Ct. Inference based on V̂
mT
Ht ,

which limits the time-dependence and requires the selection of the lag-window mT , also does

not have better size properties than our bandwidth parameter free estimator. In the presence of

strong spatial dependence, for n = 100 and T = 128 the size associated with V̂ mT
Ht equals 0.061

against 0.053 using V̂ and 0.059 using V̂Ct. Unsurprisingly, in the absence of time-dependence in

upt, inferences based on either V̂Ct, V̂
mT
Ht and V̂ outperform the V̂Cp based inference when there

is cross-sectional dependence, as the latter ignores this dependence.

In the presence of time-dependence in uit, improvements in size are observed when using our

proposed estimator for the variance of β̂FE vis-a-vis V̂
mT
Ht , which signals that accounting for insuf-

ficient time dependence, through an inappropriate lag-window m(T ) required for V̂ mT
Ht , negatively

impacts the inference on our slope parameter. The size improvements observed when using V̂

instead of V̂ mT
Ht are larger in the setting where there is autoregressive time dependence compared

to moving average dependence and are larger when the spatial dependence is stronger. Unsur-

prisingly, in the presence of AR(1) time dependence, the sizes associated with V̂ mT
Ht (automatic)

and V̂
m∗
T

Ht (fixed) are close as m∗T is the optimal choice in this setting, see Andrews (1991). On the

other hand, we do observe larger differences in size reflective of the sensitivity to the lag-window

choice, when there is MA(1) or no time dependence at all.

Kim and Sun’s (2013) recent proposal to deal with both temporal and cross sectional depen-

dence does not only suffer from the sensitivity associated with the selection of the lag-window but

the actual ordering of cross-sectional units as well. This is also the case for the estimator based

on (individual) HAC on time averages. We demonstrate this next. Assuming that individuals are

ordered on the basis of sp, such that s1 ≤ s2 ≤ · · · ≤ sn, we consider the following two (individual)
HAC on time averages The first one, V̂ mn

Hp,p =: Σ̃−1
x Φ̂mn

Hp,pΣ̃
−1
x , uses the ranking of each individual,

denoted by the subscript p, to measure distance, whereas the latter, V̂ mn
Hp,p =: Σ̃−1

x Φ̂mn
Hp,pΣ̃

−1
x , uses

the actual distance measure used to generate the cross-sectional dependence, sp, p = 1, .., n, where

Φ̂mn
Hp,p =

1

nT

n∑
p=1

n∑
q=1

T∑
t=1

T∑
s=1

K

(
|p− q|
mn + 1

)
ẑptẑqs

Φ̂mn
Hp,sp

=
1

nT

n∑
p=1

n∑
q=1

T∑
t=1

T∑
s=1

K

(
|sp − sq|
mn + 1

)
ẑptẑqs,

To see the sensitivity to an incorrect ordering of individuals, we randomly reorder the individuals

and implement the erroneous formulae

Φ̂mn
Hp,p∗ =

1

nT

n∑
p=1

n∑
q=1

T∑
t=1

T∑
s=1

K

(
|p∗ − q∗|
mn + 1

)
ẑptẑqs

Φ̂mn
Hp,s∗p

=
1

nT

n∑
p=1

n∑
q=1

T∑
t=1

T∑
s=1

K

(
|sp∗ − sq∗ |
mn + 1

)
ẑptẑqs
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Table 2. HAC Simulations with Homogenous Time Dependence - Size

HAC Time Cross-Sectional Time & Cross-Sectional
valid invalid valid invalid

V̂ mT
Ht V̂ mn

Hp,p V̂ mn
Hp,sp

V̂ mn
Hp,p∗ V̂ mn

Hp,s∗p
V̂ mT ,mn

HAC,p V̂ mT ,mn

HAC,p∗

(n, T )
AR(1) & Weak Spatial dependence (Polynomial)

(100, 64) 0.131 0.090 0.110 0.131 0.160 0.160 0.217
(100, 128) 0.108 0.080 0.086 0.114 0.121 0.141 0.186
(100, 256) 0.086 0.083 0.080 0.111 0.106 0.136 0.175

AR(1) & Strong Spatial dependence (Polynomial)
(100, 64) 0.154 0.323 0.324 0.655 0.557 0.370 0.585
(100, 128) 0.114 0.315 0.291 0.662 0.535 0.360 0.577
(100, 256) 0.086 0.326 0.278 0.662 0.524 0.349 0.567

MA(1) & Weak Spatial dependence (Polynomial)
(100, 64) 0.101 0.091 0.073 0.129 0.113 0.087 0.135
(100, 128) 0.078 0.081 0.060 0.113 0.089 0.073 0.116
(100, 256) 0.074 0.088 0.068 0.124 0.096 0.088 0.120

MA(1) & Strong Spatial dependence (Polynomial)
(100, 64) 0.094 0.321 0.270 0.658 0.509 0.280 0.512
(100, 128) 0.085 0.317 0.259 0.644 0.491 0.278 0.498
(100, 256) 0.070 0.323 0.255 0.664 0.493 0.273 0.498

where p∗ and sp∗ denote the erroneously assumed location of individual p = 1, .., n. Finally, we

apply HAC in both directions as suggested by Kim and Sun (2013), in particular we consider

V̂ mT ,mn

HAC,p =: Σ̃−1
x Φ̂mT ,mn

HAC,p Σ̃−1
x with

Φ̂mT ,mn

HAC,p =
1

nT

n∑
p=1

n∑
q=1

T∑
t=1

T∑
s=1

K

(
|t− s|
mT + 1

)
K

(
|p− q|
mn + 1

)
ẑptẑqs,

where both the true p and the erroneous locations p∗ are considered. For mn we select fixed lag

windows m∗n, equalling 5, 7 and 8 for n = 50, 100 and 200 respectively; for mT we select the fixed

lag window m∗T as before. Clearly, the individual and time HAC estimators are special cases

hereof with, e.g., Φ̂mT
Ht := Φ̂mT ,∞

HAC,p.

With our estimator typically outperforming these HAC estimators (and being robust to incor-

rect specification of the cross-sectional order/distance), we primarily focus here on the relative

performance of the HAC estimators in the presence of both temporal and spatial dependence. In

Table 2 we report the results of these simulations for n = 100 and a variety of choices for T .

The results in Table 2 indicate that the (individual) HAC estimator of time averages based

on the true location, V̂Hp and V̂Hps, perform comparably across different time dependencies,

just as the (time) HAC estimator of cross sectional averages, V̂Ht, performs comparably across

different cross-sectional dependencies. As expected, in the presence of strong spatial dependence,

inference based on V̂Hp is particularly bad as it ignores cross sectional dependence, similarly, to the

aforementioned deterioration of the performance of inference based on V̂Ht with time dependence.

There appears some evidence that using the locations sp in place of the rank order enhances the
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size of our test. This evidence, in particular, appears when the accompanying time dependence is

not too strong, or better yet, absent. Incorrect ordering of individuals clearly has a strong impact

on the size with the impact increasing with the level of cross sectional dependence. When keeping

the lag window mn fixed while increasing the temporal dependence weakens the performance

of the individual HAC on time averages V̂Hp and V̂Hps, just as the performance of the (time)

HAC on individual averages V̂ mT
Ht deteriorates with stronger time dependence when keeping mT

fixed. Clearly the lag window need to be chosen appropriately to reflect the cross-sectional and/or

temporal dependence. No attempt was made to implement an automated choice for the lag length,

as such an approach is not obvious in general. There appears little evidence that in finite samples,

inference based on V̂ mT ,mn

HAC,p tends to outperform V̂ mT
Ht and V̂ mn

Hp,p.

In Table 3, we present the empirical power for testing the significance of β using our proposed

estimator of the variance at the nominal 5% level when β = 0.1. In addition to presenting the

rejection rates based on the asymptotic critical values (column labelled V̂ ), we report the empirical

power based on the naive bootstrap algorithm in the column labelled V̂ nb, and the wild bootstrap

algorithm in V̂ wb.

The results indicate that even for small panels, when n = 50 and T = 64, we have high power

to reject H0 : β = 0 when β = 0.1 when using our bandwidth parameter free estimator for the

variance in all cross-sectional and time dependence scenarios. The power appears to be negatively

related to the level of time- and cross-sectional dependence. In the presence of weak (polynomial)

spatial dependence, say, the power decreases from 0.999 in the absence of time dependence to

0.983 under MA(1) time dependence and 0.852 under AR(1) time dependence. In the presence

of AR(1) time dependence (worst case scenario) the power decreases from 0.919 in the absence

of spatial dependence to 0.852 under weak (polynomial) dependence and 0.243 under strong

(polynomial) dependence. As the sample sizes increase, the power approaches one, faster when

the cross sectional and/or temporal dependence is lower. The empirical power of the test based

on using the asymptotic critical values is comparable to the empirical power based on either the

naive or wild bootstrap algorithm.

4.2. Simulations with Heterogeneous Time Dependence. In our second set of simulations,
we allow individual heterogeneity in the time dependence in both the error term and the strictly

exogenous regressor. The error term upt is generated as

upt = ρu,pup,t−1 + ηpt or upt = ηpt + θu,pηp,t−1

with ρu,p and θu,p individual specific AR and MA coeffi cients respectively and ηpt, as before,

characterizing the spatial dependence. A similar description holds for the independently drawn,

strictly exogenous regressor xit, with ρx,p and θx,p denoting the individual specific AR and MA

coeffi cients respectively and ϑpt characterizing its spatial dependence. As before, we allow for

some time heterogeneity in the exogenous regressor as well. Unlike in our first set of simulations,

we allow the variances to exhibit heteroskedasticity as well.

