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SUMMARY 

Biocatalysis can empower chemical, pharmaceutical and energy industries, where the use of 

enzymes facilitates low-energy, sustainable methods of producing high-value chemicals and 

pharmaceuticals that are otherwise impossibly troublesome or costly to obtain. One of the 

largest class of enzymes (oxidoreductases, ~25% of the total) capable of promoting 

bioreduction reactions are vital for the global pharmaceutical and chemical market due to their 

intrinsic enantioselectivity and specificity. Enzymatic reduction is dependent on a 

coenzyme/cofactor as hydride source, namely nicotinamide adenine dinucleotide, NADH or its 

phosphorylated form (NADPH). Given the high cost, stoichiometric usage, and physical 

instability of NAD(P)H, a suitable method for NAD(P)H regeneration is essential for practical 

application. This review summarizes the existing methods for NAD(P)H regeneration including 

enzymatic, chemical, homogeneous catalytic, electrochemical, photocatalytic and 

heterogeneous catalytic routes. Particular focus is given to recent progress in developing 

heterogeneous systems with potential significance in terms of process simplicity, cleanliness 

and energy/cost saving.  
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INTRODUCTION 

Biocatalysis has been extensively used in the chemical and pharmaceutical industries for the 

manufacture of products ranging from speciality
1
 to commodity chemicals (ca. 50,000 

ton/annum).
2
 Enzymatic specificity and enantioselectivity are critical, notably in the 

pharmaceutical sector where enzymes are employed in the commercial synthesis of two thirds 

of chiral products
3
 that are used in new drug syntheses.

1,4
 For example, the drug Lipitors 

(atorvastatin) recorded a global sale of US$11.9 billion in 2010 alone,
1
 while worldwide 

prescription drug sales are forecast to reach US$1,000 billion in 2020,
5
 where approximately 

95% of pharmaceuticals will be chiral.
6
 Oxidoreductases are one of the largest class of 

enzymes (~25% of all enzymes) with far ranging industrial and research significance in the 

reduction of carbonyl groups, acids, C=C double bonds, nitro groups and C–N multiple 

bonds.
4,7

 However, many of these enzymatic redox reactions require one or more cofactors 

that are consumed during reaction.
1
 For instance, enzymatic reductions require a cofactor (or 

coenzyme) as the hydrogen source (hydride donor), notably (reduced) nicotinamide adenine 

dinucleotide (NADH) and its phosphorylated form (NADPH, both refer to the bioactive 1,4-

NAD(P)H in this study, see Figure 1 for their structures) where 80% of known 

oxidoreductases require the former and 10% require the latter.
7
 In an enzymatic reduction 

cycle, NAD(P)H serves as a reductant which is oxidized to NAD(P)
+
 (structure given in 

Figure 1), while the substrate is reduced to the target product using the appropriate 

(production) enzyme, as illustrated in “pathway A” (Figure 2). Given the high cost of 

NAD(P)H (bulk price per mol: NADH, US$3,000; NADPH, US$215,000),
8
 stoichiometric 

supply is not economically feasible and an effective system of cofactor regeneration is 

required to enable practical large-scale application of enzymatic reductions. This is indeed a 

reason why cofactor-dependent enzymes (e.g., dehydrogenases) lag behind ‘simple’ cofactor-
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independent enzymes (e.g., hydrolases and oxidases) in terms of their implementation by 

industry. 

METHODS OF COFACTOR NAD(P)H REGENERATION 

A major difference between the NAD(P)H and NAD(P)
+
 structure is a hydride ion, i.e., H

−
 

(H
+
 + 2e

−
). Regeneration of NAD(P)H requires a (catalytic or non-catalytic) transfer of a 

proton and two electrons (from sacrificial hydride donors) to NAD(P)
+
 (i.e., reduction of 

NAD(P)
+
). Common sacrificial hydride donors include formate, glucose, phosphite, 

triethanolamine (TEOA), mercaptoethanol, propanol and molecular H2 gas, most of which are 

valuable chemicals but are consumed in regeneration, while some produce further waste 

byproducts. Typically, the activity of cofactor regeneration can be measured by turnover 

frequency (TOF, the number of moles of NAD(P)H formed per moles of active site per unit 

time) whereas the efficiency of an in situ regeneration system can be measured by turnover 

numbers (TN, the number of moles of product formed per mole of cofactor per unit time) and 

total turnover numbers (TTN, the number of moles of product formed per mole of cofactor 

during the course of a complete reaction). In general, TTNs greater than 1000 may appear to 

make a process economically viable.
4,9

 Moreover, selectivity presents another challenge for 

the regeneration of NAD(P)H (Figure 2) as enzymatically inactive byproducts including the 

isomers 1,6-NAD(P)H and NAD2 dimer may form irreversibly, leading to a permanent loss of 

valuable cofactor. Ultimately, the development of NAD(P)H regeneration must consider 

activity, selectivity, process sustainability (waste and byproduct generation) and, more 

importantly, the practical applications, i.e., compatibility with production enzymes. It is 

noteworthy from the outset that there are systems which suffer from mutual deactivation 

between the regeneration and enzymatic processes.
10,11
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In general, methods for cofactor NAD(P)H regeneration can be sub-divided into six 

categories, namely enzymatic regeneration (e.g., using glucose (GDH) or formate (FDH) 

dehydrogenases), chemical regeneration (using inorganic salts such as sodium dithionite 

(Na2S2O4), sodium borohydride (NaBH4) or dihydropyridine compounds, e.g., 1,4-

dihydropyridines), homogeneous catalytic regeneration (e.g., Rh, Ru and Ir complexes), 

electrochemical regeneration (including both direct regeneration on the electrode and indirect 

regeneration using organometallic complexes as hydrogen transfer agents), photocatalytic 

regeneration (e.g., copolymers and carbon nitride as a photocatalyst) and heterogeneous 

catalytic regeneration (e.g., using Pt/Al2O3). The latter of these was recently developed by 

some of the authors here.
12

 Cofactor regeneration has been an appealing topic with several 

key reviews based on discussion of the first five methods. Critical assessments to be 

highlighted are those by Ward and coworkers (recent trends with emphasis on approaches to 

overcome mutual inhibition),
10

 Wu and coworkers (literature survey on the state-of-art 

research and crucial issues),
7
 Hollman and coworkers (photocatalytic regeneration,

13
 coupling 

with enzymatic reductions,
4
 nonconventional regeneration

9
), Vincent and coworkers (H2-

driven enzymatic regeneration
14

 and immobilized enzymes on carbon based materials
15

), Liu 

and Wang (membrane entrapment and solid attachment of cofactors),
16

 Liese and coworkers 

(coupled with ketone reductions),
17

 Hummel and coworkers (principles and examples of 

small-scale and industrial applications),
18

 van der Donk and Zhao (developments of 

technologies between 2000-2003),
19

 Wichmann and coworkers (lab scale regeneration
20

 and 

regeneration in membrane reactors),
21

 and Chenault and Whitesides (regeneration for use in 

organic synthesis).
22

 In this review, discussion is directed at potentially promising systems 

with a “heterogeneous” nature (i.e., using solid-state catalytic materials in liquid media) for 

clean cofactor NAD(P)H regeneration. This is of great significance because sustainable 

manufacturing becomes crucial for the pharmaceutical sector, where negative environmental 
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impact has been highlighted since the 1990s due to the  low process efficiency and high waste 

to product ratio.
23

 We first present an overview of NAD(P)H regeneration methods, then 

discuss in particular the approaches involving heterogeneous component(s) and finally focus 

on our own findings using supported metals as heterogeneous catalyst.   

Enzymatic Regeneration 

Cofactor regeneration using enzymes has been considered as a favorable system and has been 

the only one applied practically at industrial scale. One of the earliest examples 

demonstrating enzymatic NAD(P)H preparation from NAD(P)
+
 was published in 1957 when 

ethanol and ADH were used by Rafter and Colowick.
24

 Enzymatic approaches for 

regeneration offer excellent compatibility with the target bioconversions due to comparable 

reaction conditions, i.e., low temperature operation in an aqueous media at a near neutral pH 

(5-9). Moreover, enzymatic regeneration usually associates with a high specific activity, 

exclusive selectivity towards the active NAD(P)H and low energy consumption. Two 

common strategies employed are (i) “coupled-enzyme” (Figure 3A) which utilizes a second 

enzyme (i.e., regeneration enzyme) such as GDH with associated sacrificial hydride donor 

(e.g., glucose) and (ii) “coupled-substrate” (Figure 3B) that one enzyme serves both 

reduction of substrate and cofactor regeneration. The most widely used enzymes for cofactor 

regeneration in commercial processes are GDH and FDH, while phosphite (PDH), alcohol 

(ADH), glucose 6-phosphate dehydrogenases and hydrogenases have been tested at 

laboratory scale.
4
 Figure 3C depicts the reaction schemes for these cofactor regeneration 

systems. Among these enzymes, GDH (e.g., from Bacillus species) shows the highest activity 

(up to 550 U mg
-1

; 1 U = 1 μmol min
-1

) and stability, and consequently has become the most 

widely used. FDH does have a unique feature in generating carbon dioxide (CO2) as a 
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gaseous byproduct (albeit release to the environment should be minimized) for simplified 

product separation, but its use is hampered by its low activity (~10 U mg
-1

).   

In a “coupled-substrate” system, the single enzyme acts as both reducing (production) and 

oxidizing (cofactor regeneration) catalysts. One classic example is using ADH for the 

synthesis of the high value drug precursor (S)-2-bromo-2-cyclohexen-1-ol.
25

 In this system, 

2-propanol was chosen as the sacrificial hydride donor to form acetone, a volatile byproduct 

which assisted removal. This approach allows easy scale-up and simplified downstream 

recovery/reuse of enzyme. However, such systems typically require high concentrations of 

the sacrificial alcohol to drive the equilibrium towards the desired product. This in turn leads 

to loss of activity in the main target reaction due to competition amongst substrates and 

cosubstrates for the same active sites on the enzyme.    

Although it is the only method industrially employed, cofactor regeneration using enzymes is 

far from perfect. Firstly, the generation of significant quantities of water-soluble byproducts 

(e.g., 196 g gluconic acid per mol NADH regenerated by GDH)
4
 requires costly downstream 

separation and causes enzyme deactivation. Additionally, base or acid may be needed to 

maintain the optimal pH for retaining the enzymatic action. Other disadvantages are linked to 

the high cost, instability of enzymes and complexity of product purification. As a result, 

research and development for cofactor regeneration are driven towards systems that show 

high stability, sustainability and enhanced downstream product separation/purification.  

Chemical Regeneration 

Chemical regeneration involves use of the high redox potential of salts or dihydropyridine 

compounds to reduce NA(P)D
+
 to NAD(P)H, which can be considered as a non-catalytic 

process. Common reducing agents used include Na2S2O4, NaBH4 and 1,4-dihydropyridines. 

