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ABSTRACT 

Anitta Patience Namanya “A HEURISTIC FEATURE BASED QUANTIFICATION FRAMEWORK 
FOR EFFICIENT MALWARE DETECTION” 
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Malware is still one of the most prominent vectors through which computer 

networks and systems are compromised. A compromised computer system or 

network provides data and or processing resources to the world of cybercrime. 

With cybercrime projected to cost the world $6 trillion by 2021, malware is 

expected to continue being a growing challenge. Statistics around malware 

growth over the last decade support this theory as malware numbers enjoy almost 

an exponential increase over the period. Recent reports on the complexity of the 

malware show that the fight against malware as a means of building more resilient 

cyberspace is an evolving challenge. Compounding the problem is the lack of 

cyber security expertise to handle the expected rise in incidents. 

This thesis proposes advancing automation of the malware static analysis and 

detection to improve the decision-making confidence levels of a standard 

computer user in regards to a file’s malicious status. Therefore, this work 

introduces a framework that relies on two novel approaches to score the 

malicious intent of a file. The first approach attaches a probabilistic score to 

heuristic anomalies to calculate an overall file malicious score while the second 

approach uses fuzzy hashes and evidence combination theory for more efficient 

malware detection. The approaches’ resultant quantifiable scores measure the 

malicious intent of the file. 

The designed schemes were validated using a dataset of “clean” and “malicious” 

files. The results obtained show that the framework achieves true positive – false 

positive detection rate “trade-offs” for efficient malware detection.  



 

iv 

 

ACKNOWLEDGEMENTS 

I would like to thank God for everything; His Grace, Guidance and the faith I have 

in Him to enable me finish this study. I would like to thank my parents for loving 

me unconditionally and their belief that allowed me to believe that I could 

accomplish all I set out to do. I am eternally grateful for Mac, baby Amara and my 

sisters. You are the inspirations that make me do my best each day. 

I am very grateful to the University of Bradford for funding this research degree. 

This was an amazing opportunity that I shall forever be thankful for.  

This work would not have been possible without the untiring support of my 

supervisors; Prof Irfan Awan, Dr Jules Pagna Disso and Dr Andrea Cullen who 

gave me so many chances to get this right that I am glad, I did not let you down. 

Thank you very much for your belief in me and your support. I also would like to 

extend both my examiners for the corrections suggested that enabled me to make 

this thesis a better write-up of my work. 

My guardians in faith; Pastor Akpo. Pastor Andrea and Chapel of Grace friends, 

thank you for standing with me in prayer and being my tether to the Lord that 

makes all things amazing in His time. 

A big thank you to Nettitude Ltd for all the support during this study. Access to 

data, technical support and the opportunity to work with such an amazing group 

of people shaped my thinking process every day. 

I am indebted to all my siblings for being the much-needed inspiration, my 

colleagues in the cybersecurity research group; Adeeb, Rashid, Qublai and 

Hammad for being great sounding boards in these 4 years. To my new working 

family at Nettitude especially my boss Mark, my colleagues in Research at 

Bradford, thank you for all the laughter and jokes that kept me sane. To all my 

friends and family that kept me believing I could do this, Rashid, Mac, Bashir, 

Kabiru, Odili, Mwanja, Kemi, Pamela, Amanda, Aunt Joy, Aunt Jadress and many 

others, thank you and May God bless you. 

  



 

v 

 

PUBLICATIONS: 

 

1. Namanya, A.P; Pagna-Disso, J; Awan, I (2015): Evaluation of automated 

static analysis tools for malware detection in Portable Executable files; UK 

Performance Engineering Workshop(UKPEW), 2015 31st UKPEW, pp. 81-

95, 17 Sept 2015, University of Leeds, UK. 

2. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Pagna-Disso, J; Awan, I 

(2016): Detection of Malicious Portable Executables using Evidence 

Combinational Theory with Fuzzy Hashing; Future Internet of Things and 

Cloud (FiCloud2016), 2016 IEEE 4th International Conference, 22-24 August 

2016, Vienna, Austria. 

3. Al-Mohannadi, H; Mirza, Q.K.A; Namanya, A.P; Pagna-Disso, J; Awan, I 

(2016): Cyber-Attack Modelling Analysis Techniques: An Overview; Future 

Internet of Things and Cloud Workshops (W-FiCloud2016), 2016 IEEE 4th 

International Conference, 22-24 August 2016, Vienna, Austria. 

4. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Cullen, A; Awan, I 

(2016): Towards Building a Unified Threat Analysis and Management 

Framework; UK Performance Engineering Workshop(UKPEW)& Cyber 

Security Workshop (CyberSecW), 2016 32nd UKPEW&CyberSecW, 7th – 8th 

Sept 2016, University of Bradford, UK. 

5. Munir, R; Ahmed, B; Al-Mohannadi, H; Rafiq, M; Namanya, A.P; 

(2016): Performance Security Trade-off of Network Intrusion Detection and 

Prevention Systems; UK Performance Engineering Workshop(UKPEW)& 

Cyber Security Workshop (CyberSecW), 2016 32nd UKPEW&CyberSecW, 

7th – 8th Sept 2016, University of Bradford, UK. 

6. Namanya, A.P; Pagna-Disso, J (2013): Performance modelling and analysis 

of the delay aware routing metric in Cognitive Radio Ad Hoc 

networks; Wireless and Mobile Networking Conference (WMNC), 2013 6th 

Joint IFIP , vol., no., pp.1,8, 23-25 April 2013, Dubai, UAE. 