In Table 4, we report the empirical size for testing the significance of our parameter in the

presence of heterogenous time dependence when n = 100 and T = 64, 128, and 256. We

consider here two heterogeneous specifications. For the first specifications we assume that the

time dependence in upt and xpt for all individuals is AR(1), with corresponding correlations
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Table 4. Monte Carlo Simulations with Heterogeneous Time Dependence - Size

Time Mixed AR(1) Mixed AR(1)/MA(1)
Dependence ρx,p = ρu,p = 0.4 + p−1

2(n/2−1)

ρx,p = ρu,p = 0.4 + p−1
2(n−1) for p = 1, .., n/2; 0 else

for p = 1, .., n θx,p = θu,p = 0.4 + p−1−n/2
2(n/2−1)

for p = n/2 + 1, .., n; 0 else

Estimator V̂ V̂ nb V̂ wb V̂Ct V̂Cp V̂ mT
Ht V̂

m∗
T

Ht V̂ V̂ nb V̂ wb V̂Ct V̂Cp V̂ mT
Ht V̂

m∗
T

Ht
(n, T ) No spatial dependence
(100, 64) .097 .053 .074 .374 .056 .195 .198 .084 .060 .070 .309 .062 .179 .179
(100, 128) .078 .055 .067 .395 .058 .157 .161 .066 .051 .060 .312 .061 .143 .141
(100, 256) .069 .056 .063 .382 .059 .117 .124 .059 .048 .053 .330 .059 .122 .122

Weak dependence (exponential)
(100, 64) .076 .049 .069 .221 .155 .140 .140 .086 .061 .078 .243 .205 .145 .146
(100, 128) .074 .057 .065 .241 .127 .122 .121 .065 .049 .062 .236 .184 .119 .116
(100, 256) .058 .045 .056 .227 .120 .092 .091 .065 .053 .059 .266 .215 .116 .112

Weak dependence (Polynomial)
(100, 64) .099 .054 .074 .350 .087 .185 .189 .077 .050 .065 .291 .092 .167 .168
(100, 128) .078 .054 .069 .368 .074 .140 .144 .065 .047 .056 .315 .082 .144 .141
(100, 256) .063 .047 .053 .385 .075 .118 .122 .058 .047 .052 .312 .072 .111 .110

Strong dependence (Polynomial)
(100, 64) .103 .061 .084 .342 .475 .191 .192 .087 .062 .080 .274 .464 .168 .169
(100, 128) .077 .053 .064 .352 .470 .140 .144 .066 .052 .061 .276 .413 .130 .131
(100, 256) .068 .052 .063 .340 .455 .115 .119 .062 .056 .062 .272 .415 .104 .105

ρz,p = ρu,p = 0.4 + p−1
2(n−1) for p = 1, .., n (equidistant on the interval [0.4, 0.9]). For the second

specification we assume that half the individuals have an AR(1) time dependence and half the

individuals have an MA(1) time dependence, with the coeffi cients ranging from [0.4, 0.9] for both

dependence processes.

The results in Table 4, suggest that our cluster estimator of the variance is robust to the presence

of individual specific time dependence. Compared to the homogeneous AR(1) time dependence

(see Table 1), there are only moderate increases in the size of our test associated with our cluster

estimator in both the heterogeneous AR(1) and heterogeneous AR(1)/MA(1) setting. As in the

homogeneous time dependence setting, the rejection rates based on the asymptotic critical values

do tend to be closer to the nominal rejection rates when n and T both increase. While the

rejection rates based on both bootstrap algorithms suggest that finite sample improvements in

inference can be made using these algorithms, we should be more cautious here as only the wild

bootstrap will be valid in the heterogenous setting. The improvements achieved when applying

the wild bootstrap are more modest than those suggested by the naive bootstrap.

In the absence of spatial dependence, inference based on the cluster estimator that ignores such

dependence, V̂Cp, has better size properties than ours in these heterogenous settings as well. Our

estimator, though, is robust to the presence of spatial dependence, while inference based on V̂Cp
clearly is not. In the presence of strong spatial dependence, the size based on V̂Cp is 0.475 when

n = 100 and T = 64, whereas our proposal (based on the rejection rates using the wild bootstrap
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algorithm) yields a size of 0.084. Unsurprisingly, inference based on the cluster estimator that

ignores temporal dependence, V̂Ct, is oversized in the presence of heterogenous time dependence

as well. While improvements can be made by using a (time) HAC estimator of group averages

V̂ mT
Ht , the gains are less in these heterogeneous settings, and our cluster estimator, which does

not require the selection of a lag window mT and accounts for the heterogeneity, has size closer

to the nominal rate in both the heterogeneous AR(1) and heterogenous AR(1)/MA(1) setting.

In the presence of strong spatial dependence, when n = 100 and T = 128 the rejection rates

for our cluster estimator (0.077 using the asymptotic critical values and 0.064 based on the wild

bootstrap algorithm) compare well to a size equalling 0.115 based on V̂ mT
Ht .

In our final set of simulations, we generalize the individual heterogeneity in the time dependence

for both the strictly exogenous regressor and the error term to permit a higher order autoregres-

sive/moving average process. Specifically, we consider the following heterogeneous AR(3) and

MA(3) processes for the error term (appropriately adjusted when describing the dependence for

the strictly exogenous regressor)

(1− ρu1,pL)(1 + ρu2L+ ρu3L
2)upt = ηpt or

upt = (1 + θu1,pL+ θu2L
2 + θu3L

3)ηpt,

with ρu1,p and θu1,p individual specific (equidistant on the interval [0.4, 0.9]) and ηpt characterizing

the spatial dependence inherent in the error term. The two heterogeneous specification we consider

here are: one where the time dependence for all individuals is AR(3), and one where we assume

that half the individuals have an AR(3) time dependence and half the individuals have an MA(3)

time dependence. The empirical size of the test for significance of our parameter for these two

heterogeneous specifications are given in Table 5 for n = 100 and T = 64, 128, and 256.

Table 5 shows that our cluster estimator of the variance also performs well when we permit

higher order heterogeneous autoregressive/moving average temporal dependence. While inference

based on the cluster estimator that ignores temporal dependence, V̂Ct, is less oversized in these

heterogeneous settings compared to the heterogeneous AR(1) or heterogeneous AR(1)/MA(1)

(indicative that the temporal dependence is weaker here), there is now a much larger difference

in the performance of the (time) HAC estimator of group averages based on V̂ mT
Ht (automatic)

and V̂
m∗
T

Ht (fixed). This is not surprising, since our chosen lag windows mT and m∗T still rely on

a, now incorrect, AR(1) dependence assumption. In the presence of strong spatial dependence,

the rejection rates for our cluster estimator in the heterogeneous AR(3) setting (0.064 using the

asymptotic critical values and 0.059 based on the wild bootstrap algorithm when n = 100 and

T = 128) compare again well to the rejection rate based on V̂ mT
Ht which equals 0.131. While in

the homogeneous AR setting finite sample improvements can be achieved by implementing either

the naive of wild bootstrap algorithm, here we require the use of the wild bootstrap algorithm.

In Table 6, we report the empirical power of the test for significance of β at the nominal 5%

level when β = 0.1 for the first two heterogeneous time dependence considered: heterogeneous

AR(1) and heterogeneous AR(1)/MA(1).

The results in Table 6 indicate that also in the presence of heterogeneous temporal dependence,

the power to reject H0 : β = 0 when β = 0.1 is large, even in small panels. As before, the power

appears to be negatively related to the level of time-dependence and cross-sectional dependence.
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Table 5. Monte Carlo Simulations with Heterogeneous Time Dependence - Size

Mixed AR(3) Mixed AR(3)/MA(3)

(1− ρ1,pL)(1 + ρ2L+ ρ3L
2)

ρx,p = ρu,p = ρp for p = 1, ..., n

ρ1,p = 0.4 + p−1
2(n−1) ;

ρ2 = 0.3; ρ3 = 0.6

(1− ρ1,pL)(1 + ρ2L+ ρ3L
2)

ρx,p = ρu,p = ρp for p = 1, ...n/2;
= 0 else

(1 + θ1,pL+ θ2L
2 + θ3L

3)
θx,p = θu,p = θp for p = n/2 + 1, ...n;

= 0 else

ρ1,p = θ1,p = 0.4 + p−1
2(n/2−1) ;

ρ2 = θ2 = 0.3; ρ3 = θ3 = 0.6

Estimator V̂ V̂ nb V̂ wb V̂Ct V̂Ci V̂ mT
Ht V̂

m∗
T

Ht V̂ V̂ nb V̂ wb V̂Ct V̂Ci V̂ mT
Ht V̂

m∗
T

Ht
(n, T ) No spatial dependence
(100, 64) .063 .051 .061 .156 .053 .156 .139 .067 .056 .058 .177 .055 .130 .125
(100, 128) .061 .054 .054 .172 .058 .150 .121 .058 .051 .055 .181 .057 .114 .105
(100, 256) .057 .052 .058 .164 .056 .135 .093 .053 .047 .054 .174 .053 .093 .081

Weak dependence (exponential)
(100, 64) .066 .051 .064 .142 .230 .143 .128 .064 .054 .063 .139 .212 .127 .127
(100, 128) .068 .064 .063 .150 .207 .149 .113 .059 .056 .053 .139 .190 .122 .105
(100, 256) .060 .059 .057 .148 .225 .147 .093 .060 .049 .059 .146 .206 .110 .087

Weak dependence (Polynomial)
(100, 64) .066 .052 .060 .153 .093 .149 .131 .067 .048 .061 .174 .092 .128 .122
(100, 128) .057 .048 .053 .159 .083 .141 .109 .057 .049 .047 .165 .074 .106 .098
(100, 256) .051 .048 .047 .156 .078 .132 .091 .054 .047 .049 .173 .076 .092 .080

Strong dependence (Polynomial)
(100, 64) .069 .051 .069 .148 .531 .144 .133 .072 .058 .066 .183 .510 .142 .132
(100, 128) .064 .051 .059 .157 .525 .141 .114 .062 .052 .058 .180 .498 .118 .106
(100, 256) .059 .055 .060 .162 .517 .131 .100 .056 .051 .056 .175 .510 .099 .086

The most noteworthy finding here is that in the presence of strong (polynomial) spatial dependence

the power is larger in the heterogeneous AR(1) setting than in the homogeneous AR(1) setting,

see also Table 3. When n = 100 and T = 64, in the heterogeneous AR(1) setting the size equals

0.386 versus 0.318 in the homogenous AR(1) setting.