For instances, Jones et al.
26

 in 1972 reported the possibility of utilizing Na2S2O4 at a 
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preparative scale and later in 1976 reported the use of a group of reducing 1,4-

dihydropyridines with different functional groups (such as −CONH2, −CO2C2H5, −COOH, 

−CON(CH3)2, etc.).
27

 Since the corresponding TNs of this process are very low (TTN < 100) 

and high concentration of reductant salts can cause enzyme deactivation,
7,28

 this method has 

interest only from a historical perspective. It is noteworthy that these methods based on non-

catalytic chemical reactions (reducing potentials) have not been widely used due to intrinsic 

issues that include the large amount of feed required and wastes generated, whose high 

concentration deactivates the production enzymes.  

Homogeneous Catalytic Regeneration 

Cofactor regeneration using homogeneous catalysis has been reported since the 1980s using 

organometallic complexes as the catalysts and molecular hydrogen as the hydride source
29,30

. 

The most commonly employed catalysts for this purpose are complexes of transition metals 

such as Rh, Ru, Ir and Pt, which are known to catalyze reduction reaction. Among them, the 

versatile cationic pentamethylcyclopentadienyl (Cp*) rhodium bipyridine complex 

[Cp*Rh(bpy)Cl]
+
 has been most widely used due to its flexible (electro)chemical 

regeneration and regiospecific performance.
31

 A similar approach is the combination of a Pt 

carbonyl cluster with the dye safranine in a two-phase system.
32

 There are also examples of 

using these organometallic complexes supported on electrodes for electrochemical 

regeneration of cofactor (to be discussed later). When compared with enzymes, these 

organometallic complexes usually exhibit a lower catalytic activity (kcat = 0.5-10 vs. ~100 

min
-1

 for enzymes), making them less competitive when compared with their enzymatic 

counterpart.
10,11

 Another major obstacle for large scale application of cofactor regeneration 

using homogeneous organometallic catalysts lies in their strong interaction with peptide 

components in enzymes, causing mutual deactivation.
11

 However, progress made in water-
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soluble organometallic catalysis has shown TOFs up to ~1000 h
-1

 (over Cp*Rh(5,5’-CH2OH-

bpy)Cl]
+
)

31
 and 2000 h

-1
 (over [(η

5
-C5Me5)Rh(1,10-phenanthroline)Cl]

+
 with demonstrated 

enzymatic compatibility),
33

 respectively; but both were operated at 60°C and still require an 

organic hydride donor (i.e., formate). The toxicity of organometallic complexes and the 

necessary energy-intensive separation stages are disadvantages. 

Electrochemical Regeneration  

Electrochemical methods for NAD(P)H regeneration have long been acknowledged as 

attractive due to the low cost of electricity and the easy control of electrode potentials.
18

 

Regeneration could be achieved from direct, indirect or indirect enzyme-coupled recycling 

systems (Figure 4, protons supplied from the buffered solution
10

). For direct regeneration 

(Figure 4A), NAD(P)
+ 

is reduced on the electrode surface via a 2-step reaction mechanism. 

In the first step, the oxidized species reacts with one electron to give a radical form, which, in 

turn, is reduced and protonated to give NAD(P)H. However, the radicals obtained in the first 

step can combine leading to inactive dimers as a side product. Modification of the electrode 

surface by deposition of metal particles was used to increase the protonation rate of the 

NAD(P) radicals, but again not much of the active NAD(P)H remained after a few 

regenerative cycles.
34

 The problems of direct electrochemical methods have been overcome 

by introducing an indirect regeneration pathway (Figure 4B) using mediators, which act as 

electron carriers and can transfer two electrons or one hydride ion in a single step. 

Unfortunately, it is still very difficult to find a redox mediator that can regenerate NAD(P)H 

effectively with high TOFs/TNs. Hence, attempts have been made to recycle the cofactors 

indirectly by coupling the electrochemical redox system with an enzymatic process (Figure 

4C). Although the mediators and enzymes used are soluble and form a homogeneous system, 
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the electrodes and associated catalytic materials are solid and as such the process can be 

considered heterogeneous. This will be discussed further in a following section.  

Photocatalytic Regeneration 

Photocatalytic regeneration borrows the concept of photosynthesis in nature that utilizes 

light-harvesting systems (LHSs) for generating electrons and electron transport chains (ETCs) 

for migrating electrons to ferredoxin for further NAD(P)H regeneration. This method 

strongly relies on the development of high-performance photocatalysts. In this respect, a 

number of organic photosensitizers, inorganic semiconductors, as well as some new materials 

(e.g., carbon nitride, C3N4) have been explored in the context of NAD(P)H  regeneration. 

Commonly, organic photosensitizers exhibit better catalytic activity which are 3-100 times 

better than inorganic semiconductors, of which the synthesis processes are, unfortunately, 

often complicated and labor-consuming. In contrast, the new materials such as C3N4, which 

are very easy to synthesize show comparable activity to organic photosensitizers, and may be 

promising photocatalysts for NAD(P)H regeneration. Photocatalytic regeneration using solid 

catalysts is a heterogeneous process and will be discussed in a later section.  

Heterogeneous Catalytic Regeneration 

The origin of NAD(P)H regeneration is a reductive reaction from its oxidized form 

(NAD(P)
+
). A reducing agent and a catalyst are needed to promote such a chemical 

transformation (NAD(P)
+
 → NAD(P)H). Readily available hydrogen gas (preferably from a 

renewable source) can be a clean source for this purpose with protons as the sole release that 

can be further consumed in bioconversions, thus achieving 100% atom efficiency. Figure 5 

illustrates enzymatic (FDH) CO2 reduction as an example, producing formic acid that can be 

further reduced to formaldehyde using formaldehyde dehydrogenase and methanol using 

alcohol dehydrogenase; both require NADH regeneration. Such H2-driven cofactor NAD(P)H 
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regeneration exhibits clear advantages in terms of process simplicity and cleanliness. 

Heterogeneous catalysts (e.g., supported metals) are well-established in activating hydrogen 

(over e.g., Pt, Pd, Rh, Ru, Ni, Au and Ag) and promoting reduction reactions with the added 

benefit of facile downstream separation. It would appear to be a straightforward process yet 

there are few reports of selective reduction of NAD
+
 using supported metals and hydrogen.

12
 

This review focuses on this method with detailed discussion in the penultimate section.  

Table 1 compares all the critical components involved in the six categories of methods for the 

regeneration of NAD(P)H cofactor. It is clear that regeneration using heterogeneous catalysts 

fulfil all four criteria (e.g., avoiding the use of water-soluble catalyst, organic sacrificial 

hydride donor, mediator and minimizing byproduct generation), showing great potential for 

cleaner processes. In the following sections, heterogeneous systems for NAD(P)H 

regeneration that include (i) immobilized biocatalysis (enzyme immobilization), (ii) 

immobilized homogeneous catalysis (organometallic complex immobilization), (iii) 

electrocatalysis, (iv) photocatalysis (using solid catalysts) and (v) heterogeneous catalysis 

(supported metal catalysts) will be summarized and discussed in detail.  

IMMOBILIZED BIOCATALYSIS 

For large-scale industrial operations, enzymatic regeneration of cofactor NAD(P)H is still 

preferred due to its high activity and use of mild operating conditions.
35

 Several enzymes are 

capable of regenerating NAD(P)H, in the presence of sacrificial substrates; Table 2 

summarizes the characteristics of these enzymatic regeneration systems. However, similar to 

the synthetic homogeneous catalyst counterparts, soluble enzymes are difficult to recycle and 

reuse. Moreover, some of these systems also generate soluble byproducts (see Table 2) which 

require laborious downstream separation. In order to enhance the sustainability, as well as 
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reduce operational cost of these enzymatic regeneration systems, enzyme immobilization has 

been reported for use in cofactor regenerations.  

There are many immobilization methods for enzymes available in the literature and 

immobilized enzymes are wildly used in industry for facilitating catalyst recycle and reuse.
36

 

In general, these methods can be classified by a few categories including; crosslinking, 

entrapment, physical adsorption on a carrier and chemical binding to a carrier (see Figure 6). 

Depending on the systems of interest, each method has its own positive and negative features. 

Numerous reviews with details of enzyme immobilization can be found in the literature. 
36-38

 

It is commonly accepted that enzyme immobilization enhances recycle and reuse of enzymes, 

which are otherwise expensive. It also simplifies downstream separation or purification of 

products. In some cases, immobilized enzymes show higher stability and longer life time than 

free enzymes.
38

 However, lower activity is generally observed with immobilized enzymes 

when compared with their free counterparts due to mass transfer constrains. With the benefits 

of both economy and sustainability, immobilized enzymes are still worth consideration as 

heterogeneous systems for cofactor regeneration. Indeed, use of immobilized enzymes for 

cofactor regeneration was reported as early as 1975 when Wykes et al. demonstrated a 

NADH regeneration system using immobilized ADH and lactate dehydrogenases (LDH) on 

cellulose.
39

 The following provides some key examples of cofactor regeneration systems 

using immobilized enzymes.  

Immobilized FDH 

FDH converts formate (or formic acid) to CO2 in the presence of a cofactor NAD
+
.
40

 It 

possesses one distinctive feature; CO2 gas is the only byproduct and does not require 

separation so downstream product purification becomes simpler. However, CO2 is a 

greenhouse gas whose release should be always treated cautiously. Immobilization of FDH 
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for cofactor regeneration has been demonstrated.
41,42

 For example, NADH regeneration using 

entrapped FDH in a poly(vinyl alcohol) (PVA) hydrogel has been studied by measuring the 

CO2 release kinetics.
41

 FDH has also been immobilized on commercial polymer beads 

(Immobead 150) for NADH regeneration. However, the activity was found to drop to less 

than 70% after 10 cycles.
42

 Immobilized FDH has also been shown active as an in situ 

cofactor regeneration system. Demir et al. reported a system for the transformation of 

hydroxyacetone to a chiral (S)-1,2-propanediol with in situ NADH regeneration using FDH 

immobilized on magnetic nanoparticles (Fe2O3). However, this system requires a His(6)-

tagged FDH, which was not commercially available and had to be extracted from bacteria, for 

binding onto the amine-functionalized Fe2O3.
43

 A continuous feed system for L-lactate 

synthesis from pyruvate with in situ NADH regeneration using FDH supported on alkylated 

chitosan layers has also been reported. The regeneration system was shown to be active after 

2 weeks but with only 50% of the initial activity retained. Nonetheless, this “continuous” 

regeneration for cofactor demonstrated engineering advances in coupled system for the 

production of chiral products.
44

 

Immobilized hydrogenase 

Cofactor regeneration using immobilized hydrogenases have also been demonstrated 

recently.
14,15

 The merit of using hydrogenases for regeneration is associated with the 

cleanliness; using gaseous H2 as the sacrificial substrate with H
+
 being the sole byproduct.