Submitted Journal Work: 

1. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Pagna-Disso, J; Awan, I: 

Malicious Portable Executables Scoring Methodology using Evidence 

http://www.comp.leeds.ac.uk/scswsci/ukpew15/proceedings.pdf
http://www.comp.leeds.ac.uk/scswsci/ukpew15/proceedings.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6549030&queryText%3DPerformance+modelling+and+analysis+of+the+delay+aware+routing+metric+in+Cognitive+Radio+Ad+Hoc+networks
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6549030&queryText%3DPerformance+modelling+and+analysis+of+the+delay+aware+routing+metric+in+Cognitive+Radio+Ad+Hoc+networks
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6549030&queryText%3DPerformance+modelling+and+analysis+of+the+delay+aware+routing+metric+in+Cognitive+Radio+Ad+Hoc+networks


 

vi 

 

Combinational Theory with Fuzzy Hashing.; Second stage review - IEEE 

Transactions on Dependable and Secure Computing 2017. 

 

Posters: 

1. Namanya,A.P; Pagna-Disso, J, Awan, I (2015): A framework for automated 

hybrid signature generation for Portable Executable malware detection; 

Poster presented at the ACM-W UK Inspire 2015 Celebration of Women in 

Computing. Imperial College, London, UK – Awarded 2nd Prize in Best Poster 

Award. 

2. Namanya, A.P; Pagna-Disso, J, Awan, I (2016): Malicious PE Static Scoring 

method using Evidence Combinational Theory with Fuzzy Hashing; Poster 

Presented at ACM-W Europe WomENcourage 2016 Celebration of Women 

in Computing. Johannes Kepler University, Linz, Austria. 

  

https://www.computer.org/web/tdsc
https://www.computer.org/web/tdsc
https://www.dropbox.com/s/9lxllarchb0hbm8/ACM-%20Women%20Poster%202015-%20Anitta%20P%20Namanya.pdf?dl=1
https://www.dropbox.com/s/9lxllarchb0hbm8/ACM-%20Women%20Poster%202015-%20Anitta%20P%20Namanya.pdf?dl=1


 

vii 

 

CONTENTS 

 

ABSTRACT ........................................................................................................ iii 

ACKNOWLEDGEMENTS .................................................................................. iv 

PUBLICATIONS: ................................................................................................. v 

List of Tables...................................................................................................... xi 

List of Figures ................................................................................................... xii 

List of Algorithms .............................................................................................. xv 

CHAPTER 1. INTRODUCTION ...................................................................... 1 

1.1 Motivation .............................................................................................. 1 

1.2 Proposed Solutions ................................................................................ 2 

1.3 Aims and Objectives .............................................................................. 4 

1.4 Contributions .......................................................................................... 4 

1.5 Thesis Scope ......................................................................................... 5 

1.6 Thesis Structure ..................................................................................... 6 

CHAPTER 2. BACKGROUND ........................................................................ 8 

2.1 Malware Overview ................................................................................. 9 

2.1.1 Evolution of Malware ..................................................................... 13 

2.2 Portable Executable File Format (PE).................................................. 16 

2.2.1 PE Standard Structure .................................................................. 18 

2.3 Hashing algorithms .............................................................................. 20 

2.3.1 Cryptographic Hashing algorithms ................................................ 20 

2.3.2 Fuzzy Hashing algorithms ............................................................. 21 

2.4 Evidence Combinational Theory Methods. .......................................... 24 

2.4.1 Fuzzy Logic ................................................................................... 25 

2.4.2 The Certainty Factor model ........................................................... 25 

2.5 The Challenge of Evaluating Anti-Malware Solutions .......................... 26 

2.5.1 Proposed solutions evaluation method .......................................... 26 

2.5.2 Dataset preparation ....................................................................... 27 

2.6 Chapter Summary ................................................................................ 28 

CHAPTER 3. LITERATURE REVIEW .......................................................... 29 

3.1 Malware Analysis Techniques ............................................................. 29 

3.1.1 Fully Automated Analysis .............................................................. 30 



 

viii 

 

3.1.2 Basic Static Malware Analysis ....................................................... 31 

3.1.3 Dynamic Malware Analysis ........................................................... 32 

3.1.4 Reverse Engineering ..................................................................... 33 

3.2 Malware Evasion of Analysis and Detection Evasion. ......................... 34 

3.2.1 Anti-Analysis Techniques: ............................................................. 35 

3.2.2 Obfuscation Techniques ................................................................ 37 

3.2.3 Types of Obfuscated Malware ....................................................... 40 

3.3 Existing Malware Detection Techniques and Solutions........................ 42 

3.3.1 Integrity Checker ........................................................................... 42 

3.3.2 Signature Based Detection ............................................................ 43 

3.3.3 Semantic Based Detection. ........................................................... 44 

3.3.4 Behavioural Based Detection ........................................................ 44 

3.3.5 Heuristic Based Detection ............................................................. 45 

3.4 Recent Heuristic Based Malware Detection Research Solutions ......... 46 

3.5 Chapter summary ................................................................................ 49 

CHAPTER 4. EVALUATION OF AUTOMATED STATIC ANALYSIS TOOLS 

FOR MALWARE DETECTION IN PORTABLE EXECUTABLE FILES ............. 50 

4.1 Introduction: ......................................................................................... 50 

4.2 Overview of automated Static Analysis tools. ...................................... 51 

4.2.1 Peframe ......................................................................................... 51 

4.2.2 Pyew ............................................................................................. 52 

4.2.3 Mastiff ............................................................................................ 53 

4.3 Test Environment ................................................................................. 54 

4.3.1 Comparison, Analysis and Evaluation Approach ........................... 54 

4.4 Test Scenarios ..................................................................................... 55 

4.4.1 File Identification: .......................................................................... 55 

4.4.2 Detection of Obfuscation Techniques ............................................ 55 

4.4.3 Analysis of APIs ............................................................................ 56 

4.4.4 PE file feature analysis .................................................................. 56 

4.4.5 Ssdeep hashing and Malware clustering ....................................... 56 

4.4.6 Call Graph Extraction and Comparison ......................................... 57 

4.4.7 String Analysis............................................................................... 57 

4.4.8 Third Party Plugin .......................................................................... 58 



 

ix 

 