4.3. Empirical Example: Bid-Ask-Spread of Stocks. The empirical example is taken from
Hoechle (2007), who introduced the Stata programme xtscc that implements the V̂ mT

Ht robust

standard errors for panel regressions with cross-sectional dependence. Following Hoechle (2007),

we consider the following linear panel regression model

BApt = α+ β1aVolpt + β2Sizept + β3TRMS
2
pt + β4TRMS pt + εpt

to investigate whether information differentials can partially explain the cross-sectional differences

in quoted bid-ask spreads, as suggested by Glosten (1987). The dependent variable is the relative

bid-ask spread, BA, and the independent variables are the stock’s abnormal trading volume, aVol,

the stock’s size decile, Size, the monthly return of the MSCI Europe total return index in USD
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Table 6. Monte Carlo Simulations with heterogeneous time dependence - Power

β = 0.1

Time Mixed AR(1) Mixed AR(1)/MA(1)
Dependence ρx,p = ρu,p = 0.4 + p−1

2(n/2−1)

ρx,p = ρu,p = 0.4 + p−1
2(n−1) for p = 1, .., n/2; 0 else

for p = 1, .., n θx,p = θu,p = 0.4 + p−1−n/2
2(n/2−1)

for p = n/2 + 1, .., n; 0 else
Estimator V̂ V̂ nb V̂ wb V̂ V̂ nb V̂ wb

(n, T ) No spatial dependence
(100, 64) .939 .898 .923 .969 .957 .963
(100, 128) .993 .991 .992 .998 .997 .998
(100, 256) 1.00 1.00 1.00 1.00 1.00 1.00

Weak dependence (exponential)
(100, 64) .931 .896 .923 .879 .845 .873
(100, 128) .997 .995 .996 .992 .989 .992
(100, 256) 1.00 1.00 1.00 1.00 1.00 1.00

Weak dependence (Polynomial)
(100, 64) .906 .843 .876 .945 .925 .937
(100, 128) .990 .984 .989 .996 .994 .995
(100, 256) 1.00 1.00 1.00 1.00 1.00 1.00

Strong dependence (Polynomial)
(100, 64) .386 .300 .353 .441 .387 .424
(100, 128) .498 .429 .464 .646 .608 .633
(100, 256) .753 .723 .745 .862 .851 .861

(in %), TRMS, and its square, TRMS 2, as a simply proxy for the stock market risk.2 Using

monthly data from December 2000 to December 2005 on 195 stocks selected from the MSCI

Europe constituents, Hoechle (2007) revealed that the impact of accounting for cross-sectional

dependence on the standard errors of the parameter estimators was large whether individual

stock fixed effects were included or not. No time fixed effects were considered, as TRMS is

constant across stocks. In order to implement our frequency domain based cluster estimator of

the covariance matrix, we modify the sample slightly.3 To permit the computational advantage

of the Discrete Fast Fourier Transform based on a prime factor algorithm we ignored the last

observation, so that T = 60.

In Table 7 we provide various estimates of the standard errors for the fixed effect estimator

together with their associated p-values for their individual significance. Aside from using Driscoll

and Kraay’s HAC estimator, V̂ mT
Ht , we provide standard errors based on our cluster estimator,

2The bid-ask spread, BA, is defined as 100. Ask pt−Bid pt
0.5(Ask pt+Bid pt)

, and the stock’s abnormal trading volume, aVol, is

defined 100
(
ln (Volpt)− 1

T

∑
s ln (Volps)

)
, where Volpt denotes the number (in thousands) of stocks traded on the

last trading day of month t.
3While the xtscc procedure allows for unbalanced panel datasets, our focus on the frequency domain specification

makes it more natural to focus on balanced panels. To reduce the impact, we have replaced missing observations

for the bid-ask spread by their predicted values based on the unbalanced FE estimates. We have dropped one stock

due to missing data on abnormal trading volume and 23 stocks that that do not cover the whole period.
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Table 7. Bid-Ask-Spread of Stocks

aVol Size TRMS 2 TRMS
Parameter estimates, β̂j −.0012 −.1389 .0030 −.0047
Standard error

V̂
m∗
T

Ht .0007 .0298 .0009 .0050
V̂ mT
Ht .0009 .0365 .0008 .0081
V̂ .0005 .0237 .0011 .0084
V̂Ct .0009 .0333 .0008 .0078
V̂Cp .0008 .0358 .0005 .0042

p-value (significance)

V̂
m∗
T

Ht .068 .000 .000 .349
V̂ mT
Ht .168 .000 .000 .558
V̂ asymptotic .022 .000 .006 .576

naive bootstrap .056 .000 .012 .583
wild bootstrap .003 .000 .008 .624

V̂Ct .198 .000 .000 .543
V̂Cp .148 .000 .000 .262

n = 195, T = 60

V̂ , together with cluster estimators that either ignore time dependence, V̂Ct , or ignore spatial

dependence, V̂Cp. For the lag window required for the HAC estimator, we consider two choices:

m∗T (fixed) equal to the 8 months lag chosen by Hoechle and mT (automatic) which implements

the parametric AR(1) plug-in method. As our simulations suggest finite sample improvements can

be made using our bootstrap algorithms, we report p-values associated with our proposal based

on the asymptotic distribution and as obtained using the naive and wild bootstrap algorithms.

As in Hoechle, the HAC standard errors (with m∗T = 8) of all parameter estimates, with the

exception of the variable Size, are considerably larger than the usual LSE standard errors. As the

associated p-values for the significance of aVol exceed the 5% level of significance, consequently,

there is only weak evidence that information differentials help explain differences in quoted bid-

ask spread ceteris paribus once spatial dependence is accounted for using the HAC standard

errors. This result, however, is sensitive to the particular choice of m∗T , with the p-values and

standard errors for aVol decreasing when larger window lags are considered. Our cluster estimator,

which does not require the selection of a window lag and thereby does not restrict the time

dependence, has p-values (and standard errors) for aVol that are smaller than those indicated

by HAC with window lag m∗T suggesting that the window lag indeed may have been chosen too

small. Computing the p-values using the wild bootstrap algorithm (indicated here in view of

observed heterogeneity in the sample) lends further support of this. The automated window lag,

based on implementing the parametric AR(1) plug-in estimator, on the other hand suggests that

much less time dependence should have been taken into account as mT = 1; this suggests that

the parametric plug-in method does not work particularly well in this case. While our cluster

based inference therefore finds evidence that information differentials help explain differences in

quoted bid-ask spread ceteris paribus, cluster based inference that ignore either cross sectional or

temporal dependence, on the other hand, do not permit the support of Glosten’s hypothesis.
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The results in Table 7 also lend support for return differentials between small and large stocks

(Size) (e.g., see also Fama and French, 1993) and a correlation between stock market risk (TRMS 2)

and the bid-ask spread. While the p-values associated with their significance are small regardless of

which estimator for the covariance of the fixed effect estimator is used, it is clear that the standard

errors based on using the HAC estimator for Size and TRMS 2 exhibit a high sensitivity to the

particular choice of the window lag, m∗T versus mT , which renders the limitation of bandwidth

based inference obvious. When removing the restriction on the time dependence imposed by

Driscoll and Kraay’s HAC estimator, we obtain standard errors on TRMS and TRMS 2 that

are larger than the presented HAC standard errors in accordance with results obtained in our

simulations.

5. CONCLUSIONS

In this paper we expand the literature on inference in panel data models in the presence

of both temporal and cross-sectional dependence without relying on any parametric functional

form of such dependences. While a standard methodology, based on the HAC estimator, is

often invoked and used in the context of time series regression models, in the presence of cross-

sectional dependence its implementation has only recently been considered, see Kim and Sun

(2013), Driscoll and Kraay (1998) or Vogelsang (2015). To deal with various serious caveats of

the HAC estimator, we propose a cluster based estimator which is able to take into account

both types of dependence, extending the work of Arellano (1987) and Driscoll and Kraay (1998)

in a substantial way. Our approach is based on the realization that the spectral representation

of the fixed effect panel data model is such that the errors become approximately temporally

uncorrelated and heteroscedastic. As the cluster estimator may not be reliable in small samples,

and therefore it may not provide a good approximation to make accurate inferences, we present

and examine a bootstrap algorithm in the frequency domain. Simulation results reveal that our

estimator performs quite well, even in the presence of strong spatial dependence, and our bootstrap

algorithms provide small sample improvements. In light of the sensitivity of the HAC estimator

to the choice of the window lag and, more importantly, the associated measure of distance between

the cross-sectional units, we feel that our approach offers a welcome contribution in this literature.

Appendix A. PROOF OF MAIN RESULTS

We first introduce some notation. For a generic function h, we shall abbreviate h (λj) by h (j)

and for generic sequences
{
ψpt
}T
t=1
, p = 1, ..., n,

Jψ,· (j) =
1

T 1/2

T∑
t=1

 1

n

n∑
q=1

ψqt

 e−itλj .