14
 

However, unlike FDH, hydrogenases for cofactor regeneration are not widely available 

commercially with solubility and stability being the main concerns. Immobilization of 

hydrogenases does improve their stability and enhance recycling. For example, soluble 

hydrogenase from R. eutropha has been immobilized on porous glass with a 15-fold 

improvement in enzyme half-life from 10 to >150 h. However, the immobilization yield was 
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only 23% and showed significant loss of enzyme.
40

 The stability of immobilized soluble 

hydrogenase on a polymer methoxy-poly(ethylene) glycol (mPEG) has also been studied in 

organic solvents and ionic liquids.
45

 Although it showed a 5-fold improvement in half-life 

from 0.1 to 0.5 h and retained 91% activity of the free enzyme, further improvement are still 

necessary in order to promote immobilized hydrogenases for use in large-scale synthesis.    

Immobilized ADH and GLDH 

The other two enzymes commonly used for NADH regeneration are ADH and glutamate 

dehydrogenase (GLDH). In both cases, sacrificial substrates (alcohol and L-glutamate 

respectively) are required but, unlike regeneration using FDH or hydrogenase, the byproducts 

(aldehyde and 2-ketoglutarate) may require further downstream separations.  For example, 

immobilized GLDH on polystyrene particles has been used for NADH regeneration in a 3-

step conversion of CO2 to methanol.
46

 The three enzymes for CO2 conversion were co-

immobilized on one support in order to simplify downstream separation but a stoichiometric 

supply of L-glutamate (3 mol for 1 mol of methanol produced) is required, leading to a 

significant amount of waste. On the other hand, use of immobilized ADH for NADH 

regeneration may present an advantage over other systems. Immobilized ADH has been used 

as a “bi-functional” catalyst for both conversion of aldehyde to chiral alcohol products and 

cofactor regeneration in a “coupled-substrate” system.
47

 Nagayama et al. demonstrated the 

enantioselective reduction of prochiral 4-methyl-2-pentanone to chiral (R)-4-methyl-2-

pentanol using immobilized ADH (physically adsorbed on glass beads), which was also used 

for cofactor regeneration using propanol as the sacrificial substrate.
47

  For clean use of 

immobilized enzyme for cofactor regeneration, ADH and GLDH may not be the best 

candidate.    
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Whole cell immobilization 

When the enzyme required lacks stability, immobilization of the whole cell without enzyme 

extraction/purification may be an option.  Many enzymes are extracted from microbial cells 

such as bacteria and then purified but these two steps can cause significant losses as well as 

denaturation of the enzymes. As a result, whole cell immobilization may be carried out to 

facilitate recovery, recycling and reuse. Whole cell immobilization has also been used in 

cofactor regeneration. For instance, yeast cells have been immobilized on alginate fibers for 

NADH regeneration.
48

 Although enzyme loss can be avoided, whole cell immobilization can 

cause side reactions because more than one type of enzymes are likely to be found in each 

cell, reducing the selectivity of the system. For chiral drug and fine chemical synthesis, whole 

cell immobilization may not be appropriate. 

Immobilized cofactor 

The high cost of cofactor is the driving force for establishing a regeneration process. This 

also leads scientists/engineers to consider immobilizing cofactors for efficient recovery and 

reuse.  For example, Chen et al. have recently demonstrated immobilizing NADH cofactor on 

chitosan coated magnetic nanoparticles with 1-ethyl-3-(-3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) linkers.
49

 As such, the 

cofactor can be recovered using an external magnet. A similar approach for cofactor 

immobilization has also been introduced by Li et al. using non-magnetic nanoparticles.
50

 

Over 60% of the activity had been retained after 6 cycles. However, similar to enzyme 

immobilization, lower activity is likely to be observed from cofactor immobilization when 

compared with free cofactors due to slower mass transfer. Such loss needs to be compensated 

by recycling and reuse of cofactor. 
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IMMOBILIZED HOMOGENEOUS CATALYSIS 

Similar to enzymes, synthetic homogeneous catalysts can be immobilized on a carrier. So far 

there has only been one example of using an immobilized organometallic complex on a 

support to form a heterogeneous and recyclable regeneration catalyst. Hollmann and 

coworkers
51

 have immobilized Rh(III)-TsDPEN (an analogue of [Cp*Rh(bpy)(H2O)]
2+

) onto 

surface functionalized poly(ethylene) sinter chips. The activity of this catalyst was 

approximately one order of magnitude lower than that of the soluble [Cp*Rh(bpy)(H2O)]
2+

 

(TOF of 2.5 h
−1

 vs. 36 h
−1

), which was attributed to severe diffusion limitations, similar to 

observation from immobilized enzymes. The solid catalyst could be reused for at least 10 

times but suffered an activity decrease (by ~50%). One advance from this system is that 

interaction between the organometallic catalyst and enzyme can be reduced, minimizing the 

extent of mutual deactivation. Although there are still several issues (e.g., low activity, 

deactivation) to be addressed, this approach is a conceptually interesting move from soluble 

to insoluble organometallic complexes, which may reduce catalyst cost and deal with the 

incompatibility of metal complexes with some biocatalysts. 

ELECTROCATALYSIS 

Cofactor regeneration using electrochemical methods can also be viewed as a heterogeneous 

process. Bare electrodes made from mercury
52

 and carbon materials
53

 were used as first 

attempts to understand the kinetics and mechanisms of NAD(P)H regeneration. It was 

demonstrated by applying high cathodic potentials (ca. -1.6 V) that the formed radicals could 

be partially reduced to NAD(P)H, preventing the formation of inactive dimers (Figure 7). 

However, protonation of the radicals is not selective resulting in the formation of inactive 

1,6-NAD(P)H side products.  
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Representative studies in direct electrochemical regeneration of cofactor NAD(P)H have been 

summarized in Table 3.
54-59

 Conductive vanadia-silica xerogels were used by Park et al.
54

 to 

increase the conductivity of the reaction medium. Regeneration of NADH was coupled to the 

production of L-glutamate catalyzed by GLDH, and the reaction was complete in 3 h with a 

TTN of 3300 with respect to NAD
+
. It has been proven by Omanovic et al.

55-59
 that the yield 

of active NADH regenerated strongly depends on the electrode material. A series of bare Au, 

bare Cu and Pt-modified Au (Pt-Au) electrodes were used first.
55

 At high cathodic potentials 

(-1.1 V vs. Saturated Calomel Electrode (SCE)), the yield of active NADH obtained was 30% 

on Au, 52% on Cu and 63% on Pt-Au. This was explained by the fact that the hydrogen 

produced in the reduction reaction, enhanced the mass-transport flux of NAD
+
 towards the 

cathode surface. A further increase in the cathodic potential using a glassy carbon electrode (-

2.3 V vs. Mercurous Sulfate Electrode (MSE)) resulted in a higher yield of NADH (98%).
56

 

The same group has been able to further expand their studies in the usage of bare electrodes 

for the regeneration of NAD(P)H. This time a glassy carbon electrode was modified with 

electrochemically deposited Pt and nickel nanoparticles.
57

 The role of Ni and Pt particles was 

to speed up the protonation process by providing active adsorbed hydrogen (Ni-Hasd and Pt-

Hads). Small average particle sizes (79 nm for Pt and 83 nm for Ni) and narrow particle size 

distributions were responsible for the enhanced performance of the electrode. In addition, 

results showed a 100% recovery of active NADH at more positive potentials (-1.5 V vs. 

MSE). 

Product purity and NADH regeneration kinetics have been recently proven to depend not 

only on electrode potential but also on the electrode material itself, both controlling the Hads 

surface coverage and the metal-hydrogen (M-Hads) bond strength. It was further shown that a 

bare Ti electrode exhibited the highest yield of enzymatically active NADH (96%) at an even 

lower cathodic potential (-0.8 V vs. Normal Hydrogen Electrode (NHE)) compared to 



18 

 

unmodified Ni, Co and Cd cathodes.
58

 In order to further investigate the effect of surface-

modified electrodes, an Ir/Ru-oxide coating was prepared on a Ti plate.
59

 Although Ir and Ru 

are known to offer a high M-Hads bond strength, it was found that at a potential of -1.7 V vs. 

MSE only 88% of NADH were active. This was explained by the hydrogen evolution 

reactions (Eqs. 1 and 2) that compete with the NAD-radical protonation, hence decreasing the 

selectivity to NADH.  

Ti-Hads + H
+
 + e

-
  H2 + Ti                                                   (1) 

2Ti-Hads  H2 + 2Ti                                                         (2) 

Problems associated with the direct electrochemical regeneration of NAD(P)H can be 

overcome by the application of redox catalysts or mediators.
34,60

 In order to be efficient, 

mediators must fulfil the following criteria:
61

  

- Ability to transfer two electrons or one hydride ion in only one step. 

- Activation at potentials more positive than -0.9 V to prevent direct NAD(P)
+
 reduction.  

- High selectivity towards the enzymatically active NAD(P)H. 

- Avoidance of electron transfer to the enzymatic substrate. 

Representative work in indirect electrochemical regeneration of cofactor NAD(P)H has been 

given in Table 4.
62-67

 Steckhan et al. have worked thoroughly on the elaboration of active 

organometallic redox mediators (e.g., Rh complexes). A typical Rh organometallic mediator 

accepts two electrons at the surface of the electrode and by inserting a proton into its 

coordination sphere. The resulting hydride ion is then transferrable to the cofactor. One of the 

first substances to meet the above requirements was the (2,2’-bipyridyl)Rh complex.
62

 It is 

worth pointing out that these “redox” mediators are similar in structure/nature to those 

synthetic homogeneous catalysts used for cofactor regenerations. This mediator was able to 

reduce cyclohexanone to cyclohexanol with a 26% conversion. However, low TTNs (2.9 with 

regard to cofactor, and 1.2 with regard to catalyst) were detected as the result of electrode 
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passivation by a layer of [Rh(bpy2)(H2O)2]Cl or [Rh(bpy2)(OH)2]Cl deposited on the surface 

of the cathode. A few years later, a new generation of Rh complexes were developed.
63

 It was 

possible by using the Cp(Me)5 ligand to improve the performance of the mediator and obtain 

70% conversion of pyruvate to D-lactate with an enantiomeric excess (ee) of 93.5%, and TNs 

of 7 for the cofactor and 14 for the mediator.
63

 

Oxidized NAD(P)
+
 cofactors were also reduced to NADH and NADPH using a 

(pentamethylcyclo-pentadienyl-2,2’-bipyridine aqua) Rh mediator in an electrochemical cell 

constituted of packed bed graphite particles as a working electrode.
64

 It was found that the TN 

for the redox catalyst was affected by the size of the carbon particles. Using NAD
+
 as 

cofactor, a TTN of 400 was achieved with 80-200 μm carbon particles, which was clearly 

better than 40 obtained with 200-400 μm particles. 99% of the produced NADH was 

enzymatically active. On the other hand, a TTN value of 200 was achieved for the 80-200 μm 

particles in the reduction of NADP
+
.  