4.4.9 Usability ......................................................................................... 58 

4.5 Feature Comparison, Analysis and Evaluation. ................................... 58 

4.5.1 Tool Feature Comparison .............................................................. 58 

4.5.2 Analysis and Evaluation ................................................................ 59 

4.6 Chapter Summary ................................................................................ 67 

CHAPTER 5. MALSCORE: AN ANORMALY HEURISTIC FEATURE BASED 

PROBABILISTIC SCORING METHOD FOR DETECTION OF MALICIOUS 

PORTABLE EXECUTABLES ............................................................................ 68 

5.1 Introduction .......................................................................................... 68 

5.2 Heuristic observations from the static analysis data of 1.6 million malware 

samples and discussion. ................................................................................ 69 

5.3 Methodology Design and Implementation ............................................ 74 

5.3.1 Test Environment and Dataset formulation. .................................. 74 

5.3.2 Aggregation of the Anomalies. ...................................................... 75 

5.3.3 Application of the Conditional Probability Theories. ...................... 76 

5.3.4 Identification of Trigger features. ................................................... 76 

5.3.5 Formulation of the Individual Anomaly Score. ............................... 77 

5.3.6 MalScore: The Heuristic Scoring Algorithm. .................................. 77 

5.3.7 Formation of the Heuristic Detection Score threshold. .................. 79 

5.4 Proposed Scoring and detection Method Results and Analysis ........... 79 

5.5 Chapter Summary ................................................................................ 81 

CHAPTER 6. MALHASCORE: MALICIOUS PORTABLE EXECUTABLE 

STATIC SCORING METHODOLOGY USING EVIDENCE COMBINATIONAL 

THEORY WITH HEURISTIC FEATURE CALCULATED HASHES. .................. 83 

6.1 Introduction .......................................................................................... 83 

6.2 Design choice of Hashes in scope ....................................................... 85 

6.3 Modelling and implementing the proposed method design. ................. 86 

6.3.1 Single File Hashing Study ............................................................. 87 

6.3.2 Collecting the Datasets ................................................................. 87 

6.3.3 Populating the Database of Hashes Signatures ............................ 89 

6.3.4 Hashes Similarity Based Criteria Factor Index (CFI) Formulation. 89 

6.3.5 Application of Evidence Combination Theory Approach ................ 93 



 

x 

 

6.3.6 Generation of the Traffic Light Based Scoring Assessor (TLBSA) 

Thresholds. ................................................................................................. 94 

6.4 Dataset preparation and test environment. .......................................... 97 

6.5 Experimentation results and analysis .................................................. 98 

6.5.1 Observations from the single file study test ................................... 98 

6.5.2 Malware detection performance of the individual in-scope Hashes 

and calculation of the CFI. .......................................................................... 98 

6.6 Results Discussion of the proposed Evidence Combination of Hashes 

methods for malware detection. ................................................................... 105 

6.7 Chapter Summary. ............................................................................. 107 

CHAPTER 7. CONCLUSION ...................................................................... 109 

7.1 Findings ............................................................................................. 109 

7.2 Comparison of the two proposed approaches ................................... 109 

7.3 Limitations and Challenges ................................................................ 110 

7.4 Future work ........................................................................................ 111 

7.5 Summary ........................................................................................... 112 

References...................................................................................................... 113 

 

  



 

xi 

 

LIST OF TABLES 

Table 2.1 PE file features included the PeHash Calculation ............................. 24 

Table 2.2 Confusion Matrix ............................................................................... 26 

Table 2.3 The Experiment Dataset ................................................................... 27 

Table 2.4 Malware type distribution in the Malware Dataset ............................. 28 

Table 4.1 Experiment Setup Specifications for the evaluation of automated 

static analysis tools ........................................................................................... 54 

Table 4.2 Static Analysis Tool Feature Comparison ......................................... 59 

Table 4.3 Comparison of Mastiff Similarity detection vs Pyew cluster graph 

similarity analysis .............................................................................................. 64 

Table 4.4 Top URLs extracted .......................................................................... 65 

Table 4.5 VirusTotal analysis results giving 0% detection of known malware ... 66 

Table 5.1 The top 20 malware types identified during analysis ......................... 69 

Table 5.2 Top 20 identified Packers .................................................................. 70 

Table 5.3 Email Addresses extracted from the data ......................................... 73 

Table 5.4 Top 20 URLs extracted from the analysis data ................................. 74 

Table 5.5 MalScore datasets formation and their uses ..................................... 74 

Table 5.6 Malscore Test Bench Specifications ................................................. 75 

Table 5.7 The HIoC set Scoring formulation. .................................................... 78 

Table 6.1 Argument for in scope Hashes .......................................................... 85 

Table 6.2 The Algorithm Notations .................................................................... 86 

Table 6.3 Datasets Formation and their uses ................................................... 89 

Table 6.4 The TLBSA Colour definitions ........................................................... 94 

Table 6.5 The Initial (St.1) Study Dataset ......................................................... 97 

Table 6.6 The Final (St.2) Experiment Dataset ................................................. 97 

Table 6.7 Test Bench Specifications ................................................................. 97 

Table 6.8 Comparison of Hashes from the Single File Study ............................ 99 

Table 6.9 Experimentation Calculated Metrics ................................................ 100 