Using expression (10.3.12) of Brockwell and Davis (1991), we also have the useful relation

Ju,p (j) = Bu,p (−j)Jξ,p (j) + Yu,p (j) (A.1)

Jx,p (j) = Bx,p (−j)Jχ,p (j) + Yx,p (j) , p = 1, ..., n,
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where Bu,p (j) =: Bu,p
(
eiλj

)
, Bx,p (j) =: Bx,p

(
eiλj

)
and

Yu,p (j) =

∞∑
`=0

d` (p) e−i`λj

(
1

T 1/2

{
T−∑̀
t=1−`

−
T∑
t=1

}
ξpte

−itλj

)
(A.2)

Yx,p (j) =

∞∑
`=0

c` (p) e−i`λj

(
1

T 1/2

{
T−∑̀
t=1−`

−
T∑
t=1

}
χpte

−itλj

)
.

Finally, we shall make use of the well know result

EJχ,p (j)Jχ,q (−k) = ϕx (p, q)1 (j = k) (A.3)

EJξ,p (j)Jξ,q (−k) = ϕu (p, q)1 (j = k) .

A.1. PROOF OF THEOREM 1.
We begin with part (i). Without loss of generality assume that xpt is scalar. Using (2.2) and

standard arguments, we obtain

1

(nT )1/2

T∑
t=1

n∑
p=1

x̃ptũpt

=
1

(nT )1/2

T∑
t=1

n∑
p=1

xptupt −
1

(nT )1/2

T∑
t=1

n∑
p=1

(x·t + xp· − x··)upt (A.4)

− 1

(nT )1/2

T∑
t=1

n∑
p=1

(u·t + up· − u··)xpt + op (1) .

Because the second and third terms on the right of (A.4) are handled similarly, we shall only look

at the second. Now

E

 T∑
t=1

n∑
p=1

x·tupt

2

=
T∑

t,s=1

n∑
p,q=1

E (x·tx·s) γu,pq (t− s)ϕu (p, q)

=
1

n2

n∑
p2,q2,p1,q1=1

ϕx (p2, q2)ϕu (p1, q1)

T∑
t,s=1

γx,p2q2 (t− s) γu,p1q1 (t− s)

≤ C
T

n2

 n∑
p2,q2=1

|ϕx (p2, q2)|

 n∑
p1,q1=1

|ϕu (p1, q1)|


= o (Tn) .

The latter displayed expression holds true because Conditions C1 and C2 imply that

T∑
t,s=1

sup
p,q

∣∣γx,pq (t− s)
∣∣+ sup

p,q

∣∣γu,pq (t− s)
∣∣ < C, (A.5)

whereas Condition C3, see also Remark 1, implies that4

n∑
q=1

ϕu (p, q)

n∑
q=1

ϕx (p, q) = o (n) (A.6)

4For two nonnegative sequences {αp} and
{
βp
}
,
∑
αpβp < C implies that

∑
αp
∑
βp = o (n) if

∑(
αp + βp

)
=

o (n).
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so that
n∑

p1,p2=1

ϕu (p1, p2)

n∑
q1,q2=1

ϕx (q1, q2) = o
(
n3
)
. (A.7)

Proceeding similarly with
∑T

t=1

∑n
p=1 xp·upt and x··

∑T
t=1

∑n
p=1 upt, we can conclude that the

left hand side of (A.4) is

1

(nT )1/2

T∑
t=1

n∑
p=1

xptupt + op (1)
d→ N (0,Φ)

by Lemma B.8. This concludes the proof of part (i) of the theorem.

We now show part (ii). Proceeding similarly as in part (i), we shall examine

1

(nT )1/2

n∑
p=1

T−1∑
j=1

Jx,p (j)Ju,p (−j)− 1

(nT )1/2

n∑
p=1

T−1∑
j=1

Jx,p (j)Ju,· (−j) (A.8)

− 1

(nT )1/2

n∑
p=1

T−1∑
j=1

Jx,p (j)Ju,· (−j) .

The first term of (A.8) converges in distribution to N (0,Φ) by Lemma B.9. So, to complete the

proof it suffi ces to show that the last two terms of (A.8) are op (1). We examine the second term

only, with the third term being handled similarly. By standard algebra and (A.1), this term is

1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

Bx,p (j)Bu,q (j)Jχ,p (j)Jξ,q (−j)

+
1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

Bx,p (j)Jχ,p (j) {Ju,q (−j)− Bu,q (j)Jξ,q (−j)}

+
1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

Bu,p (j)Jξ,q (−j) {Jx,q (−j)− Bx,q (j)Jχ,p (j)} (A.9)

+
1

n3/2

n∑
p,q=1

1

T 1/2

T−1∑
j=1

{(Jx,q (−j)− Bx,q (j)Jχ,p (j))

× (Ju,q (−j)− Bu,q (j)Jξ,q (−j))} .

We examine the second term of (A.9) first. Using (A.3), we have that its second moment is

bounded by

1

Tn3

n∑
p1,p2,q1,q2=1

ϕu (q1, q2)ϕx (p1, p2)
1

T

T−1∑
j=1

sup
p1,p2
|fx,p1p2 (j)|

=
1

Tn3

n∑
q1,q2=1

ϕu (q1, q2)

n∑
p1,p2=1

ϕx (p1, p2)

= o
(
T−1

)
,

by Lemma B.1 and (A.6). Likewise the third and fourth terms of (A.9) are op
(
T−1/2

)
. So to

complete the proof we need to examine the first term of (A.9), whose second moment is bounded
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by

1

Tn3

T−1∑
j=1

sup
p,q
|fx,pq (j)| |fu,pq (j)|

n∑
p1,p2=1

ϕx (p1, p2)
n∑

q1,q2=1

ϕu (q1, q2) = o (1)

by (A.7) and using
(
supp,q |fx,pq (j)|+ supp,q |fu,pq (j)|

)
≤ C. This concludes the proof of the

theorem. �

A.2. PROOF OF PROPOSITION 1.
We begin with part (a). We need to show that, for any k1, k2 = 1, ..., k,

Φ̆k1,k2 =
1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p,k1 (j)Jû,p (−j)

 1

n1/2

n∑
p=1

Jx̃,p,k2 (−j)Jû,p (j)


P→ Φk1,k2 .

To simplify the notation we shall assume that k = 1. Now, after observing that

Jû,p (j) = Jũ,p (j)−
(
β̃ − β

)
Jx̃,p (j) ,

we have that Φ̆ =: Φ̆1,1 is

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx̃,p (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju,p (j)


+2
(
β̃ − β

) 1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Ix̃,p (j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju,p (j)


+
(
β̃ − β

)2 1

T

T−1∑
j=1

 1

n1/2

n∑
p=1

Ix̃,p (j)

2

. (A.10)

The third term of (A.10) is Op
(
T−1

)
by Lemma B.7 and β̃ − β = Op

(
(nT )−1/2

)
. The second

term of (A.10) is also op (1) by Cauchy-Schwarz’s inequality if we show that the first term converges

in probability to Φ. Since

Jx̃,p (j) = Jx,p (j)− Jx,· (j) , (A.11)

this result holds true if we show that

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx,p (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx,p (−j)Ju,p (j)

 P→ Φ (A.12)

and

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx,· (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx,p (−j)Ju,p (j)


+

1

T

T−1∑
j=1


 1

n1/2

n∑
p=1

Jx,· (j)Ju,p (−j)

 1

n1/2

n∑
p=1

Jx,· (−j)Ju,p (j)


= op (1) . (A.13)
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First we examine (A.13). The first term on the left of (A.13) , which can be rewritten as

1

T

T−1∑
j=1

n1/2Jx,· (j)Ju,· (−j)

 1

n1/2

n∑
p=1

Jx,p (−j)Ju,p (j)

 .

has its first moment given by

1

T

T−1∑
j=1

n∑
p=1

E (Jx,· (j)Jx,p (−j))E (Ju,p (−j)Ju,p (j))

=
C

Tn2

T−1∑
j=1

n∑
p=1

n∑
r=1

ϕx (p, r)
n∑
q=1

ϕu (p, q)

{
1 +

C

T

}
.

using Lemma B.1. Using (A.6) , we conclude that the last displayed expression is o (1). Next, we

observe that Lemma B.5 implies, for instance, that

E (Ju,· (−j)Ju,p (j)Ju,· (−k)Ju,q (k))− E2 (Ju,· (−j)Ju,p (j))

= ϕu (p, q)
1

n2

n∑
p1,q1=1

ϕu (p1, q1)

{
1 (j = k) +

C

T

}
.

The variance of the first term on the left of (A.13) , therefore, is bounded by

1

T 2

T−1∑
j,k=1

n∑
p,q=1

ϕ (p, q)
1

n4

n∑
p1,q1=1

ϕu (p1, q1)

n∑
p1,q1=1

ϕx (p1, q1)

{
1 (j = k) +

C

T

}
= o

(
T−1

)
using Condition C3 and (A.7). Hence the first term on the left of (A.13) is op (1). The same

conclusion holds true for the second term of (A.13).