Cp*[Rh(5,5’-methyl-2,2’-bipyridine)] (1) and Cp*[Rh(4,4’-methoxy-2,2’-bipyridine)] (2) 

complexes were able to reduce NADP
+
 three times faster than the previous established 

mediators.
65

 A TOF of 97 h
-1

 and a reduction rate of 116 mM d
-1

 were achieved using catalyst 

(1), whereas a TOF of 113 h
-1

 and a reduction rate of 136 mM d
-1

 were observed using 

catalyst (2).  

Unfortunately, coupling the indirect electrochemical regenerative systems by Rh complexes 

to an enzymatic synthesis reaction can result in the deactivation of the enzyme,
63

 a similar 

observation to “mutual deactivation” in synthetic homogeneous regeneration systems. A 

membrane electrochemical reactor (MER) was applied to overcome this limitation. Lutz et 

al.
66

 successfully developed a stable electro-enzymatic process by means of an enzyme-

catalyst separation. For this purpose, a polymeric mediator was synthesized by 
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polycondensation of 2,2’-pipyridine-4,4’-di-aldehyde and α,ω-functionalized amino 

polyethylene glycol. This prevents direct contact between mediator and enzyme. A 90% 

substrate conversion was observed. Nevertheless, this system allowed the recovery of 86% of 

the mediator, resulting in a TTN of 214. Minteer et al.
67

 have recently made a useful 

contribution to the immobilization of redox catalysts in the regeneration of NADH. In this 

work, immobilization of the pyridine-Rh complex took place on multi-walled carbon 

nanotubes (MWCNs) by means of π-π stacking effect, in which an aromatic moiety is 

attached to the catalyst allowing the latter to strongly adsorb on the electrode surface. An 

exceptional average TOF of 3.6 s
-1

 was observed over 10 cycles using 2 mM of NAD
+
.  

Direct and indirect electrochemical regeneration of NAD(P)H have not been proven to give 

sufficient efficiency in cofactor regeneration. Moreover, as it was difficult to design a redox 

mediator/catalyst that meet all criteria mentioned previously, attempts have been made to 

couple the indirect electrochemical regenerative system with an enzymatic process.
34

 Many 

examples can be found in the literature where various mediators such as organic methyl 

viologen, and flavins were assisted by enzymes such as reductase, lipoamide dehydrogenase 

(LipDH), diaphrose and hydrogenase.  

Representative studies in enzyme-coupled indirect electrochemical regeneration of cofactor 

NAD(P)H have been summarized in Table 5.
68-74

 Using cyclic dithiols as mediators along 

with LipDH as enzyme, Whitesides et al.
69

 were able to obtain TTNs of 920 for NAD
+
 and 13 

for the enzyme, after the reaction was completed in 3.5 days. However, only 5% of the 

NADH remained active, indicating a low selectivity. Introducing other types of mediators, 

higher residual activities were detected. Coupling methyl viologen with LipDH resulted in 51% 

active NADH and 65% active LipDH. Moreover, 68% residual activity for the cofactor and 
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80% for the enzyme were observed in the reduction of NADP
+
 by means of methyl viologen 

and ferrodoxin-NADP-reductase (FDR).
68

 

In an attempt to produce (R)-manadelate from benzoylformate in the presence of benzoyl 

formate reducate (BFR), a methyl viologen mediator was used alongside diaphorase 

enzyme.
70

 Although the reaction exhibited 80% conversion in 30 h, methyl viologen 

contributed to the loss of 50% of BFR activity after 6 d (days). Instead, the use of flavine 

adenine dinucleotide (FAD) resulted in a more stable BFR and a 95% conversion in 18 h.   

Regeneration of NADH together with methyl viologen was also reported in the enzymatic 

reduction of ketones. Since it has been known that enzymes are affected by free methyl 

viologen in solution, immobilization of mediation components is good practice. Osa et al.
71

 

employed a poly(acrylic acid) layer-coated graphite felt electrode to immobilize the 

mediators. They were able to successfully reduce 2-methylcyclohexanone (49.8% conversion, 

100% ee, and 91 TTNMediator) and 3-methylcyclohexanone (51.7% conversion, 93.1% ee and 

94 TTNMediator) to the corresponding alcohols. On the other hand, Tzedakis et al.
72,73

 have 

designed micro-reactors which rely on unmodified Au electrodes, FAD mediator and FDH 

enzyme, for the continuous regeneration of NADH. The first reactor adopts the principle of 

laminar-based flow which keeps the reactants close to the electrode and prevents any side 

reactions. This system was able to retain a 31% NADH yield and a 41% conversion of 

pyruvate to L-lactate with a TN of 75.6 h
-1

 for the cofactor.
72

 The second is a filter-press 

micro-reactor that gave 80 h
-1

 as NAD
+
 TN.

73
 Immobilized FADs were used in combination 

with FDH enzyme for the production of L-lactate from pyruvate. This time the FAD 

mediators were fixed on a carbon cloth as an economical support that provides a high specific 

surface area. The modified electrode contributed to a 60% substrate conversion after 96 h 

reaction, compared to a 50% conversion after 120 h with the bare carbon cloth electrode.
74
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All in all, as it has been challenging to find an efficient and enzyme friendly electron carrier 

that can overcome the disadvantages of the direct electrochemical regeneration of NAD(P)H, 

researchers have attempted to use an enzyme along with the mediator to push the TNs up to 

industrial levels. Unfortunately, by doing so, complications of product recovery and 

separation have arisen, leaving this regeneration method requiring further studies and 

investigations. 

PHOTOCATALYSIS (USING SOLID PHOTOCATALYSTS) 

Nature hints at an alternative way to regenerate cofactor through the photosynthetic process 

where photo-excited electron transfer regenerates reducing power in the form of NAD(P)H, 

for a further Calvin cycle.
75

 This process strongly relies on the light-harvesting system, 

involving two protein complexes (photosystem I and II),
76

 and has inspired researchers to 

explore a diverse range of artificial photosensitizers, including proflavine,
77

 

diphenylalanine/porphyrin nanotubes,
78

 chromophore-bonded graphene nanosheets,
79,80

 

cadmium sulfide (CdS),
81,82

 titanium oxide (TiO2),
83-85

 carbon nitride (C3N4),
86-89

 and so on
90-

92
 (Table 6

78-84,86-88,91
). Due to the limited but efficient species of electron donors (mainly 

TEOA) and electron mediators (M, mainly [Cp
*
Rh(bpy)H2O]

2+
) involved in photcatalytic 

regeneration of NAD(P)H,
7,10

 we feature here the recent advances in photosensitizers that 

have exerted superiority in the photocatalytic regeneration of NAD(P)H. Based on chemical 

composition, the current photosensitizers can be categorized into organic and inorganic types. 

Organic photosensitizers 

Archiving nature-derived photosensitizers (chlorophyll, proflavine, porphyrins, etc.) is a 

direct way for photo-excitation of electrons and subsequent regeneration of NAD(P)H.
77,91

 

Although showing high efficiency, most of these photosensitizers are small molecules, 

presenting drawbacks of structural instability and difficulty in photosensitizer reusability and 
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product/photosensitizer separation. Modifying and immobilizing organic photosensitizers 

onto larger-scale supports is a feasible strategy for their practical applications. Physical 

entrapment and chemical grafting are two key methods. Park and coworkers
91

 are pioneers in 

applying the physical entrapment to immobilize organic photosensitizer. In brief, they 

encapsulated porphyrins (light-harvesting pigments) within a porous lignocellulosic support 

through in situ precipitation of porphyrins during lignocellulose coagulation, thus acquiring a 

light-harvesting synthetic wood (LSW) (Figure 8A). During the photocatalytic regeneration 

of NADH, the porphyrin absorbs photonic energy to create high-energy electrons, which are 

then transferred to M (the mediator [Cp
*
Rh(bpy)H2O]

2+
). The activated M further transfers 

hydride (H
-
) to NAD

+
 in a single step, achieving the regeneration of NADH. Meanwhile, a 

sacrificial electron donor of TEOA reduces the oxidized porphyrin to avoid its degradation. 

Park et al. also evaluated and compared six types of hydrophobic porphyrins with different 

metal centers and side groups (Figure 8B), where the highest TOF of ~1.250 h
-1

 can be 

achieved with the photosensitizer having 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin 

(mTHPP) groups. 

Unlike the non-specific structural characteristics of lignocellulosic supports, self-assembled 

hierarchically structured materials often exhibit unexpected functions due to the complex 

mutual interactions between different moieties. Typically, tubular structures usually exhibit 

extraordinary performance in electron transfer, which can lower the hole-electron 

recombination rate. Based on this theory, Park and coworkers
78

 synthesized 

diphenylalanine/porphyrin light-harvesting peptide nanotubes through incorporating 

porphyrin photosensitizer during the self-assembly of diphenylalanine. To further enhance the 

separation/transfer efficiency of excited electrons from porphyrin to M, Pt nanoparticles were 

deposited on the surface of the peptide nanotubes. The reduction potential at the cathodic 

peak current of the Pt-doped peptide nanotubes and M is, respectively, located at 1.2 and 0.7 
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V (vs. Ag/AgCl), where the energetic relationship between Pt-doped peptide nanotubes and 

M is similar to that found in visible-light harvesting system in nature (Figure 9A and 9B). In 

the presence of the Pt-doped peptide nanotubes, the cathodic current of M at its reduction 

potential was enhanced, confirming that the excited electrons from the nanotubes were 

transferred to M. The TOF of Pt-doped peptide nanotubes is ~1.780 h
-1 

(Figure 9C), 

suggesting superiority of the tubular structure compared to the lignocellulosic support. This 

artificial photosensitizer was further applied for photocatalytic synthesis of L-glutamate from 

α-ketoglutarate, coupled with a cofactor regeneration process. The conversion yield (1.45 

mM) of L-glutamate was 2.7 and 48.3 times higher than those acquired from the Pt-doped 

peptide nanotubes and the sole porphyrin photosensitizer monomers, respectively (Figure 

9D). 

As indicated, physical entrapment offers a simple way to immobilize small organic 

photosensitizers through manipulating the multiple weak interactions between 

photosensitizers and the support. Alternatively, chemical grafting provides a more delicate 

and versatile method for molecule engineering of photosensitizers. It is possible to activate 

the specific groups of either photosensitizers or supports and then trigger the coupling 

reaction. Chromophore-bonded graphene nanosheets developed by Baeg and coworkers are 

one example of the representative immobilized photosensitizers through chemical grafting 

(Figure 10A).
79,80

 This immobilized photosensitizer integrates the superiority of the 

chromophore in visible-light harvesting and the excellent electron transfer property of 

graphene, offering high potential in the photocatalytic regeneration of NAD(P)H. For 

instance, Baeg et al. reported a graphene-based visible-light photosensitizer, termed as 

CCGCMAQSP, in which covalently bonded multianthraquinone substituted porphyrin 

(MAQSP) was combined with the “chemically converted graphene” (CCG). They also 

choose two other photosensitizers,
93

 W2Fe4Ta2O17 and MAQSP, with lower photocurrent than 
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CCGCMAQSP for comparison. As expected, CCGCMAQSP exhibits the highest TOF of 

0.375 h
-1

 during NADH regeneration (Figure 10B). Through density functional theory (DFT) 

calculation, the authors further confirm that the energy level differences between neighbored 

segments are aligned for electrons to transfer from MAQSP to the hydrogen reduction site via 

CCG. Similar to Pt-doped peptide nanotubes, CCGCMAQSP is further applied for coupling 

with enzymatic conversion CO2 to formic acid by formate dehydrogenase (Figure 10C). 