Table 7.1 Comparing the two proposed methods ........................................... 110 

Table 7.2 Comparing the malware type detection ratios for the two proposed 

methods .......................................................................................................... 110 

  



 

xii 

 

LIST OF FIGURES 

Figure 2.1 OS Market Share [23] ........................................................................ 9 

Figure 2.2 An Example of a Botnet layout [37] .................................................. 12 

Figure 2.3 Ransomware display messages [38], [39] ....................................... 12 

Figure 2.4 Elk Cloner Poem seen on infected Apple computers in 1981 .......... 13 

Figure 2.5 The evolution of generations of malware over the years .................. 14 

Figure 2.6 Malware sample statistics for the last decade .................................. 15 

Figure 2.7 Relationship between the linker, executable(Image) and loader ...... 16 

Figure 2.8 Generic PE File Structure [48] ......................................................... 18 

Figure 2.9 The PE File details in PEiD .............................................................. 18 

Figure 2.10 PE file stucture [49] ........................................................................ 19 

Figure 2.11 The Cryptographic Hashes of a malware Sample .......................... 21 

Figure 2.12 Calculating the Ssdeep Signature .................................................. 22 

Figure 2.13 Ssdeep Signature Form ................................................................. 22 

Figure 3.1 Stages of presentday Malware analysis ........................................... 30 

Figure 3.2 Virus Total Report of a malicious sample ......................................... 31 

Figure 3.3 Basic String analysis command in a Linux Enviroment .................... 31 

Figure 3.4 File Processing in Anti-virus systems [88] ........................................ 35 

Figure 3.5 Some of the Anti- Vm tricks seen in Peframe [73] ........................... 37 

Figure 3.6 Program Obfuscation ....................................................................... 37 

Figure 3.7 Extract from Zero Access Self decoding Subroutine ........................ 38 

Figure 3.8 Malware sample details packed with UPX (a) and after unpacking (b)

 .......................................................................................................................... 39 

Figure 3.9 Structure of a Packed PE File[100] .................................................. 41 

Figure 4.1 Hex-Dump of entrypoint of file md5- 

a3c5e50c55c901767b0c3b7749a48c9b ........................................................... 51 

Figure 4.2 Peframe Report Extract of the file .................................................... 51 

Figure 4.3 Call Graph of a sample malware ...................................................... 52 

Figure 4.4 Mastiff Work Flow [75] ..................................................................... 53 

Figure 4.5 Pictorial representation of evaluation study Approach ..................... 55 

Figure 4.6 Call Graph (G) Structure .................................................................. 57 

Figure 4.7 Comparison of Obfuscation Detection ............................................. 60 



 

xiii 

 

Figure 4.8 Compile year analysis of the files analysed ..................................... 61 

Figure 4.9 Pyew Report .................................................................................... 61 

Figure 4.10 Peframe report ............................................................................... 62 

Figure 4.11 Mastiff Report ................................................................................ 62 

Figure 4.12 Mastiff Fuzzy Hashing results ........................................................ 63 

Figure 4.13 Similarity Detection Comparison .................................................... 65 

Figure 4.14 Virus Total Detection Analysis of the samples ............................... 66 

Figure 5.1 Peframe errors based on failed file analysis .................................... 69 

Figure 5.2 Malware compile time ...................................................................... 70 

Figure 5.3 The Distribution of the number of sections in the analysis data ....... 71 

Figure 5.4 Top 20 Section Names in analysed sample ..................................... 71 

Figure 5.5 The Section Entropy distribution ...................................................... 71 

Figure 5.6 Top DLLs in the Analysed sample ................................................... 72 

Figure 5.7 Top 20 Anti-debug APIs indentified ................................................. 72 

Figure 5.8 Top 20 Suspicious APIs indentified ................................................. 72 

Figure 5.9 Filenames extracted from the data .................................................. 73 

Figure 5.10 PE file Feature Analysis Component Layout .................................. 75 

Figure 5.11 Pictorial representation of the Heuristic anomaly probabilistic score 

generation module ............................................................................................ 75 

Figure 5.12 Pictorial representation of the MalScore approach ........................ 77 

Figure 5.13 MalScore Malicious and Clean files Score Area curves ................. 80 

Figure 5.14 False and True Positive Detection Rates against the MalScore file 

scores ............................................................................................................... 80 

Figure 5.15 The Malscore ROC curve .............................................................. 81 

Figure 5.16 The detection ratio of the malware types in the test Dataset ......... 81 

Figure 6.1 Old malware and New malware statistics ........................................ 83 

Figure 6.2 The single file Hashes Study ........................................................... 87 

Figure 6.3 The pictorial representation of the system ....................................... 88 

Figure 6.4 Flow chart for Algorithm used to set the HashFlags ........................ 91 

Figure 6.5. Flow chart showing the calculation of the MalHaScore for file 

samples. ........................................................................................................... 95 

Figure 6.6 Result Log showing the Analysis results of 6 different files .............. 98 

Figure 6.7 The Hashes Detection Rates using Dataset B for the final study ... 101 



 

xiv 

 

Figure 6.8 Comparing the individual hashes against the proposed combined 

method for the initial study .............................................................................. 102 

Figure 6.9 Comparing the individual hashes against the proposed combined 

method for the final study ................................................................................ 102 

Figure 6.10 The Combined Hash Score Clean and Malware file Area curves (a) 

Common Factor method and (b) Fuzzy Logic Method from the initial study ... 103 

Figure 6.11 The Combined Hash Score Clean and Malware file Area curves (a) 

Common Factor method and (b) Fuzzy Logic Method from the final study ..... 103 

Figure 6.12 True positive rate vs False positive rate curves for Evidence 

Combination methods ..................................................................................... 104 