To complete part (a), we examine (A.12). Using (A.1), we have that (A.12) holds true if the

following expressions (A.14)− (A.16) are op (1) :

1

Tn

T−1∑
j=1


 n∑
p=1

Bx,p (−j)Bu,p (j)Jχ,p (j)Jξ,p (−j)


 n∑
p=1

Bx,p (−j)Bu,p (j)Jχ,p (j)Jξ,p (−j)

− Φ, (A.14)

1

Tn

T−1∑
j=1

 n∑
p=1

Bx,p (−j)Jχ,p (j) Yu,p (−j)

 n∑
p=1

Bu,p (j)Jξ,p (−j) Yx,p (j)

 , (A.15)

1

Tn

T−1∑
j=1

 n∑
p=1

Yx,p (j) Yu,p (−j)

 n∑
p=1

Yu,p (−j) Yx,p (j)

 (A.16)

We begin by showing that (A.14) is op (1). First, the expectation of (A.14) is

1

n

n∑
p,q=1

ϕ (p, q)
1

T

T−1∑
j=1

Bx,p (−j)Bu,p (j)Bx,q (−j)Bu,q (j)− Φ = O
(
T−1

)
because, by continuous differentiability of fx,pq (λ) fu,pq (λ), we have that

1

T

T−1∑
j=1

Bx,p (−j)Bx,q (−j)Bu,p (j)Bu,q (j)−
∫ 2π

0
fx,pq (λ) fu,pq (λ) dλ = O

(
T−1

)
.
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Next, because (A.3) implies that

E {(Jχ,p1 (j)Jξ,p1 (−j)Jχ,q1 (j)Jξ,q1 (−j)− E (·))

(Jχ,p2 (−k)Jξ,p2 (k)Jχ,q2 (−k)Jξ,q2 (k)− E (·))}

= ϕx (p1, p2)ϕx (q1, q2)ϕu (q1, p2)ϕu (p1, q2)1 (j = k)

+ϕx (p1, p2)ϕx (q1, q2)ϕu (p1, p2)ϕu (q1, q2)1 (j = k)

+2ϕx (p1, p2)ϕx (q1, q2)

∞∑
`=1

c` (p1) c` (p2) c` (q1) c` (q2)1 (j = k)

+
∞∑
`=1

c` (p1) c` (p2) c` (q1) c` (q2)
∞∑
`=1

d` (p1) d` (p2) d` (q1) d` (q2)
(
1 (j = k) +

κ4,ξκ4,χ

T

)
,

we have, by standard algebra, that the second moments of (A.14) are o (1), when recognizing

∞∑
`=1

d` (p1) d` (p2) d` (q1) d` (q2) ≤
∞∑
`=1

d` (p1) d` (p2)
∞∑
`=1

d` (q1) d` (q2)

= ϕu (p1, p2)ϕu (q1, q2) (A.17)

∞∑
`=1

c` (p1) c` (p2) c` (q1) c` (q2) ≤
∞∑
`=1

c` (p1) c` (p2)
∞∑
`=1

c` (q1) c` (q2)

= ϕx (p1, p2)ϕx (q1, q2) (A.18)

and

n∑
p1=1

ϕx (p1, p2)ϕu (p1, q2) ≤

 n∑
p1=1

ϕ1/α
x (p1, p2)

α n∑
p1=1

ϕ1/1−α
u (p1, q2)

1−α

= O (1) (A.19)

since
∑n

p1=1 ϕx (p1, p2)ϕu (p1, p2) = O (1) implies ϕx (p1, p2) = O
(
p−α1

)
and ϕu (p1, p2) = O

(
p−β1

)
with α+ β > 1.

Next consider (A.15). Because supp |Bx,p (−j)Bu,p (j)| < C, the second moment of (A.15) is

bounded by

1

(Tn)2

T−1∑
j,k=1

n∑
p1,q1,p2,q2=1

|E {Jχ,p1 (j)Jχ,q1 (−k) Yx,p2 (j) Yx,q2 (−k)}

E {Yu,p1 (−j) Yu,q1 (k)Jξ,p2 (−j)Jξ,q2 (k)}| .

From here, proceeding as with (A.14) but using Lemmas B.1 and B.2 as needed, we easily conclude

that (A.15) = op (1) by Markov’s inequality, since for instance

E {Jχ,p1 (j)Jχ,q1 (−k) Yx,p2 (j) Yx,q2 (−k)}

= E (Jχ,p1 (j)Jχ,q1 (−k))E (Yx,p2 (j) Yx,q2 (−k))

+E (Jχ,p1 (j) Yx,p2 (j))E (Jχ,q1 (−k) Yx,q2 (−k))

+E (Jχ,p1 (j) Yx,q2 (−k))E (Jχ,q1 (−k) Yx,p2 (j))

+cum (Jχ,p1 (j) ;Jχ,q1 (−k) ; Yx,p2 (j) ; Yx,q2 (−k)) .
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The proof of part (a) now concludes since (A.16) = op (1) by standard algebra and Lemmas B.1

and B.2.

Part (b). Using Lemma B.6 and (A.11), it suffi ces to show that

1

Tn

n∑
p=1

T∑
j=1

Ix,· (j)−
2

Tn

n∑
p=1

T∑
j=1

Jx,· (j)Jx,p (j) = op (1) .

This holds true proceeding as with the proof of part (a) and by recognizing that, by the continuous

differentiability of fx,p (λ), T−1
∑T

j=1 fx,p (j)→
∫ 2π

0 fx,p (λ) dλ =: Σx,p. �

A.3. PROOF OF THEOREM 2.
Because Lemma B.7 implies that (Tn)−1∑n

p=1

∑T−1
j=1 Ix̃,p (j)

P→ Σx and abbreviating f̂u (j) =
1
n

∑n
q=1 Iû,q (j), it suffi ces to show

(i)
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

Jx̃,p (j)
(
f̂1/2
u (j)− f1/2

u (j)
)
Ju∗,p (−j) = op∗ (1) (A.20)

(ii)
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

Jx̃,p (λj) f
1/2
u (j)Ju∗,p (−j) d∗→ N (0,Φ) (in probability) (A.21)

We begin with part (ii). The left hand side of (A.21) is

1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

f1/2
u (j)Bx,p (j)Jχ,p (j)Ju∗,p (−j) (A.22)

+
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

f1/2
u (j)

(
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

)
Ju∗,p (−j) .

The second (bootstrap) moment of the second term of (A.22) is

1

Tn

n∑
p,q=1

T−1∑
j=1

fu (j) σ̂u,pq
(
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

) (
Jx̃,q (−j)− Bx,q (−j)Jχ,q (−j)

)
(A.23)

using

E∗ (Ju∗,p (j)Ju∗,q (−k)) = σ̂u,pq1 (j = k) ; σ̂u,pq =
1

T

T∑
t=1

ûptûqt, (A.24)

By Lemma B.1 and (A.1),

E
(
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

) (
Jx̃,q (−j)− Bx,p (−j)Jχ,p (−j)

)
=
C

T
ϕx (p, q) ;

σ̂u,pq = ϕu (p, q)
(

1 +Op

(
T−1/2

))
.

Hence it easily follows that the expected value of equation (A.23) is o (1) and consequently the

second term of (A.22) is op∗ (1). We observe that (A.23) is a nonnegative expression.

Turning to the first term of (A.22) , let us denote

Ξ∗s,t (n) =
1

n1/2

n∑
p=1

χpsu
∗
pt; G (j) =: Bx,p (j) f1/2

u,p (j) . (A.25)
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Standard algebra then yields that the first term of (A.22) is

1

T̃ 1/2

1

T

T∑
t,s=1

Ξ∗s,t (n)
T̃∑
j=1

G (j) ei(t−s)λj =
1

T 1/2

T∑
t,s=1

φ (|t− s|) Ξ∗s,t (n) +
C

T 3/2

T∑
t,s=1

Ξ∗s,t (n) , (A.26)

where to simplify the notation we assume that ϕx (p, p) = ϕu (p, p) = 1 for all p = 1, ..., n and

φ (r) is the rth Fourier coeffi cient of G (j). The right hand side of (A.26) now can be written as

φ (0)

T 1/2

T−∑̀
t=1

1

n1/2

n∑
p=1

χptu
∗
pt +

T−1∑
`=1

φ (`)

T 1/2

T−∑̀
t=1

1

n1/2


n∑
p=1

χptu
∗
p,t+` +

n∑
p=1

χp,t+`u
∗
pt

 . (A.27)

As φ (r) = O
(
r−2
)
by Conditions C1 and C2, given the independence of the sequences of random

variables 1
n1/2

∑n
p=1 χptu

∗
p,t+` and

1
n1/2

∑n
p=1 χp,t+`u

∗
pt in t for completion of the proof it suffi ces

to show that.

Λ∗t,n =:
1

n1/2

n∑
p=1

χptu
∗
p,t+`

d∗→ N

0,
T − `
T

lim
n→∞

1

n

n∑
p,q=1

ϕ (p, q)

 .
Observe that E∗

∣∣Λ∗t,n∣∣4 = Op (1).

The second bootstrap moment of Λ∗t,n is

1

n

n∑
p,q=1

χptχqt
1

T

T−∑̀
r=1

ûp,r+`ûq,r+` =
1

n

n∑
p,q=1

χptχqt
1

T

T−∑̀
r=1

up,r+`uq,r+` (1 + op (1)) ,

by standard algebra and Theorem 1. Now, Conditions C1 and C2 imply that

1

n

n∑
p,q=1

(
E
(
χptχqt

) 1

T

T−∑̀
r=1

E (up,r+`uq,r+`)

)
=
T − `
T

1

n

n∑
p,q=1

ϕ (p, q) .

Moreover, because E (up1,t+`uq1,t+`up2,s+`uq2,s+`) = E (up1tuq1tup2suq2s)

E

 1

n

n∑
p,q=1

χptχqt
1

T

T−∑̀
t=1

uptuqt

2

=
1

n2

n∑
p1,q1,p2,q2=1

E
(
χp1tχq1tχp2tχq2t

) 1

T 2

T−∑̀
t,s=1

E (up1tuq1tup2suq2s)

=
1

n2

n∑
p1,q1,p2,q2=1

1

T 2

T−∑̀
t,s=1

{
E
(
χp1tχq1t

)
E
(
χp2tχq2t

)
+ E

(
χp1tχq2t

)
E
(
χp2tχq1t

)
+E

(
χp1tχp2t

)
E
(
χq1tχq2t

)
+ cum

(
χp1t;χq1t;χp2t;χq2t

)}
×{E (up1tuq1t)E (up2suq2s) + E (up1tuq2s)E (up2suq1t)

+E (up1tup2s)E (uq1tuq2s) + cum (up1t;uq1t;up2s;uq2s)}

=
1

n2T 2

n∑
p1,q1,p2,q2=1

T−∑̀
t,s=1

E
(
χp1tχq1t

)
E
(
χp2tχq2t

)
E (up1tuq1t)E (up2suq2s) (1 + o (1))

=

T − `
T

1

n

n∑
p,q=1

ϕ (p, q)

2

(1 + o (1))
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as E (upsuqr) = ϕu (p, q) γu,pq (r − s),
∑T

r,s=1

∣∣γu,pq (r − s)
∣∣ = O (T ) and (A.19). This shows

that the second moment converges to the square of the first moment, and hence E∗
∣∣Λ∗t,n∣∣2 −

T−`
T

1
n

∑n
p,q=1 ϕ (p, q) = op (1).