Although some success has been achieved, Baeg and coworkers still wondered if better 

photocatalysts can be synthesized (Figure 10D). In their subsequent investigation, two 

chromophoric motifs, isatin and porphyrin (termed as IP), were combined for further grafting 

onto graphene nanosheets. The resultant CCG-IP exhibits a much higher TOF (0.642 h
-1

, 

Figure 10E) by contrast with CCGCMAQSP. In addition to coupling this photosensitizer 

with single-enzyme catalysis, Baeg et al. also extensively incorporated CCG-IP and 

CCGCMAQSP into multi-enzyme system for methanol production from CO2.
80

 A methanol 

concentration of 11.21 μM was obtained on exposure of the CCG-IP based integrated system 

to visible light over 60 min (Figure 10F). In our opinion, this trial shows the possibility of 

applying photocatalytic regeneration of NAD(P)H in applications with more complicated 

reactions. 

Although confronting many difficulties, "All-in-One" photocatalytic regeneration systems 

with integrated organic photosensitizer and mediator are still actively pursued. Knör and 

coworkers have performed very exciting work.
94,95

 They synthesized a Rh-BipyE-PVab 

polymer that contains bipyridine-containing poly-(arylene-ethynylene)-alt-poly(arylene-

vinylene) copolymer (as photosensitizer) with a redox-active Rh cyclopentadienyl complex 

(as mediator) (Figure 11A and 11B). This Rh-BipyE-PVab polymer is coated on glass beads 

for photocatalytic regeneration of NADH with formate or TEOA as the electron donor. Due 

to the integrated property of this photosensitizer, the photon absorption, electron generation 
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and transfer, and the NADH regeneration process all occur in one polymer chain. The amount 

of regenerated NADH gradually increased with extended reaction time (Figure 11C). 

However, these authors adopted an alternative index to evaluate the regeneration efficiency, 

which was calculated based on the surface area of the glass beads. The reaction rate can reach 

as high as 1.8 μmol cm
-2

 h
-1

. Although we cannot compare this value with previous results, 

this Rh-BipyE-PVab polymer shows superiority in many aspects. Specifically, in contrast to 

existing systems with molecule-sized Rh complexes, the Rh-BipyE-PVab polymer works as 

both an immobilizing support and a photosensitizer, which can avoid the loss of mediator, 

and minimize the contact of catalyst with NADH-binding site of enzymes when applied in 

coupled photo-enzymatic catalytic systems. 

Collectively, organic photosensitizers have shown high efficiency in photocatalytic 

regeneration of NAD(P)H (Table 6), although their molecule-scale nature seriously restricts 

further applications without proper immobilization. In this context, some researchers have 

already transferred their attention to inorganic photosensitizers with a particular structure, 

which is introduced in the following section. 

Inorganic photosensitizer 

As a typical inorganic photosensitizer, TiO2 is the first choice for light-driven photocatalytic 

regeneration of NADH.
96

 However, pristine TiO2 has a band gap of ~3.2 eV, which means 

that electrons can only be excited by ultraviolet light (UV, accounting for only 4% of the 

sun’s energy). More importantly, high-energy UV luminescence usually leads to rapidly 

increases in temperature that seriously harm biomolecules. Therefore, NAD(P)H regeneration 

systems enabled by pristine TiO2 are inappropriate for coupling with enzymatic catalysis. 

Many efforts have been devoted to narrowing of the band gap through modifying TiO2. Jiang 

and coworkers have contributed significantly in this area.
83-85

 They explore a general strategy 
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of doping non-metal elements (including carbon, boron, nitrogen, phosphorus, etc.) to 

examine whether the doped element has this function. They initially synthesized carbon-

doped TiO2 through sol-gel process using titanium oxide with ethanol and acetic acid as 

carbon sources.
83

 The carbon doping indeed narrows the band gap of TiO2, causing a red shift 

of the absorption edge, and enhances the absorption of visible light. Under visible light 

irradiation, the carbon-doped TiO2 exhibits high activity and selectivity towards enzymatic 

active NADH in the presence of M and the electron donor. Jiang et al. also investigated the 

influence of several factors, including electron donor species, pH, M concentrations, etc., on 

the regeneration efficiency of NADH. Phosphorus and nitrogen can also be doped in 

TiO2,
84,85

 and function similarly to carbon-doped TiO2. Compared with organic 

photosensitizers as mentioned in the previous section, TiO2-based photosensitizers exhibit a 

much lower TOF (0.031 h
-1

) in NADH regeneration. But, as the first generation of 

heterogeneous inorganic photosensitizer, modified TiO2 paves the way of developing other 

types of inorganic photosensitizers. 

Quantum dot nanocrystals (including cadmium sulfide (CdS), zinc sulfide (ZnS), cadmium 

selenide (CdSe), etc.) are other inorganic photosensitizer after TiO2, which are attractive 

visible-light-harvesting materials due to their suitable band gaps.
81,90,92

 Considering the 

nanoscale of quantum dot nanocrystals, it is better to dope this highly efficient 

photosensitizer onto a larger-scale support, where silica is preferred. Through simple 

hydrolysis and the nucleation reactions of an alcoholic silica precursor, Park and coworkers
82

 

successfully deposited CdS quantum dots (band gap ~2.4 eV) on the surface of SiO2 beads by 

a successive ionic layer adsorption reaction of CdSO4 and Na2S. Facilely altering the number 

of coating cycles can manipulate the amount of CdS nanoparticles formed on the SiO2 surface. 

Not only does it act as a support, the SiO2 can also interact with the metal center (Rh
2+

) of M. 

The ionic affinity between the surface –OH groups of SiO2 and the metal center of M may 



28 

 

boost the energy transfer between SiO2 and M. Therefore, the photo-excited electrons from 

CdS could be transferred more efficiently to M. By using CdS-coated SiO2 for visible-light-

driven NADH regeneration, a high TOF of 0.278 h
-1

 is obtained, which is nearly ten times 

higher than that achieved with doped TiO2.
82,83

 Furthermore, owing to the heterogeneous 

nature of this photosensitizer, no significant decrease in activity is noted during four cycles of 

use. In terms of CdS-coated SiO2, it is just speculated, not confirmed, that the interaction 

between M and SiO2 support might exist and elevate the electron and energy transfer. This 

has stimulated researchers to fabricate more delicate structures for faster transfer of photo-

excited electrons to M. Rational design of "charge steps" in the hetero-structured inorganic 

photosensitizers to lower the "hole-electron" recombination rate is a simple and popular way 

to facilitate the charge carrier migration process, by which the photo-excited electrons and 

holes can be driven to the opposite side of the hetero-junction interface thus inhibiting their 

recombination rates.
97

 A typical example of a hetero-junction structure is the combination of 

two most popular inorganic photosensitizers, i.e., TiO2 and CdS through coating CdS 

nanoparticles onto anodized TiO2 nanotube arrays.
81

 An NADH regeneration experiment 

enabled by the CdS-coated TiO2 (CdS-TiO2) nanotubular film with TEOA as the electron 

donor has lots of advantages, including easy synthesis, morphology control, rapid charge 

separation, etc. Due to the ~0.2 V more negative position of the conduction band (CB) edge 

of CdS compared to TiO2, photo-excited electrons can be rapidly injected from CdS to TiO2, 

remarkably suppressing electron–hole recombination. Compared with the Rh-BipyE-PVab 

polymer photosensitizer,
94

 this isotype hetero-junction structured photosensitizer exhibits an 

extremely high reaction rate (240 μmol cm
-2

 h
-1

). To further support the hypothesis that 

efficient charge separation in CdS-TiO2 nanotubular film can enhance the efficiency of 

NADH photoregeneration, CdS-coated Al2O3 (CdS-Al2O3) nanotubular film were also 

prepared. Although comprising similar topological structures, the CdS-Al2O3 nanotubular 
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films exhibited much lower NADH regeneration efficiency and TOF, which is ascribed to a 

higher degree of charge recombination (Figure 12).  

Similar to the Rh-BipyE-PVab polymer developed by Knör and coworkers, an "All-in-One" 

photocatalytic NAD(P)H regeneration system has been constructed based on CdS. King and 

coworkers
92

 directly adsorbed ferredoxin NADP
+
-reductase (FNR) onto CdS nanocrystals. 

Through combination of superfast reduction rate of enzymatic catalysis and direct transfer of 

photo-excited electrons from CdS to FNR, the resultant FNR@CdS systems show a 

remarkable TOF of ~1440 h
-1 

(NADPH). Nonetheless, FNR only shows specificity for 

NADPH regeneration, meanwhile, the FNR@CdS system is not readily recycled due to the 

small particle size (< 10 nm). This study opens up an interesting way of elevating 

regeneration efficiency of cofactors through combining two general approaches: biocatalysis 

and photocatalysis. 

Newly emerged photosensitizer: graphitic carbon nitride (g-C3N4) 

In addition to modified TiO2 and CdS, few other inorganic or semiconductors have been 

explored for visible-light-driven photocatalytic regeneration of NADH for a relatively long 

period. Fortunately, in recent years, a newly emerged photosensitizer, namely graphitic 

carbon nitride (g-C3N4), has elicited excitement in many research communities. Due to its 

facile synthesis, appealing electronic band structure (band gap, ~2.7 eV), high 

physicochemical stability, and “earth-abundant” nature,
98

 g-C3N4 is viewed as the next 

generation visible-light photosensitizer. Moreover, as a conjugated polymer, g-C3N4 is 

commonly derived through thermal-induced polymerization of abundant nitrogen-rich 

precursors. Accordingly, the surface chemistry can be facilely modulated by means of surface 

engineering at the molecular level, while the structure/morphology can be easily regulated. 

Antonietti and coworkers
86-89

 were the first researchers who come up with a strategy of 
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utilizing g-C3N4 to photocatalytically regenerate cofactors (Figure 13A). In the presence of 

M and the electron donor, the general process and mechanism of NADH regeneration is 

similar to that enabled by TiO2, CdS and other organic photosensitizers. In brief, g-C3N4 

generates electron–hole pairs under visible light irradiation. The as-generated high-energy 

electrons from g-C3N4 are then transferred and abstracted by M. Subsequently, M, bearing 

electrons, selectively regenerates NADH by transferring two electrons to NAD
+
 followed by 

coupling with one proton and region-specific transfer to NAD
+
. The NADH regeneration 

efficiency can reach nearly 100% with TOFs of 0.067-1.326 h
-1

 that depend on the structures. 

Most excitingly, g-C3N4 can also photocatalytically regenerate NADH in the absence of M. 