Figure 6.13 Precision- Recall curve of the proposed evidence combination 

methods .......................................................................................................... 104 

Figure 6.14 Model F-score for the different score percentage threshold ......... 104 

Figure 6.15 Recall, Precision, Accuracy and F-score Comparison for the 

proposed methodology percentage thresholds ............................................... 105 

Figure 6.16 Malware type detection ratios for the dataset used. ..................... 105 

  



 

xv 

 

LIST OF ALGORITHMS 

Algorithm 5.1 MalScore- Heurisitic scoring ....................................................... 79 

Algorithm 6.1 Algorithm for Populating database of Hashes ............................. 89 

Algorithm 6.2 Algorithm for Hash Comparison .................................................. 90 

Algorithm 6.3 Algorithm for populating Detection Rates .................................... 92 

Algorithm 6.4 Combination of Hashes Based Detection Mechanism ................ 96 

 

  



 

1 

 

CHAPTER 1.  INTRODUCTION 

1.1 Motivation 

The internet has revolutionised the way the world manages information and data 

in academia, industry or individually. The evolution of the internet of things means 

that even the way of life is changing through the integration of technology use in 

everyday activities. With all the positives of having information at the fingertips, 

self-driven cars, smart homeware comes the downside of having compromised 

systems. The internet of things has already proved to be a very successful 

resource of a DDOS attack against KrebsonSecurity website [1] by “Mirai” [2] 

botnet malware. The DDoS attack set the highest record traffic known yet against 

a website on 620Gbps. The same botnet is also known to have been used to 

arguably take Liberia off the internet [3]. Cybercrime which is powered by 

criminals having access to compromised systems and information cost United 

Kingdom businesses over £ 1 billion and United States of America businesses 

over $3.8 billion in 2015 [4], [5]. Having already seen an increase of 200% in the 

last five years [6], cybercrime is expected to cost the world $ 6 trillion by 2021 [7] 

making it one of the most lucrative businesses. One of the biggest banking theft 

heists of 2016 was the $81 Bank of Bangladesh swift attack where malware was 

used to compromise a poorly configured network switch [8] 

Malware is still one of the main vectors used to compromise networks and 

computer systems. With the expected growth in cybercrime, the fight against 

malware as a need in order to build a more resilient cyber space will continue to 

be challenging for both the industry and research community. The statistics where 

almost 600 million malware have been collected in 2016 [10] as of writing this 

report indicate that analysis and thereafter detection of these samples is bound 

to be a daunting task.  

There is a scarcity of cyber security expertise [9], [11] which implies that there is 

not enough skilled people in the world to manage the ever growing cyber 

incidents, later on perform in-depth malware analysis. Automation of the malware 

analysis processes and detection of malware similar to already detected malware 

allows for the reduction of the ever widening gap created by the growing malware 

samples collected [12]
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Many of the anti-malware solutions are fighting to keep up with the evolution of 

malware [13] and there is a continuous looming challenge of  not having malware 

analysis and detection methods that are fast enough. Malware signatures that 

utilise a lot of resources and file scanning as a step in malware detection end up 

requiring a lot processing power [14]. Present day systems are high performance 

and resource-aware and therefore having an anti-malware scanning process like 

sandboxing which requires a lot of time is not optimal in these systems [12] 

especially when dealing with the huge number of samples discovered daily.  

Malware; the ever-evolving threat to the cyberspace, provides an interesting 

challenge and therefore this study was undertaken to find a working solution that 

can strengthen the anti-malware community. For the rest of this chapter, we 

define proposed solutions in section 1.2, the aims and objects in section 1.3, our 

contributions in section 1.4 and scope of the work in section 1.5. We then provide 

an overview of the presentation structure of this thesis in section 1.6. 

1.2 Proposed Solutions 

The growing need for advanced secure systems implies that new, efficient and 

faster malware detection algorithms are required. Therefore, better alternatives to 

present day methods must be developed or existing methods need to be optimised 

with new approaches. Malware analysis and detection has been a topic of interest 

in the research community and a lot of advancements have been achieved in 

many of the malware analysis methods [15]. Unlike signature based detection 

methods, heuristics utilise different features in the malware and have proven to 

be better at unknown malware detection [16]. Heuristic based detection in the 

anti- malware research is used to describe effective algorithms used in malware 

detection which do not necessarily provide an optimum solution [17]. Combining 

multiple features to make a decision is seen in heuristic engines which use 

machine learning with malware attributes to provide improved detection [18]–[21]. 

This work proposes utilising the theory of multiple attribute based decision 

making, evidence combinational mathematical models and heuristic analysis to 

automate and improve malware analysis and detection. We propose measuring 

the malicious intent of a file by attaching a calculated score based on uncertainty 

models and probability scoring. The proposed solutions are: 
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a) We use probabilistic scoring and combine evidence from different 

heuristic anomaly features of PE files to measure the file’s malicious 

intent.  File format anomalies as some of the known heuristic indicators of 

compromise. Although the anomalies have been used in heuristic engines 

as a way of detecting malware [22] , there is no defined approach and 

scoring mechanism that can allow of a more universe file malicious intent 

score. We proposed using probability theory to make an intelligent 

algorithm that scores the file based on known anomaly chances in clean 

vs malicious files.  Using a sample dataset, the anomaly scores are 

calculated and then used on another dataset for validation. CHAPTER 5 

5 details the proposed method in achieving the scoring system. The 

developed algorithm automates the analysis and detection process while 

also attaching a quantifiable metric. The metric is used for better cognitive 

based decision making of the user thus improving their confidence in their 

decision on whether the file is clean or malicious. 

b) We look at statically computed similarity hashes as heuristic feature 

representatives and investigate the effect of similarity hashes in relation 

to malware detection. Statistics from AV- test institute [10] show that only 

12% of malware samples collected by the end of 2015 were new malware 

samples. This implies that similarity of the different sections and the files 

can be a measure of file maliciousness and therefore malware detection. 