Thus, it remains to show the Lindeberg’s condition to complete the proof of part (ii). To that

end, it suffi ces to show that
1

n2

n∑
p=1

E∗
(
χptu

∗
p,t+`

)4
= op (1) .

The left hand side of the last displayed expression is

1

n2

n∑
p=1

∥∥χpt∥∥4 1

T

T−∑̀
t=1

û4
p,t+` =

1

n2

n∑
p=1

∥∥χpt∥∥4 1

T

T−∑̀
t=1

u4
p,t+` (1 + op (1))

= Op
(
n−1

)
,

which completes the proof of part (ii).

Next we prove part (i). The left side of (A.20) is

1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

(
f̂1/2
u (j)− f1/2

u (j)
)
Bx,p (j)Jχ,p (j)Ju∗,p (−j) (A.28)

+
1

T 1/2n1/2

n∑
p=1

T−1∑
j=1

(
f̂1/2
u (j)− f1/2

u (j)
) (
Jx̃,p (j)− Bx,p (j)Jχ,p (j)

)
wu∗,p (−j) .

We shall only show explicitly that the first term of (A.28) is op∗ (1), the second term following

similarly if not easier proceeding as with the second term of (A.22) and Lemma B.1. Now by

(A.24), the first term of (A.28) has second bootstrap moments given by

1

T

T∑
t=1

1

nT

T−1∑
j=1

{
f̂1/2
u (j)− f1/2

u (j)
}2
fx (j)

n∑
p,q=1

ûptûqtJχ,p (j)Jχ,q (−j) .

Because the last displayed expression is a nonnegative expression, to show that it is op (1), it

suffi ces to show that its first moment converges to zero. To that end, we first observe that{
f̂1/2
u (j)− f1/2

u (j)
}2
≤

∣∣∣∣∣∣ 1n
n∑
q=1

Iû,q (j)− fu (j)

∣∣∣∣∣∣ = op (1) (A.29)

using standard arguments and Theorem 1. Moreover, as for instance

1

n

n∑
p,q=1

xptxqtJχ,p (j)Jχ,q (−j) = op (nT )

because the left side is a nonnegative expression that has an expectation which is o (n), we have

by arguing as in the proof of Proposition 1 that

1

n

n∑
p,q=1

ûptJχ,p (j) ûqtJχ,q (−j) =
1

n

n∑
p,q=1

uptJχ,p (j)uqtJχ,q (−j) (1 + op (1)) .

The proof of part (i), and thereby the theorem, therefore, is completed if

E

 n∑
p,q=1

uptuqtJχ,p (j)Jχ,q (−j)

 = O (n) .
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But the left hand side of the last displayed expression is

n∑
p,q=1

ϕu (p, q)E (Jχ,p (j)Jχ,q (−j))

=

n∑
p,q=1

ϕu (p, q)
1

T

T∑
t,s=1

E (xptxqs) e
−i(t−s)λj

= C
n∑

p,q=1

ϕu (p, q)ϕx (p, q) = O (n)

by Condition C3, which completes the proof. �

A.4. PROOF OF PROPOSITION 2.
As with the proof of Proposition 1, we shall assume that k = 1. Now, after observing that

Jû∗p (j) = Jũ∗,p (j)−
(
β̃
∗ − β̃

)
Jx̃,p (j) ,

we have that Φ̆∗ equals the sum of the following expressions (A.30)− (A.32) :

1

T

T−1∑
j=1

f̂u (j)

 1

n1/2

n∑
p=1

Jx̃,p (j)Ju∗,p (−j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju∗,p (j)

− Φ̆ (A.30)

2
(
β̃
∗ − β̃

) 1

T

T−1∑
j=1

f̂1/2
u (j)

 1

n1/2

n∑
p=1

Ix̃,p (j)

 1

n1/2

n∑
p=1

Jx̃,p (−j)Ju∗,p (j)

 (A.31)

(
β̃
∗ − β̃

)2 1

T

T−1∑
j=1

 1

n1/2

n∑
p=1

Ix̃,p (j)

2

. (A.32)

That (A.32) is op∗ (1) follows straightforwardly by Theorem 2 and Lemma B.7 and (A.31) is

op∗ (1) by Cauchy-Schwarz’s inequality if we show that (A.30) is op∗ (1). To that end, using (A.11)

and (A.24), we have

E∗ (A.30) =
1

Tn

T−1∑
j=1

f̂u (j)
n∑

p,q=1

Jx,p (j)Jx,q (−j) σ̂u,pq − Φ̆

+
1

Tn

T−1∑
j=1

f̂u (j)
n∑

p,q=1

Jx,· (j)Jx,· (−j) σ̂u,pq.

Because σ̂u,pq = ϕu (p, q) (1 + op (1)) and Φ̆ − Φ = op (1) by Proposition 1, proceeding as in the

proof of Theorem 2 part (i), it suffi ces to examine the behaviour of

1

Tn

T−1∑
j=1

fu (j)
n∑

p,q=1

{ϕu (p, q)Jx,p (j)Jx,q (−j)} − Φ (A.33)

+
1

T

T−1∑
j=1

fu (j)Jx,· (j)Jx,· (−j)
1

n

n∑
p,q=1

ϕu (p, q) . (A.34)

(A.34) is op (1) as we now show. As it is a nonnegative sequence, it suffi ces to show that its first

mean converges to zero. Using (A.1) and then Lemmas B.1 and B.2, we have that its first moment
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is proportional to

1

n2

n∑
p,q=1

ϕx (p, q)
1

n

n∑
p,q=1

ϕu (p, q) = o (1)

by (A.6). Because the first moment of (A.33) is o (1), it then remains to show that the (boot-

strap) variance of (A.30) , with Jx̃,p (j) replaced by Jx,p (j) , converges to zero. Using (A.24), the

(bootstrap) variance is

1

T 2

T−1∑
j=1

f̂2
u (j)

 1

n2

n∑
p1,q1p2,q2=1

Jx,p1 (j)Jx,q1 (−j)Jx,p2 (−j)Jx,q2 (j) σ̂u,p1p2 σ̂u,q1q2


+
κ4,ξ (1 + op (1))

T 3n2

T−1∑
j,k=1

{
f̂u (j) f̂u (k)

×
n∑

p1,q1p2,q2=1

ϕu (p1, q1)ϕu (p2, q2)Jx,p1 (j)Jx,q1 (−j)Jx,p2 (−k)Jx,q2 (k)

 ,

with Lemma B.4 guaranteeing

cum∗
(
u∗p1t, u

∗
q1t, u

∗
p2t, u

∗
q2t

)
= κ4,ξϕu (p1, q1)ϕu (p2, q2) (1 + op (1)) .

From here we proceed as before after noticing that σ̂u,p1p2 = ϕu (p1, p2) (1 + op (1)). This com-

pletes the proof of the proposition. �

A.5. PROOF OF PROPOSITION 3.
As with the proof of Theorem 2, it suffi ces to show that

1

T 1/2n1/2

T−1∑
j=1

n∑
p=1

Jx̃,p (j)Jû,p (−j) ηj
d∗→ N (0,Φ) (in probability). (A.35)

Because ηj are normally distributed it suffi ces to show

E∗

 1

T 1/2n1/2

T−1∑
j=1

n∑
p=1

Jx̃,p (j)Jû,p (−j) ηj

2

P→ Φ.

This is the case as we now show. The left hand side of the last displayed expression is

1

Tn

T−1∑
j=1

n∑
p,q=1

Jx̃,p (j)Jx̃,q (−j)Jû,p (−j)Jû,q (j)

=
1

Tn

T−1∑
j=1

n∑
p,q=1

Jx̃,p (j)Jx̃,q (−j)Ju,p (−j)Ju,q (j) + op (1)



38 JAVIER HIDALGO AND MARCIA SCHAFGANS

as ûpt − upt =
(
β̃ − β

)
xpt and β̃ − β = Op

(
T−1/2n−1/2

)
. Using (A.11) and proceeding as in the

proof of part (a) of Proposition 1, we now have that the right hand side is

1

Tn

T−1∑
j=1

n∑
p,q=1

Jx,p (j)Jx,q (−j)Ju,p (−j)Ju,q (−j)

+
2

Tn

T−1∑
j=1

n∑
p,q=1

Jx,p (j)Jx,· (−j)Ju,p (−j)Ju,q (−j)

+
1

Tn

T−1∑
j=1

n∑
p,q=1

Jx,· (j)Jx,· (−j)Ju,p (−j)Ju,q (−j) + op (1) .

The first term converges in probability to Φ, whereas the second term follows by Cauchy-Schwarz’s

inequality if the third term is also op (1). But that term is op (1) proceeding as in the proof of

part (a) of Proposition 1 using Lemma B.5. Again observe that the expression is nonnegative.