The authors attribute this phenomenon to the following aspects: NAD
+
 can be attached to the 

surface of C3N4 through π-π stacking of the heptazine building blocks of the g-C3N4 and 

adenine subunit of the NAD
+
, which leads to the direct transfer of photo-excited electrons to 

NAD
+
 (Figure 13B and 13C).

88
 However, due to the absence of M, the number of electrons 

transferred to NAD
+
 is uncontrollable. As a result, the formation of NADH is non-specific, 

whereas the product usually contains some enzymatically inactive 1,6-NADH. The maximum 

NADH regeneration efficiency is only ~50% with a TOF of lower than 0.665 h
-1

. However, 

the importance of this study is to offer a way of simply manipulating interactions between 

NADH and photosensitizers to acquire M-free NADH regeneration systems. Based on the 

above achievements, they have synthesized g-C3N4 with diverse morphologies, including 

diatom-mimic structure,
87

 porous nanospheres,
88

 porous nano-rods,
86

 frustule-like carbon 

nitride array,
89

 etc. The aim of the structure alternation is to enhance the light-harvesting 

capability, prolong the light retention time, and lower the hole-electron recombination rate. 

All of the above g-C3N4 are coupled with NADH-dependent enzymatic catalysis (including 

peroxidase, dehydrogenase, etc.), verifying the superiority and possibility of C3N4 in artificial 

photosynthesis. Regrettably, no further investigation regarding mediator-free NAD(P)H 
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regeneration systems enabled by g-C3N4 has been reported since 2014. 

To summarize, the merits of photocatalytic regeneration of NAD(P)H cofactor are reflected 

in many aspects, of which the most attractive one is the conversion of visible light into 

chemical energy behaving like nature. Through rationale design and manipulation, light-

harvesting capability can be strengthened, while the hole-electron recombination rate can be 

suppressed. The newly developed photosensitizers perform better and better in the NAD(P)H 

regeneration efficiency in terms of TOF. Recent efforts have been devoted to develop "All-in-

One" photosensitizers, which integrate M within photosensitizers. Nonetheless, most of the 

current photosensitizers still exhibit lower TOFs than other regeneration methods and rely on 

TEOA as the electron donor. The generated oxidized TEOA in the product solution still 

complicates the final purification process.  

HETEROGENEOUS CATALYSIS (SUPPORTED METAL CATALYSTS) 

The use of supported metal heterogeneous catalysts for cofactor regeneration was recently 

reported by some of us.
12

 In this section we will describe the work conducted and update with 

latest results. In order to establish the feasibility of NAD(P)H regeneration catalyzed by 

supported metals, the process was initially tested by screening a series of commonly used 

hydrogenation/reduction active catalysts including Al2O3 supported (5 wt%) Pt, Rh, Ru, Pd 

(commercial catalysts) and Ni (6 wt%, laboratory synthesized
99

). It was encouraging to notice 

(Figure 14A) that all of the above catalysts showed some activity towards NADH production 

from the reduction of NAD
+
 by H2 (see Wang and Yiu

12
 for experimental details). Since Pt 

gave a continuous increase in NADH generation, a Pt catalyst of lower loading was 

investigated i.e., 1 wt%, over both Al2O3 and carbon as carriers. A low loading is favorable 

for NADH regeneration (Figure 14B) where Pt/Al2O3 outperformed Au/Al2O3 (laboratory 

synthesized
100

; introduced for comparison purpose due to its chemoselectivity) in terms of 
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activity and Pt/C in terms of selectivity (the high initial activity of this catalyst is interesting 

and worthy of further investigation). The concentration of NADH (rather than its inactive 

isomer) was also confirmed independently by 
1
H NMR analysis (Figure 14B and Figure 15), 

which was in good agreement with the result determined by UV spectrophotometry and 

demonstrated the heterogeneous catalyst promoted NADH regeneration. This encouraging 

observation should not be a complete surprise as supported Pt has shown activity in the 

hydrogenation of compounds with similar ring structure to NADH (e.g., pyridines), and there 

are studies in the literature relating  to photocatalytic and electrocatalytic regeneration using 

Pt nanoparticles as photosensitizer and proton carrier, respectively.  

Taking Pt/Al2O3 (1 wt%) as the optimal catalyst, effects of reaction parameters (temperature, 

pH, pressure and catalyst pretreatment) were studied over extended times (i.e., 6 h) in order 

to understand and optimize this innovative NADH regeneration process. As seen in Figure 

16, under benchmark conditions (i.e., 37°C, pH = 7 and 9 atm H2) the regenerated NADH at 

the end of reaction achieved 100% selectivity towards the enzymatically active form (~50% 

yield) and this was confirmed by results from both 
1
H NMR and an independent enzymatic 

assay (experimental details available from Wang and Yiu
12

). In general, high temperature, pH 

and H2 pressure favor the reduction of NAD
+
 to NADH (Figure 17), which can be related to 

the activation energy provided (from temperature), driven force for the forward reaction 

(neutralization of the H
+
 produced, Figure 5) and increased H2 solubility (more reactant 

available), respectively.  Although these observations are promising, it is worth pointing out 

that high temperature (60°C) and prolonged reaction time (24 h) can lead to the formation of 

undesirable products and a loss of cofactor NADH (Figure 17A). This tends not to be a 

problem and has little effect on an actual enzymatic reduction with in situ NADH recycling 

system because it is typically operated at ~37°C or lower temperatures while excessive 

accumulation of cofactor can be prevented by its concurrent consumption by a substrate over 



33 

 

the production enzyme. The TOFs (all < 100 h
-1

) obtained under various conditions are 

presented in Figure 17, suggesting further enhancement would be beneficial. It is also 

evident that the H2 treated catalyst is more active than the as-received one (Figure 17D), 

suggesting some differences in their structural characteristics.  

Both the as received and H2 treated catalysts have therefore been fully characterized and the 

results compiled in Table 7
12

 and Figure 18. There are not significant differences in terms of 

surface area/porosity and Pt particle size/range (see Figure 18A and 18B for representative 

STEM images and associated particle size distributions). The H2 activation capacity evident 

from both catalysts may be responsible for the reduction of NAD
+
, where the higher (~5 

times) value obtained over the H2 treated catalyst is consistent with the catalytic performance. 

The X-ray diffraction (XRD) patterns (Figure 18C) of the as received Pt/Al2O3 is 

characterised by peaks at 2θ = 37.6°, 39.5°, 45.9° and 67.0° corresponding to the (311), (222), 

(400) and (440) planes of cubic γ-Al2O3, respectively and a peak at 2θ = 33.0° that is 

attributed to α-PtO2 (100). After H2 treatment at 350°C for 1h, the absence of α-PtO2 (100) 

characteristic peak indicates the full reduction of Pt oxide species to metallic Pt. This is 

consistent with the H2 TPR measurement, where two reduction peaks were observed at 205 

and 350°C, respectively. The former low temperature signal can be linked to the reduction of 

bulk Pt oxide species (PtOx) with week interaction with support Al2O3 while the high 

temperature one is resulted from Pt species (PtOx or (hydroxyl)chlorided Pt) interacted 

strongly with Al2O3. This is consistent with the H2 temperature programmed reduction (TPR) 

profile (Figure 18D) that the pretreatment at 350°C (for 1 h) is sufficient to reduce all Pt 

oxide species. The increased H2 uptake can therefore be linked to the further reduction of Pt 

species over the as received catalyst, suggesting metallic Pt (at least) contains the active site 

for this reaction. Dissociative activation of H2 over Pt has been known for many years. The 

polarized H atom (H
δ-

) could easily lose an electron to the nicotinamide ring (likely to be the 
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adsorbed part of the molecule) whose further pronation may also be catalyzed by Pt metal at 

the same site.   

The ultimate goal for NADH regeneration is to couple this in situ with the main enzymatic 

reaction, which can be challenging due to compatibility issues (as discussed previously in 

some systems involving organometallic complexes). We have therefore integrated NADH 

regeneration by Pt/Al2O3 with conversion of propanal to propanol over ADH as a model 

enzymatic redox transformation and the results are shown in Figure 19. In batch mode, the 

production of propanol is limited by the available NADH and without Pt/Al2O3 addition 

propanol yield reached an upper limit of 70%. Cofactor regeneration by Pt/Al2O3 extended 

alcohol production beyond the initial NADH/propanal stoichiometry to reach full conversion 

(100% yield, Figure 19A). Moreover, in order to realize the full potential of this in situ 

cofactor regeneration strategy the feasibility of fed-batch propanol production was 

investigated using a fixed starting amount of NADH with continuous propanal supply and 

cofactor regeneration by Pt/Al2O3. Without cofactor regeneration, propanol production is 

limited by the initial NADH concentration (Figure 19B). Propanol production with a 

continuous feed was achieved through the combined catalytic action of Pt/Al2O3 and alcohol 

dehydrogenase where a constant level of propanol production was maintained in operation for 

up to 100 h. This hybrid synthetic-biocatalytic system (with further enhancements considered) 

can serve as a new route for cleaner production of chemicals by NADH dependent enzymes. 

Prompted by this work, Vincent and coworkers have recently loaded Pt (at a rather high 

loading, i.e., 20 wt%) onto a carbon support to replace hydrogenase and work in tandem with 

NAD
+
 reductase for NADH regeneration, which has also been proven feasible.

15
 This further 

suggests that supported metals can work with enzymes in “one-pot” and exhibit no mutual 

inhibition.    
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These results demonstrate the feasibility of conventional heterogeneous catalysts promoted 

NAD
+
 reduction by H2 for the regeneration of NADH, which can be integrated in tandem 

with a real biotransformation with compatibility. This sixth regeneration method could 

provide new considerations in both NAD(P)H regeneration technology and the research of 

heterogeneous catalysis for novel applications.  

SUMMARY AND OUTLOOK 

NAD(P)H is a critical cofactor that participates in a broad range of enzymatic reduction 

reactions of significant importance as gauged by he continuously growing global 

pharmaceutical market where a wide number of drugs (or crucial intermediates during 

production) rely heavily on bioreduction (mainly due to its enantioselectivity) using 

oxidoreductases as biocatalyst and NAD(P)H as reducing agent. Effective procedures to 

generate  NAD(P)H are essential given the  high cost of this component and this has been the 

driver for the large body of research which has evolved over the last 50 years. With this 

objective six methods of promoting the NAD(P)
+
 to NAD(P)H transformation have been 

established, namely enzymatic, chemical, homogeneous catalytic, electrochemical, 

photocatalytic and heterogeneous catalytic approaches.  

Regeneration using enzymes (notably FDH and GDH) is still the state-of-the-art method and 

currently the only one applicable at industrial scale. This is a consequence of their high TTN, 

selectivity to enzymatically active NAD(P)H and excellent compatibility when coupling in 

situ with bioreductions. In addition to the limitations of using enzymes (e.g., relatively high 

cost and low stability), the generation of water soluble byproducts (or CO2 release), the 

complexity of species/components involved (e.g., sacrificial organic hydride donor and 

corresponding byproduct) and product/catalyst separation are concerns in terms of towards 

sustainability and responsible production. Highlighted in this review is the  advancement of 
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heterogeneous systems for NAD(P)H regeneration across the six categories of methods for 

potential process simplicity, cleanliness and ease of downstream separation. With the 

exception of obsolete chemical regeneration using high redox potential salts, other 

approaches are (e.g., electro- and heterogeneous catalysis) or could be designed/made (e.g., 

enzymatic, homogeneous and photo- catalysis) to be heterogeneous. The category includes 

the immobilization of enzymes, organometallic complex and the use of solid photocatalysts. 