The initial stage of triaging the malware to cluster the samples is a well-

known step that normally uses hashing as a methodology. Although 

hashing faces the issue of high false negatives, a combinational approach 

could lead to better results. Our study in chapter 6 focuses on how to 

combine known similarity hashing methods in order to produce effective 

malware detection results. The similarity in the files detected by the 

hashing functions is used as the attribute similarity factor for a sample 

dataset and multiple attribute decision making and evidence combination 

mathematical models are applied to attach a score representing the 

malicious intent of the file. This automates the malware analysis and 

detection process and presents the system user with a quantifiable metric 
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that improves the confidence in their decision making about the malicious 

state of the file. 

1.3 Aims and Objectives 

The main aim of this thesis is to design and implement two heuristic malware 

scoring approaches that make for a more efficient malware detection framework 

in Portable Executable files. Efforts towards achieving this aim led to the following 

objectives: 

• Evaluate three prominent, open source automated malware static analysis 

tools focusing mainly on the analysis of Portable Executable files. 

• Use the best automated static analysis tool to perform a study of PE file 

feature anomalies. 

• Formulate approaches towards providing a malware scoring mechanism 

for improved confidence level in decision making for a standard computer 

user. 

• Design, implement and test a heuristic scoring approach that uses the 

identified anomalies for detection of malicious portable executable files. 

• Identify a fast and light heuristic based similarity hashing functions that can 

be combined for better malware detection rates in portable executable 

files. 

• Carry out an investigation into the effect of the application of evidence 

combinational theory to the hashing analysis for more efficient malware 

detection and design, implement and test an approach that uses these 

techniques for more efficient malware detection. 

1.4 Contributions 

The main contribution of this work is the design of the approaches for a heuristic 

feature based quantification framework for efficient malware detection. The 

process of achieving this main contribution lead to: 

1. An evaluation study of three prominent automated malware static 

analysis tools. This study provides an in-depth analysis of three prominent 

tools and leads to table that compares the various features of the different 

tools so that the reader can make an informed decision on which tool is 

better depending on their requirements. This study also identifies features 
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that are later incorporated into the design and implementation of the 

proposed approaches. Using a dataset of 2620 malicious samples, the 

study provides important statistics that are extracted using the tools and 

are detailed in chapter 4  

2. MalScore: This is the first proposed approach that uses heuristic 

anomalies and attaching a probabilistic score so that the file’s malicious 

intent can be quantified. This approach utilises a combination of Bayesian 

probability theory and the theory of total probabilities to generate the 

anomaly scores. Statically extracted features for Portable Executable files 

are compared malicious files vs the clean executables as a training phase 

in the design of the scoring method.  The resulting file score can be used 

as a detection strategy or as a customised score to filter large datasets. 

Chapter 5 details the design, implementation, testing and analysis of this 

approach. 

3. MalHaScore: This is the second approach and it introduces and 

investigates how different similarity hashing techniques can be combined 

to achieve better malware detection rates. Initially, this study explores 4 

different hashing techniques that are currently used in malware analysis. 

Although each hashing technique produces interesting results 

independently, two evidence combination theory based methods are 

applied in order propose a novel way of combining the results achieved. 

The results achieved show that the detection rates are improved when 

evidence combination techniques are applied. Chapter 6 details the 

design, implementation, testing and analysis of this approach. 

1.5 Thesis Scope 

This work focuses on the use of automated static analysis and the features 

extracted to design and implement approaches that can provide efficient malware 

detection. This implies that dynamic analysis based approaches are not covered 

and are outside the scope of this work.  

Using file heuristic features requires that file structure is uniform so the scope of 

this work covers only Portable Executable (.exe) files. We focus on designing 

approaches for improving the malware detection rates in PE files with the 

expectation that these approaches can be replicated for other file formats. 
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Replication of the approaches for other file types is outside scope and is not 

covered herein. 

The implemented methods are tested on a dataset of known malicious files and 

clean files that are specified in section 2.5.2. Since our objective was to improve 

malware detection through scoring the malicious intent of the file, tests using a 

different dataset should achieve similar malware detection trends but different 

results. 

1.6 Thesis Structure 

The rest of this thesis is structured as follows: 

• CHAPTER 2. BACKGROUND: This chapter covers the introduction to the 

world of malware by briefly discussing the various malware types, the 

evolution and the number growth trends seen in the last decade. It then 

also discusses the Portable File format structure, the evaluation methods 

employed in this study and the dataset preparation process.  

• CHAPTER 3. LITERATURE REVIEW: This chapter discusses malware 

analysis techniques, the evasion techniques used by present day malware 

to thwart analysis and detection and the known malware detection 

techniques. It then delves into relevant recent literature related to the study 

that forms the foundation of the work presented in this thesis. 

• CHAPTER 4. EVALUATION OF AUTOMATED STATIC ANALYSIS 

TOOLS FOR MALWARE DETECTION IN PORTABLE EXECUTABLE 

FILES: Three new automated static analysis tools are evaluated in this 

chapter. The intention is to identify the tool that extracts information 

needed for the study. The work presented in this chapter provides insight 

into how the evaluation was carried out, the results achieved, observations 

made and how the challenges faced were overcame.  