This concludes the proof. �

Appendix B. LEMMAS

First denotingΥ`,p (j) =
{∑T−`

t=1−`−
∑T

t=1

}
ξpte

−itλj andΨ`,p (j) =
{∑T−`

t=1−`−
∑T

t=1

}
χpte

−itλj ,

we have that Yu,p (j) and Yx,p (j) given in (A.2) can be decomposed as

Yu,p (j) = Y(1)
u,p (j) + Y(2)

u,p (j) (B.1)

Yx,p (j) = Y(1)
x,p (j) + Y(2)

x,p (j) ,

where

Y(1)
u,p (j) =

1

T 1/2

T∑
`=0

d` (p) e−i`λjΥ`,p (j) ; Y(2)
u,p (j) =

1

T 1/2

∞∑
`=T+1

d` (p) e−i`λjΥ`,p (j)

Y(1)
x,p (j) =

1

T 1/2

T∑
`=0

c` (p) e−i`λjΨ`,p (j) ; Y(2)
x,p (j) =

1

T 1/2

∞∑
`=T+1

c` (p) e−i`λjΨ`,p (j) .

Lemma B.1. Assuming C1 and C2, we have that for p, q = 1, .., n and some υu, υx > 0 finite,

E
(

Y(1)
w,p (j) Y(1)

w,q (−k)
)

=
υwϕw (p, q)

T
; w =: u or x (B.2)

E
(

Y(2)
w,p (j) Y(2)

w,q (−k)
)

= o
(
T−2

)
ϕw (p, q)1 (j = k) ; w =: u or x. (B.3)

Proof. We examine only the case when w =: u, with the proof for w =: x similarly handled. We

begin with (B.3). Because for ` ≥ T , E (Υ`,p (j) Υ`,q (−k)) = 2Tϕu (p, q)1 (j = k), we obtain that

the left hand side of (B.3) is

2
∞∑

`1,`2=T+1

d`1 (p) d`2 (q)ϕu (p, q)1 (j = k) .

The conclusion then follows because Condition C1 implies that
∑∞

`=T+1 supp |d` (p)| = o
(
T−1

)
.

Next we consider (B.2). By definition, the left side is

1

T

T∑
`1,`2=0

d`1 (p) d`2 (q)E (Υ`,p (j) Υ`,q (−k)) = ϕu (p, q)
υu
T
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since Υ`,p (j) =
{∑0

t=1−`−
∑T

t=T−`+1

}
ξpte

itλj when ` ≤ T , so that

E (Υ`,p (j) Υ`,q (−k)) = 2ϕu (p, q)
∑̀
t=1

eit(λj−λk).

We now conclude because
∑∞

`=0 ` supp |d` (p)| <∞ by Condition C1. �

Lemma B.2. Assuming C1 and C2, we have that for p, q = 1, .., n,

(a) E
(

Y(1)
u,p (j)Jξ,q (−k)

)
= ϕu (p, q)

1

T

T∑
`=0

d` (p) e−i`λj
∑̀
t=1

eitλj−k

E
(

Y(2)
u,p (j)Jξ,q (−k)

)
= ϕu (p, q)1 (j = k) o

(
T−2

)
(b) E

(
Y(1)
x,p (j)Jχ,q (−k)

)
= ϕx (p, q)

1

T

T∑
`=0

c` (p) e−i`λj
∑̀
t=1

eitλj−k

E
(

Y(2)
x,p (j)Jχ,q (−k)

)
= ϕx (p, q)1 (j = k) o

(
T−2

)
.

Proof. As in the proof of Lemma B.1 we shall only show part (a). To that end, we first notice

that Condition C1 implies that

E (Υ`,p (j)Jξ,q (−k)) =
ϕu (p, q)

T 1/2

(
1 (j = k)1 (` ≥ T ) +

T∑
t=T−`+1

eitλj−k1 (` < T )

)
.

From here the proof concludes by standard algebra. �

Lemma B.3. Assuming C1 and C2, we have that∣∣cum (ξp1t; ξp2t; ξp3t; ξp4t)∣∣ ≤ |κ4,ξ|ϕu (p1, p2)ϕu (p3, p4)∣∣cum (χp1t;χp2t;χp3t;χp4t)∣∣ ≤ |κ4,χ|ϕx (p1, p2)ϕx (p3, p4) (B.4)

Proof. Using inequality (A.17) , the proof follows easily since by definition

cum
(
ξp1t; ξp2t; ξp3t; ξp4t

)
= κ4,ξ

∞∑
`=1

a` (p1) a` (p2) a` (p3) a` (p4) .

The proof is similar for the second expression in (B.4), where inequality (A.18) is used instead of

(A.17). �

Lemma B.4. Assuming C1 and C2, for some τ > 2,

|cum (up1t1 ;up2t2 ;up3t3 ;up4t4)| ≤ C
|κ4,ξ|ϕu (p1, p2)ϕu (p3, p4)

(t2 − t1)τ (t3 − t1)τ (t4 − t1)τ

|cum (xp1t1 ;xp2t2 ;xp3t3 ;xp4t4)| ≤ C
|κ4,χ|ϕx (p1, p2)ϕx (p3, p4)

(t2 − t1)τ (t3 − t1)τ (t4 − t1)τ
.

Proof. As in the proof of Lemma B.3, we handle the first displayed inequality only. Without loss

of generality we take t1 ≤ t2 ≤ t3 ≤ t4. Condition C1 and the definition of the fourth cumulant

then yield that

cum (up1t1 ;up2t2 ;up3t3 ;up4t4) =
∞∑
k=1

dk (p1) dk+t2−t1 (p2) dk+t3−t1 (p3) dk+t4−t1 (p4)

×cum
(
ξp1t; ξp2t; ξp3t; ξp4t

)
.
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From here we conclude using Lemma B.3 and the fact that Condition C1 implies that supp |dk (p)| =
O (k−τ ) for some τ > 2. �

Lemma B.5. Assuming C1 and C2, we have that for w =: u or x,

E (Jw,p1 (j)Jw,p2 (−k)) = fw,p1p2 (j)ϕw (p1, p2)

{
1 (j = k) +

C

T

}
(B.5)

and

E (Jw,p1 (j)Jw,p2 (−j)Jw,p3 (k)Jw,p4 (−k)) (B.6)

= ϕw (p1, p2)ϕw (p3, p4)

{
1+1 (j = k) +

C

T

}
.

Proof. Consider w =: u, say. By (A.1), we have that the left hand side of (B.5) is

E ((Bu,p1 (−j)Jξ,p1 (j) + Yu,p1 (j)) (Bu,p2 (k)Jξ,p2 (−k) + Yu,p2 (−k))) ,

which using (A.3) equals the right hand side of (B.5) by Lemmas B.1 and B.2.

Next, the left hand side of (B.6) is

E (Ju,p1 (j)Ju,p2 (−j))E (Ju,p3 (k)Ju,p4 (−k)) + E (Ju,p1 (j)Ju,p3 (k))E (Ju,p2 (−j)Ju,p4 (−k))

+E (Ju,p1 (j)Ju,p4 (−k))E (Ju,p3 (k)Ju,p2 (−j)) + cum (Ju,p1 (j) ;Ju,p2 (−j) ;Ju,p3 (k) ;Ju,p4 (−k)) .

Using (B.5) , the first three terms of the last displayed expression are proportional to

fu,p1p2 (j) fu,p3p4 (j)ϕu (p1, p2)ϕu (p3, p4)1 (j = k) ,

while the absolute value of the last term is bounded by

1

T 2

T∑
t1,t2,t3,t4=1

|cum (up1t1 ;up2t2 ;up3t3 ;up4t4)| ≤ C
|κ4,ξ|
T 2

T∑
t1,t2,t3,t4=1

ϕu (p1, p2)ϕu (p3, p4)

(t2 − t1)τ (t3 − t1)τ (t4 − t1)τ

≤ C

T
ϕu (p1, p2)ϕu (p3, p4)

because τ > 2 using Lemma B.4. From here the conclusion follows easily. �

Lemma B.6. Assuming C2− C4, we have that for some η > 0,

E

 1

n

n∑
p=1

Ix,p (j)− fx,p (j)

2

= O
(
n−η

)
. (B.7)

Proof. Standard algebra yields that the left hand side of (B.7) is bounded by

E

 1

n

n∑
p=1

{
Jx,p (j)J ′x,p (−j)− E

(
Jx,p (j)J ′x,p (−j)

)}2

+

 1

n

n∑
p=1

EIx,p (j)− fx,p (j)

2

.

Now 1
n

∑n
p=1EIx,p (j) − fx,p (j) = O (n−η) is standard as fx,p (λ) is twice continuously differen-

tiable and Condition C4 holds. Using Lemma B.5 ensures that the first term of the last displayed

expression is
C

n2

n∑
p,q=1

ϕ2
x (p, q)

(
1 +

C

T

)
= O

(
n−η

)
by Condition C3, see also Remark 1. �
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Lemma B.7. Under C1− C3, we have that

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix̃,p (j)

2

−

 1

n

n∑
p=1

Ix,p (j)

2

= op (1) (B.8)

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix,p (j)

2

−
∫ π

−π

 lim
n→∞

1

n

n∑
p=1

fx,p (λ)

2

dλ = op (1) . (B.9)

Proof. Noticing that

1

n

n∑
p=1

Ix̃,p (j)− Ix,p (j) = −Ix,· (j) ,

we obtain that the left hand side of (B.8) equals

1

T

T−1∑
j=1

I2
x,· (j)−

2

T

T−1∑
j=1

Ix,· (j)
1

n

n∑
p=1

Ix,p (j) .

We shall examine the first term of the last displayed expression, with the second one being handled

similarly, if not easier. Now, by definition

Ix,· (j) =
1

n2

n∑
p,q=1

Jx,p (j)Jx,q (−j) ,

so that Lemma B.5, in particular (B.6), implies that

EI2
x,· (j) =

1

n4

n∑
p1,...,p4=1

ϕx (p1, p2)ϕx (p3, p4)

{
1+1 (j = k) +

C

T

}
= o (1)

because n−2
∑n

p1,p2=1 ϕx (p1, p2) = o (1) by ergodicity. This completes the proof of (B.8).