These heterogeneous processes unfortunately exhibit low activity in NAD(P)
+
 reduction 

compared to the homogeneous methodologies with few examples reporting high TOFs. On 

the positive side, they have been shown to selectively catalyze NAD(P)H regeneration, 

enhance stability, facilitate recycling/separation and are compatible in general with in situ 

enzymatic reductions (with various successful examples). 

Using heterogeneous catalytic systems do not directly simplify product separation as 

immobilized  enzymes (and immobilized organic complex) still require sacrificial organic 

hydride donors while the performance of electrochemical and photocatalytic routes is 

strongly dependent on the use of toxic electron mediators in addition to hydride donors. A 

key improvement is the switch from organic hydride donors to H2 (preferably from renewable 

resources) where protons are the only released species and can be consumed in the target 

biosynthesis (i.e., achieving 100% atom efficiency). This makes immobilized hydrogenase 

and supported metal catalysts ideal candidates, both of which have been proven compatible 

with enzymatic reductions. Future research in improving the catalytic efficiency is important 

in fulfill the potential of these two methods in the cleaner production of drugs and chemicals. 

While the enzymatic (hydrogenase) process is relatively more established, the reaction 

mechanism of supported metals promoting NAD(P)
+
 reduction is still unclear. An 

understanding of how NAD(P)
+
 interacts with the catalyst surface, active sites, reaction 

pathways and energetics will contribute significantly to the rational design of effective 
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catalytic materials. It is hoped that cofactor NAD(P)H regeneration using H2 over solid 

reagent can be developed to an industrially acceptable level in the future with 

interdisciplinary efforts from chemists, engineers, biologists and industrial partners.   
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Tables: 
 

 

Table 1. Typical Main Criteria Required for Cofactor NAD(P)H Regeneration 

Method Recycling catalyst 

(ease of separation) 

Avoiding 

organic 

sacrificial 

electron donor 

Avoiding 

mediator 

Clean production 

without byproduct 

Enzymatic  

 (immobilized enzyme) 

 

 (using H2) 
  

 (producing H+) 

Chemical − (no catalyst)  (inorganic)   

Homogeneous 

Catalytic 

 

 

 

 (using H2) 

  

 (producing H+) 

Electrochemical    

 (nonselective) 

 

(using mediator) 

Photocatalytic  (organic photosensitizers) 

(inorganic photosensitizers) 

 

 (using H2O) 

 

 (C3N4, only 1 

example) 

 

Heterogeneous 

Catalytic 

  (using H2)   (producing H+) 
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Table 2. Characteristics of Enzymes Used in Cofactor NAD(P)H Regeneration 

Enzyme Substrate(s) Byproduct(s) from 

regeneration 

Advantages  Disadvantages 

Alcohol 

dehydrogenase 

(ADH) 

2-propanol  

(or other oxidizable 

alcohols)  

Acetone 

(correspondent 

ketones/aldehydes) 

 High activity  

 Low cost 

 Water 

soluble 

byproducts 

requiring 

downstream 

separation 

Formate 

dehydrogenase 

(FDH) 

Formate/formic 

acid 

CO2  No soluble 

byproducts 

 Enhanced 

product 

separation 

 Low 

activity 

 CO2 release 

Glucose 

dehydrogenase 

(GDH) 

Glucose D-glucono-1,5-

lactone 
 High activity  High cost 

 Water 

soluble 

byproducts 

requiring 

downstream 

separation 

Glutamate 

dehydrogenase 

(GLDH) 

Glutamate/glutamic 

acid 

γ-aminobutyric 

acid 
 Low cost  Low 

activity 

 Water 

soluble 

byproducts 

requiring 

downstream 

separation 

Hydrogenase H2 H+  Clean 

byproducts 

(H+) 

 Low 

stability 

compared 

with other 

enzymes 

 Commercial 

availability 
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Table 3. Direct Electrochemical Regeneration of Cofactor NAD(P)H 

Electrode Potential (V) Cofactor Key results 

Pt using vanadia-silica 

xerogels54 

2
a
 NAD

+
 NADH yield = 100%; α-ketoglutarate 

conversion = 100% 

Au55 -1.1 vs SCEb NAD+ NADH yield = 30% 

Cu55 -1.2 vs SCEb NAD+ NADH yield = 52% 

Pt-Au55 -1.1 vs SCEb NAD+ NADH yield = 63% 

GC56 -2.3 vs MSEc NAD+ NADH yield = 98% 

GC-Pt57 -1.6 vs MSEc NAD+ NADH yield = 100% 

GC-Ni57 -1.5 vs MSEc NAD+ NADH yield = 100% 

Ti58 -0.8 vs NHEd NAD+ NADH yield = 96% 

Ni58 -1.3 vs NHEd NAD+ NADH yield = 92% 

Co58 -0.9 vs NHEd NAD+ NADH yield = 82% 

Cd58 -1.5 vs NHEd NAD+ NADH yield = 93% 

Ir-Ru/Ti59 -1.7 vs MSEc NAD+ NADH yield = 88% 

a2 V electricity applied. 

bSaturated Calomel Electrode. 

cMercurous Sulfate Electrode. 

dNormal Hydrogen Electrode. 
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Table 4. Indirect Electrochemical Regeneration of Cofactor NAD(P)H 

Electrode Potential (V) Redox Catalyst/Mediator Cofactor Key results 

Carbon foil62 -0.7 vs Ag/AgCl [Rh(bpy)3]
2+ NAD+ Cyclohexanone conversion = 26%; TTNCofactor

a = 2.9; 

TTNCatalyst
b = 1.2 

Carbon foil63 -0.6 vs Ag/AgCl [Cp(Me)5Rh(bipy)Cl]+ NAD+ Pyruvate conversion = 70%; ee = 93.5%; TTNCofactor
a = 14; 

TTNCatalyst
b = 7 

Glassy carbon 

particles64 

-0.5 vs NHE (pentamethylcyclo-pentadienyl-2,2’-

bipyridine aqua) Rh 

NAD+ NADH yield = 99.5%; TTNCatalyst
b = 400 

NADP+ NADPH yield = 99.5%; TTNCatalyst
b = 200 

Carbon felt65 -0.756 vs Ag/AgCl Cp[Rh(5,5’-methyl-2,2’-bipyridine)] NADP+ rreduction
 = 116 mM d-1; TOF = 97 h-1 

-0.757 vs Ag/AgCl  Cp[Rh(4,4’-methoxy-2,2’-bipyridine)] NADP+ rreduction= 136 mM d-1; TOF = 113 h-1 

Glassy carbon66 -0.8 vs Ag/AgCl Rh complex polymer NADP+ p-chloroacetophenone conversion = 90%;  ee > 97.3%; 

TTNCatalyst
b = 214 

MWCNs67 -0.75 vs SCE Rh complex with a pyrene-substituted 

phenanthroline ligand 

NAD+ TOF = 3.6 s-1 (over 10 regeneration cycles)  

aCofactor total turnover number (mol of product produced per mol of cofactor used). 

bCatalyst total turnover number (mol of product produced per mol of catalyst used). 
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Table 5. Enzyme-coupled Indirect Electrochemical Regeneration of Cofactor NAD(P)H 

Electrode Potential (V) Mediator Enzyme Cofactor Key results 

Coiled W wire68 -0.72 vs SCE Methyl viologen LipDH NAD+ TTNCofactor
a = 940; TTNEnzyme

b = 540,000 

FDR NADP+ TTNCofactor
a = 1000; TTNEnzyme

b = 750,000 

Coiled W wire69 -1 vs SCE Dithiols (DTT) LipDH NAD+ TTNCofactor
a = 920; TTNEnzyme

b = 13 

Modified graphite70 -0.8 vs SCE Methyl viologen Diaphorase NAD+ Benzoylformate conversion = 95% 

Benzoylformate conversion = 80%  

(50% loss of MV activity after 6 d) 

Au amalgam71 -0.5 vs Ag/AgCl Flavine adenine 

dinucleotide (FAD) 

Diaphorase NAD+ 2-methylcylohexanone conversion = 49.8%; ee = 100%; 

TTNMediator
c = 91 

-0.7 vs Ag/AgCl Methyl viologen 3-methylcyclohexanone conversion = 51.7%;  ee = 93.1%; 

TTNMediator
c = 94 

Au72 -0.55 vs Pt Flavine adenine 

dinucleotide (FAD) 

FDH NAD+ NADH yield = 31%; Pyruvate conversion = 41%; 

TN = 75.6 h-1. 

Au73 -0.6 vs Pt NADH yield = 50%; Pyruvate conversion = 20%; 

TN = 80 h-1. 

Unmodified carbon cloth74 -0.45 vs Ag/AgCl Flavine adenine 

dinucleotide (FAD) 

FDH NAD+ Pyruvate conversion = 50% 

Modified carbon cloth74 -0.45 vs Ag/AgCl Immobilized FAD Pyruvate conversion = 60% 
aCofactor total turnover number (mol of product produced per mol of cofactor used). 
bEnzyme total turnover number (mol of product produced per mol of enzyme used). 
cMediator total turnover number (mol of product produced per mol of mediator used). 
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Table 6. Photocatalytic Regeneration of Cofactor NAD(P)H by Selective Heterogeneous 

Photosensitizers: Summary of Reaction Conditions and Catalytic Performance
 

Photosensitizer Electron donor Mediator
a
 λ (nm) pH Yield (%) TOF (h

-1
) 

Light-harvesting 

synthetic wood91 

TEOA yes ≥ 400 7.4 4.30 1.250 

Pt-doped peptide 

nanotubes78 

TEOA yes ≥ 400 6.0 17.80 1.780 

CCGCMAQSP79 TEOA yes ≥ 420 7.0 45.54 0.375 

CCG-IP80 TEOA yes ≥ 420 7.0 38.99 0.642 

Rh-BipyE-PVab 

polymer
94

 

TEOA yes ≥ 390 8.9 21.00 1.8b 

Carbon-doped TiO2
83 Mercaptoethanol yes ≥ 400 6.5 74.30 0.031 

H2O yes ≥ 400 6.0 63.98 0.011 

Phosphorus-doped 

TiO2
84 

H2O yes ≥ 400 6.5 34.60 0.006 

CdS-coated SiO2
82 TEOA yes ≥ 420 7.5 70.00 0.278 

CdS-TiO2 nanotubular 

film81 

TEOA yes ≥ 420 7.5 75.20 240b 

Diatom-mimic 

structure (g-C3N4)
87 

TEOA yes ≥ 420 8.0 100 0.067 

TEOA no ≥ 420 10.0 50.00 0.248 

Porous nanospheres (g- 

C3N4)
88 

TEOA yes ≥ 420 8.0 100 1.326 

TEOA no ≥ 420 10.0 50.00 0.665 

Porous nanorods (g- 

C3N4)
86 

TEOA yes ≥ 420 8.0 72.00 0.478 

a
[Cp

*
Rh(bpy)H2O]

2+
, showing high specificity to enzymatically active NAD(P)H. 

bThe unit of these values is μmol cm-2 h-1. 
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Table 7. Physicochemical Characteristics of Pt/Al2O3
12

 

 Pt/Al2O3 

(as received) 

Pt/Al2O3 

(H2 treated) 

BET surface area (m2 g-1) 162 175 

Total pore volume (cm3 g-1) 0.40 0.43 

Average pore size (nm) 7.8 8.0 

Pt size range (nm) 0-7 0-10 

dSTEM (nm) 2.2 3.4 

H2 chemisorption (μmol g-1) 4.1 21.5 
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Figures: 

 

 

Figure 1. Molecular Structures of Nicotinamide Adenine Dinucleotide Cofactors 
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Figure 2. Schematic Representation of Enzymatic Reaction using Cofactor NAD(P)H 

and Possible Products Obtained from NAD(P)H Regeneration  

(A) NAD(P)H consumption in biotransformation. 