• CHAPTER 5 MALSCORE: AN ANORMALY HEURISTIC FEATURE 

BASED PROBABILISTIC SCORING METHOD FOR DETECTION OF 

MALICIOUS PORTABLE EXECUTABLES: This chapter covers the 

design, implementation and analysis of the first proposed approach; 

MalScore. The details pertaining to all the steps taken to achieve and test 

the proposed scheme are discussed in detail and the results are presented 

and analysed. Arguments for this approach are discussed in the chapter. 
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• CHAPTER 6 MALHASCORE: MALICIOUS PORTABLE EXECUTABLE 

STATIC SCORING METHODOLOGY USING EVIDENCE 

COMBINATIONAL THEORY WITH HEURISTIC FEATURE 

CALCULATED HASHES.: This chapter discusses in the detail the design, 

modelling, implementation and testing of the second approach proposed. 

It further discusses the analysis results achieved for this approach and the 

reasons as to why this method works. 

• CHAPTER 7 CONCLUSION This chapter presents the conclusion of the 

thesis and the known limitations of the proposed approaches. We also 

discuss some of the interesting areas that have been identified for future 

work in association to this study.  



 

8 

 

CHAPTER 2. BACKGROUND 

Malware, short for Malicious software is a program code that is hostile and often 

used to corrupt or misuse a system [12]. Introducing malware into a computer 

network environment has different effects depending on the design intent of the 

malware and the network layout. The internet and the worldwide web have given 

great advancement in how society communicates and the face of business. This 

has also given rise to the number of propagation avenues available to malware. 

Introduction of malicious code in one node can create a chain reaction across all 

the nodes accessible through the network, the node seats on. With organisations 

and countries heavily relying on network technologies, the commercial value of 

computer networks implies that exploitation of the vulnerability of the business 

network can cripple its operations and provide access to intellectual property and 

personal information to cyber criminals. This creates a commercial opportunity 

for malware and anti-malware ventures and therefore it is no surprise that it is 

estimated that cybercrime is expected to raise. 

Malware has been a persistent problem across all computer networks and 

detection of malware is quite vital in securing a networking environment. The 

common used form of malware detection is signature based detection where a 

malware “signature” is constructed from unique patterns and characteristics 

derived from the malware code and the file contents. This is the technique used 

in most commercial anti-malware systems and the malware signature is relied 

upon because already discovered malware always tend to keep in circulation [22]. 

This implies that if an analysed malware is identified to have a form of an already 

known signature in its characteristics, it can be isolated or the program can be 

deleted from the system without knowing what other system changes it could 

have targeted. 

With more than 91% [23] of computer users still using Windows Operating 

Systems based computers, more efficient detection of malicious files in the 

windows environment is of paramount importance. Moreover, the introduction of 

Windows 10, the cross-platform compatibility across different devices leads to the 

expectation that the analysis of the PE structure will play a big role in future 

endpoint security as the Internet of Things (IoT) evolution takes off.
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Figure 2.1 OS Market Share [23] 

The fact that malware is software means that it follows a standard format required 

for it to be executed on the target. Portable Executable (PE) is the format for 

Microsoft binary executables and is very well document in [24]. Heuristic based 

detection uses distinct file features identified to be specific to malware for more 

efficient malware detection like the file compile time. Over the years, malware has 

evolved to add detection evasion methods also called obfuscation techniques. 

This has led to the introduction of semantic based detection where malware is 

detected based on the information obtained during the behavioural analysis of 

the malware sample. This chapter explores malware as an evolving topic and the 

structure of the Portable executable file with respect to heuristic based malware 

detection which is the focus of this study. 

2.1 Malware Overview 

Malware is defined as "any code added, changed or removed from a software 

system in order to intentionally cause harm or subvert the intended function of 

the system"  [25]. The fact that malware can bring down a system which can 

cause loss of information and therefore money as well as life [26] represents a 

big threat to technology advancements. Recent developments in computer 

systems have seen a corresponding if not higher growth in variants of malware 

and their functionality. To understand what the malware is intended for in the 

system therefore identifying it, there is need to understand what class it falls 

under. The classification of malware depends on execution characteristics of the 

program. Malware is also classified depending on its payload, how it exploits or 

makes the system vulnerable and how it propagates [27]. This enables the 

malware to be subdivided into different types as further discussed below. 
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Virus  

A virus is self-replicating malicious program. It exists as an executable and 

spreads by copying itself to other host systems. It is passive and needs to be 

transferred through files or media files or network files. Depending how the 

complex the code is, it can modify the replicated copies of itself [26], [28], [29]. 

Viruses can be used to harm host computers and networks, steal information, 

create botnets, render advertisements, and steal money among other malicious 

activities. 

Worm  

This is a self-replicating and active malicious program that can spread over the 

network by exploiting various system vulnerabilities.  It uses targeted 

vulnerabilities in the operating system or installed software. It contains harmful 

routines but can be used to open communication channels which serve as active 

carriers. The Worm consumes a lot of bandwidth and processing resource 

through continuous scanning [28] and makes the host unstable which can 

sometimes cause the system to crash. It may also contain a payload that are 

pieces of code written to affect the computer by stealing data, deleting files or 

create a bot that can lead the infected system being part of a botnet. While viruses 

require human activity to spread, worms have the ability spread and replicate 

independently. 

Trojan horse  

Commonly referred to as Trojan, this is a program that presents as a legitimate 

software which when downloaded and executed embeds malicious routines or 

files on the host [29], [33]. In most cases, the Trojan horse when executed will 

install a virus or may have no payload. It cannot self-replicate and relies on the 

system operators to activate. It can however give remote access to an attacker 

who then can perform any malicious activity that is of interest to them. Trojan 

horse programs have different ways they affect the host depending on the 

payload attached to them and are usually spread through social engineering [30]. 