Regarding (B.9), it suffi ces to show that

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix,p (j)− E (Ix,p (j))

2

= op (1) (B.10)

1

T

T−1∑
j=1

 1

n

n∑
p=1

Ix,p (j)− E (Ix,p (j))

 1

n

n∑
p=1

E (Ix,p (j)) = op (1) , (B.11)

because the continuous differentiability of fx,p (λ) implies

1

T

T−1∑
j=1

1

n

n∑
p=1

E (Ix,p (j))−
∫ π

−π
lim
n→∞

1

n

n∑
p=1

fx,p (λ) = o (1)
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by standard arguments. Now (B.10) holds true because Lemma B.5, in particular expression

(B.6), yields that

E

 1

n

n∑
p=1

Ix,p (j)− E (Ix,p (j))

2

=
1

n2

n∑
p,q=1

E
{
Jx,p (j)J ′x,p (−j)− E

(
Jx,p (j)J ′x,p (−j)

)
× Jx,q (j)J ′x,q (−j)− E

(
Jx,q (j)J ′x,q (−j)

)}
=

1

n2

n∑
p,q=1

ϕ2
x (p, q)

{
2 +

C

T

}
= o (1)

by Condition C3. Next (B.11) follows by Cauchy-Schwarz’s inequality. �

The next lemma extends a Central Limit Theorem in Phillips and Moon (1999) when their

independence condition fails.

Lemma B.8. Let {upt}t∈Z and {xpt}t∈Z, p ∈ N+, satisfy Conditions C1−C3. Then as n, T →∞,

1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

xptupt
d→ N (0,Φ) . (B.12)

Proof. First, Hidalgo and Schafgans’(2017) Theorem 1 implies that

zn,t =
1

n1/2

n∑
p=1

xptupt
d→ N (0,Ωt) , t = 1, ..., T , (B.13)

and also for any r, s ≥ 0,

1

n1/2

n∑
p=1

χp,t+rξp,t+s
d→ N (0,Ωt,r,s) .

Now, Phillips and Moon’s (1999) Theorem 2 cannot be employed as the latter result requires that

the left hand side of (B.13), that is {zn,t}t≥1, is a sequence of independent random variables.

Dropping the subscript “p”for notational convenience, we have that

utxt = (Du (L) ξt) (Cx (L)χt) , (B.14)

where

Du (L) =

∞∑
`=0

d`L
`; Cx (L) =

∞∑
`=0

c`L
`

by Conditions C1 and C2. We now employ a “second-order”BN decomposition similar to that in

Phillips and Solo (1992, p. 978-979). First, we notice that standard algebra yields that the right
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hand side of (B.14) is

∞∑
`=0

d`c`ξt−`χt−` +

( ∞∑
`=0

∞∑
k=`+1

+

∞∑
k=0

∞∑
`=k+1

)
d`ckξt−`χt−k

=

∞∑
`=0

d`c`ξt−`χt−` +

∞∑
k=1

( ∞∑
`=0

d`c`+kξt−`χt−k−`

)
+

∞∑
`=1

( ∞∑
k=0

ckdk+`χt−kξt−k−`

)

=
∞∑
`=0

d`c`ξt−`χt−` +
∞∑
k=1

( ∞∑
`=0

d`c`+kL
`

)
ξtχt−k +

∞∑
`=1

( ∞∑
k=0

ckdk+`L
k

)
χtξt−`

= f0 (L) ξtχt +

∞∑
k=1

fk (L) ξtχt−k +

∞∑
`=1

g` (L)χtξt−`,

where fk (L) =
∑∞

`=0 d`c`+kL
` and g` (L) =

∑∞
k=0 ckdk+`L

k. Observe that f0 (L) = g0 (L).

Next, because for a generic polynomial h (L) =
∑∞

`=0 h`L
`, we have the identity h (L) =

h (1)− (1− L) h̃ (L), where h̃ (L) =
∑∞

`=0 h̃`L
` with h̃` =

∑∞
p=`+1 hp, we can write the right hand

side of the last displayed equality as

f0 (1) ξtχt + ξt

∞∑
k=1

fk (1)χt−k + χt

∞∑
`=1

g` (1) ξt−` (B.15)

− (1− L)
∞∑
k=1

d̃ckξt−kχt−k − (1− L)
∞∑
k=1

f̃k (L) ξtχt−k − (1− L)
∞∑
`=1

g̃` (L)χtξt−`.

Now, we observe that

d̃ck = f̃0 (L) , f̃k (L) =
∞∑
`=0

υ̃`,kL
` with υ̃`,k =

∞∑
p=`+1

dpcp+k,

g̃` (L) =
∞∑
k=0

ω̃k,`L
` with ω̃k,` =

∞∑
p=k+1

cpdp+`,

and ξt
∑∞

k=1 fk (1)χt−k and χt
∑∞

`=1 g` (1) ξt−` are martingale differences which are mutually un-

correlated.

Given (B.15) , we can write the left hand side of (B.12) as the sum of six terms. The contribution

due to the fourth term of (B.15),

∞∑
k=1

d̃ck
1

T 1/2

1

n1/2

n∑
p=1

ξp,t−kχp,t−k = Op

(
T−1/2

)
because E

(
1

n1/2

∑n
p=1 ξp,t−kχp,t−k

)2
< C and by summability of the sequence

{
d̃ck

}
k∈N+

. The

contribution due to the fifth and sixth terms of (B.15) similarly is op (1).

So, we need to examine the contribution due to the first three terms of (B.15) on the left side

of (B.12), that is

f0 (1)
1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

ξptχpt +
1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

ξptχ̃pt

+
1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

ξ̃ptχpt, (B.16)
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where

χ̃pt =:

∞∑
k=1

fk (1)χp,t−k; ξ̃pt =:

∞∑
`=1

g` (1) ξp,t−`.

The result that the first term of (B.16) converges to a normal random variable follows by (the

proof of) Hidalgo and Schafgans’(2017) Theorem 1 and Phillips and Moon’s (2002) Theorem 2 as

n−1/2
∑n

p=1 ξptχpt are independent sequences in t. Because the second and third terms of (B.16)

are similar, we only handle the second one explicitly. Now that term is

K∑
k=1

fk (1)
1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

ξptχp,t−k +
∞∑

k=K+1

fk (1)
1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

ξptχp,t−k. (B.17)

By summability of fk (1) and given that

E

 1

T 1/2

T∑
t=1

1

n1/2

n∑
p=1

ξptχp,t−k

2

=
1

T

T∑
t=1

1

n

∑
p,q

ϕ (p, q) ≤ C

by Condition C3, we obtain that by choosing K large enough the second term of (B.17) is op (1).

The first term of (B.17) on the other hand converges to a normal random variable proceeding as

with the first term of (B.16). The proof is then completed using Bernstein’s lemma. �

Lemma B.9. Under the same conditions of Lemma B.8, we have that

1

T̃ 1/2

T̃∑
j=1

1

n1/2

n∑
p=1

Jx,p (j)Ju,p (−j) d→ N (0,Φ) . (B.18)

Proof. Using (A.1) and (B.5) of Lemma B.5, we have that the left hand side of (B.18) is governed

by

1

T̃ 1/2

T̃∑
j=1

1

n1/2

n∑
p=1

Bx,p (j)Bu,p (−j)Jχ,p (j)Jξ,p (−j)

=
1

T̃ 1/2

T̃∑
j=1

1

T

T∑
t,s=1

Ξs,t (n; j) ei(t−s)λj , (B.19)

where

Ξs,t (n; j) =
1

n1/2

n∑
p=1

Gp (j)χpsξpt; Gp (j) =: Bx,p (j)Bu,p (−j) . (B.20)

Because
{
χpt
}
t∈Z and

{
ξpt
}
t∈Z, p ∈ N

+, are mutually independent iid zero mean sequences, we

have that Ξs,t (n) is independent of Ξr,m (n) if s 6= r and t 6= m and uncorrelated if s 6= r and

t = m or s = r and t 6= m. By Lemma B.8, it follows that Ξs,t (n; j)→d N
(

0, Ṽ (j)
)
, where

Ṽ (j) = lim
n→∞

1

n

n∑
p,q=1

fx,pq (j) fu,pq (j)ϕ (p, q)

and E ‖Ξs,t (n)‖4 < C.
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Next, the right hand side of (B.19) is

21/2

T 3/2

T∑
t,s=1

1

n1/2

n∑
p=1

χpsξpt


T̃∑
j=1

gp (j) ei(t−s)λj


=

1

T 1/2

T∑
t,s=1

1

n1/2

n∑
p=1

φp (t− s)χpsξpt
(

1 +
C

T

)
(B.21)

using Brillinger’s (1981) Exercise 1.7.14(b), where φp (s) denotes the s− th Fourier coeffi cient of
gp (λj) defined in (B.20). Note also that Parseval’s equality, see Fuller’s (1996) Theorem 3.1.6,

implies that
∞∑

`=−∞
φ2
p (`) =

1

2n

∫ π

−π
g2
p (λ) dλ =

1

2π

∫ π

−π
fx,p (λ) fu,p (λ) dλ.

Now, the right hand side of (B.21) can be written as

1

T 1/2

T−∑̀
t=1

1

n1/2

n∑
p=1

φp (0)χptξpt +
1

T 1/2

T−1∑
`=1

T−∑̀
t=1

1

n1/2


n∑
p=1

φp (`)
(
χptξp,t+` + χp,t+`ξpt

) .
From here, we conclude the proof proceeding as we did in Lemma B.8 since, say,

1

n1/2

n∑
p=1

φp (`)χptξp,t+`

is a sequence of independent random variables in the t dimension which converges to a Gaussian

random variable by arguments similar to those in the proof of Hidalgo and Schafgans’ (2017)

Theorem 1 and

1

T 1/2

T−1∑
`=b

T−∑̀
t=1

1

n1/2

n∑
p=1

φp (`)χptξp,t+` = op (1)

by choosing b large enough since φp (`) = O
(
`−2
)
. �
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