(B) Target pathway for NAD(P)H regeneration. 

(C) Formation of (dashed arrows) enzymatically inactive NAD(P)2 dimer. 

(D) Formation of (dashed arrows) enzymatically inactive 1,6-NAD(P)H.  

R indicates adenosine diphosphoribose. 
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Figure 3. Schematic Representation of NAD(P)H Enzymatic Regeneration 

(A) Coupled-enzyme approach.  

(B) Coupled-substrate approach.  

R indicates adenosine diphosphoribose. 
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Figure 4. Schematic Representation of NAD(P)H Electrochemical Regeneration  

(A) Direct electrochemical regeneration.  

(B) Indirect electrochemical regeneration.  

(C) Enzyme-coupled electrochemical regeneration.  
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Figure 5. Schematic Representation of Coupling Heterogeneous Catalysts Promoting 

NADH Regeneration in Tandem with Enzymatic Reduction Using CO2 as A 

Representative Substrate (Producing Formic Acid) 
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Figure 6. Methods for Enzyme Immobilization 

(A) Crosslinking  

(B) Entrapment 

(C) Physical adsorption 

(D) Chemical binding 
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Figure 7. Reaction Pathways in Electrochemical Reduction of NAD(P)
+
 to NAD(P)H.  

R indicates adenosine diphosphoribose.  
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Figure 8. Schematic Illustration of Natural Photosynthesis and Artificial Systems with 

the Structure of Active Compounds 

(A) Schematic illustration of the light-harvesting system in green plants (left) and light-

harvesting synthetic wood (LSW) (right).  

(B) Molecular structures of light-harvesting pigment in green plants (left) and LSW (right). 

Adapted from Lee et al.
91

 with permission from the 2011 John Wiley & Sons Inc.  
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Figure 9. Schematic Illustration of Natural Photosynthesis and Artificial Systems with 

Associated Catalytic Performance 

(A) Structure, biocatalytic reaction, and redox potential of natural photosynthesis by 

photosystem I. 

(B) Artificial photosynthesis by light-harvesting Pt-doped peptide nanotubes. 

(C) Turnover frequency (TOF) of different types of nanotubes in comparison with other 

inorganic photosensitizers. Inset in (C) shows the temporal change of NADH concentration in 

the presence of different nanotubes.  

(D) Photosynthesis of L-glutamate by glutamate dehydrogenase (GDH) with different types 

of nanotubes.  

Adapted from Kim et al.
78

 with permission from the 2012 John Wiley & Sons Inc. 
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Figure 10. Reaction Schemes of Photocatalytic NADH Regeneration Coupled with Enzymatic Reduction upon CCGCMAQSP-bonded 

and CCGC-IP-bonded Graphene Nanosheets with Associated Catalytic Performance 

(A) CCGCMAQSP-bonded graphene nanosheet photocatalyzed regeneration of NADH and artificial photosynthesis of formic acid from CO2 

under visible light.  

(B, C) Photocatalytic activities of CCGCMAQSP and other two photosensitizers in visible-light driven (B) NADH photocatalytic regeneration 

and (C) artificial photosynthesis of formic acid from CO2.  

Adapted from Yadav et al.
79

 with permission from the 2012 American Chemical Society.  

(D) CCGC-IP-bonded graphene nanosheet photocatalyzed regeneration of NADH and artificial photosynthesis of methanol from CO2 under 

visible light.  

(E, F) Photocatalytic activities of CCGC-IP and other two photosensitizers in visible-light driven (E) NADH photocatalytic regeneration and (F) 

artificial photosynthesis of methanol from CO2.  

Adapted from Yadav et al.
80

 with permission from the 2014 American Chemical Society. 
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Figure 11. Synthesis, Photocatalytic Application and Performance of the Bipyridine-

containing Polymer 

(A) Synthesis procedure of the bipyridine-containing polymer (bipyridine-containing poly-

(arylene-ethynylene)-alt-poly(arylene-vinylene) copolymer).  

(B) Experimental setup (left) and scheme of the surface reaction (right) in the chemical 

reduction of NAD
+
 to NADH with formate as hydride donor to the polymer-bound rhodium 

catalyst reaction center.  

(C) UV−vis spectra of the chemical reduction of NAD
+
 with formate.  

Adapted from Oppelt et al.
94

 with permission from the 2014 American Chemical Society. 
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Figure 12. Reaction Mechanism of Photocatalytic NADH Regeneration upon CdS/TiO2 

or CdS-Al2O3 Nanotubular Film and the Catalytic Performance 

(A) Proposed mechanism for higher efficiency of NADH photocatalytic regeneration by CdS-

TiO2 nanotubular film than CdS-Al2O3 nanotubular film.  

(B) Comparison between the NADH regeneration efficiencies enabled by CdS-TiO2 

nanotubular film and CdS-Al2O3 nanotubular film with different degrees of CdS loading.  

(C) Schematic illustration explaining the higher efficiency of NADH photoregeneration 

obtained with a TiO2-CdS nanotubular film. 

(D) Photoregeneration of NADH using a nano-particulate (open circles) and a nanotubular 

(filled square) TiO2-CdS film. 

Adapted from Ryu et al.
81

 with permission from the 2011 John Wiley & Sons Inc. 
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Figure 13. Schematic Illustration of Photocatalytic Regeneration of NADH in the 

Absence or Presence of Electron Mediator and Structure of g-C3N4 

(A) Reaction Scheme. 

(B) g-C3N4 constructed from heptazine building blocks. 

Adapted from Liu et al.
87

 with permission from the 2013 Royal Society of Chemistry. 
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Figure 14. Heterogeneous Catalysts Promoted NADH Regeneration by the Reduction of NAD
+
 Using H2 

Variation of NADH concentration as a function of time over (as received) Al2O3 supported:  

(A) 5 wt% Pt (), Rh (), Ru (), Pd () and (homemade) 6 wt% Ni (). 

(B) 1 wt%  Pt/Al2O3 (), Pt/C (), Au/Al2O3 () and 5 wt% Pt/Al2O3 () with NADH concentration determined by 
1
H NMR (). 

Reaction conditions: T = 37°C, P = 9 atm, pH = 7, [NAD
+
]0 = 1.5 mM and 25 mg catalyst. 
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Figure 15. 
1
H NMR Spectra  

(A) 1.5 mM NADH in 100 mM phosphate D2O buffer (pH = 7.0).  

(B) 1.5 mM NAD
+
 in 100 mM phosphate D2O buffer (pH = 7.0).  

(C) Reaction product mixture after 2 h (T = 37°C, pH = 7.0, P = 9 atm and 25 mg catalyst, in 

D2O buffer).  
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Figure 16. Pt/Al2O3 (1 wt%) Catalyzed NAD
+
 Reduction for NADH Regeneration  

(A) Variation of NADH yield as a function of time () with NADH yield determined by 
1
H 

NMR ().  

(B) NADH yield validation using enzymatic assay (EC 1.8.1.4): time dependence of 

normalized absorbance (A/A0) of NADH produced experimentally () and from a prepared 

mixture using commercial NADH and NAD
+
 (): A0 is the absorbance recorded before the 

enzymatic assay; A is the absorbance recorded after reaction is initiated; t0 is the total run 

time of the enzymatic assay; t is the time after initiating the reaction.  

Reaction conditions: T = 37°C, P = 9 atm, pH = 7, [NAD
+
]0 = 1.5 mM and 25 mg catalyst. 

Adapted from Wang and Yiu.
12

 with permission from the 2016 American Chemical Society. 
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Figure 17. Temporal Variation of NADH Yield and Initial Turnover Frequency (TOF, h
-1

) As A Function of Reaction Parameters in 

Pt/Al2O3 (1 wt%) Catalyzed NAD
+
 Reduction for NADH regeneration  

(A) Temperature (20°C () 25°C (), 37°C () and 60°C () at P = 9 atm, pH = 7.0).  

(B) pH (4.0 (), 7.0 (), 8.8 () and 9.9 () at T = 37°C, P = 9 atm).  

(C) Pressure, (1 atm (), 5 atm ()  and 9 atm () at T = 37°C, pH = 7.0). 

(D) H2 treatment (Pt/Al2O3 as received () and H2 treated Pt/Al2O3 () at T = 20°C, P = 1 atm, pH = 8.8).  
Other reaction conditions: [NAD

+
]0 = 1.5 mM and 25 mg catalyst. 

Adapted from Wang and Yiu.
12

 with permission from the 2016 American Chemical Society.   
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Figure 18. Characterization of Pt/Al2O3 (1 wt%) 

(A) Representative STEM image and Pt particle size distribution of the as received Pt/Al2O3. 

(B) Representative STEM image and Pt particle size distribution of the H2 treated Pt/Al2O3. 

(C) XRD patterns for the as received and H2 treated Pt/Al2O3. 

(D) TPR profile of the as received Pt/Al2O3. 



71 

 

  

Figure 19. Enzymatic Reduction of Propanal to Propanol Coupled with In Situ NADH 

Regeneration by Pt/Al2O3 

(A) Temporal propanol yield in batch enzymatic (ADH) reduction of propanal.  

(B) Propanol production as a function of time in continuous enzymatic reduction of propanal. 

Reaction conditions: T = 20°C, P = 1 atm (H2 flow = 30 cm
3
 min

-1
), pH = 8.8 and 25 mg 

catalyst: (A) [NADH]0 = 7.0 mM and [propanal]0 = 10 mM aand (B) initial NADH = 25 

μmol with propanal (2 mM) feed rate = 2.5 cm
3
 h

-1
.  

Adapted from Wang and Yiu.
12

 with permission from the 2016 American Chemical Society. 