Spyware 

This is a malicious program that uses functions in an operating system with the 

intention of spying on user activity. They sometimes have additional capabilities 

like interfering with network connections to modifying security settings on the 
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system on the infected host. They spread by attaching themselves to legitimate 

software, Trojan horse or even taking advantage of known software 

vulnerabilities. Spyware can monitor user behaviour, collect keystrokes, internet 

usage habits and send the information to the program author [31]. 

Adware 

Adware which is short for advertising supported software, automatically delivers 

advertisements seen especially in website pop-up ads and displayed by software. 

Most are designed to serve as revenue generating tools by advertisers. Some 

adware may come packaged with spyware which then makes this very dangerous 

as it can track user activity and steal user information [31], [32]. 

Root Kit 

This is a program that employs a set of tools to avoid detection in a system. The 

tools are very advanced and complex programs written to hide within the 

legitimate processes on the computer infected therefore are very invasive and 

are difficult to remove. They are designed with the capability of taking full control 

of the system and gaining the highest privileges possible on the machine among 

other possible malicious activities [22], [28]. Because of the evasion techniques 

used by rootkits, most security vendor solutions are not effective in detecting and 

removing them and therefore, their detection and remove rely heavily on manual 

efforts. These may include but not limited to monitoring computer system 

behaviour for abnormal activities, storage dump analysis and system file 

signature scanning. 

Bots 

Bots are programs designed to perform specific operations. Bots are derived from 

'robots' which were first developed to manage chat channels of IRC- Internet 

Relay Chat a text based communication protocol that appeared in 1989 [33]–[36]. 

Some bots are used for legitimate purposed like video programming and online 

contest among other functions. Malicious bots are designed to form botnets. A 

botnet is defined as a network of host computers (zombies/bot) that is controlled 

by an attacker or botmaster as seen in Figure 2.2. Bots infect and control other 

computer which in turn infect other connected computers thus formulating a 

network of compromised computers called a botnet. Bots are very commonly 

used as spambots, DDOS attacks, webspiders to scrape server data and 
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distributing malware on download sites. CAPTCHA tests are used by websites to 

guard against bots by verifying users as humans. 

 

Figure 2.2 An Example of a Botnet layout [37]  

Ransomware 

Ransomware is a program that infects a host or network and holds the system 

captive while requesting a ransom from the system/network users. The program 

normally encrypts the files on the infected system or locks down the system so 

that the users have no access. It then displays messages as seen in Figure 2.3 

that force the users to pay to have access to their systems again. 

    

Figure 2.3 Ransomware display messages [38], [39] 

Ransomware uses the same propagation means as a computer worm to spread 

and therefore user awareness and system updates are important mitigation 

measures. 
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2.1.1 Evolution of Malware 

Malware has evolved from the days when it was an exciting prank/experiment 

gone wrong or uncontrolled to now when malware is used for commercial gain by 

exploiting and stealing user information. There are various documented instances 

of malware created within a laboratory setting like the 1962 Darwin game, 1971 

Creeper, 1974 Rabbit Virus and 1975 Pervading Animal [28]. However, all the 

mentioned malware were kept within a laboratory environment and never 

escaped to the wild. The first virus known to have been able to escape its creation 

environment was the Elk Cloner introduced in 1981, six years after the first 

personal computers [40]. Elk Cloner infected Apple DOS 3.3, spread by attaching 

to disks introduced to the system and once triggered, it run a poem shown in 

Figure 2.4. After the success of this prank gone wild, Brain the first Microsoft PC 

virus was seen in the wild in 1986 [28] and like Elk Cloner, it was more annoying 

than harmful. However, it is the first virus known to conceal its existence on the 

disk thus evade detection.  The next malware that would get out of hand  and 

change the propagating properties of malware would be the Morris worm written 

in 1988 as an experimental, self-propagating, self-replicating program which was 

released on the internet [41].  

 

Figure 2.4 Elk Cloner Poem seen on infected Apple computers in 1981 

In 1990, Yisreal Radai coined the term malware, short for malicious software that 

would thereafter be used to as a generic umbrella term for all software with 

undesired intent within a system [34]. The following decades saw an evolution in 

malware that is best defined as a two-dynamic evolution; the growth in complexity 

and malware sample numbers.  
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Figure 2.5 The evolution of generations of malware over the years  

The growth in complexity is defined by the different generations of malware seen 

over the years [28], [30], [42] shown in Figure 2.5: 

• The first generation (DOS Viruses) of malware mainly replicate with the 

assistance of human activity.  

• Second generation malware self-replicate without help and share the 

functionality characteristics of the first generation. They propagate through 

files and media. 

• Third Generation utilise the capabilities if the internet in their propagation 

vectors leading to big impact viruses. 

• Fourth Generation are more organisation specific and use multiple vectors 

to attack mainly anti-virus software or systems due to the 

commercialisation of malware.  
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• Fifth Generation is characterised by the use of malware in cyberwarfare 

and the now popular malware as a service. 

These generations group the various types of malware that were earlier identified 

and described. Each jump in generation is characterised by increase in 

complexity of the malware seen and more propagation vectors.  The complexity 

in the malware discovered over the years always seem to follow the evolving 

trends in technology [28]. With the commercial value attached to having access 

to exploited systems or the ability to infiltrate a network, the malware writers do 

not want their malicious creations detected, analysed and rendered useless. This 

has led to the birth of malware samples which are very evasive when it comes to 

their analysis and detection. The known methods seen in malware to evade 

analysis and or detection are discussed in the next chapter. 

The evolution of the malware sample numbers is best reflected by the number of 

malware samples collected by AV-test institute over the last decade as shown in 

Figure 2.6 [43]. From the trends seen in the graph, although the total malware 

samples collected are growing in number, the percentage of the total that is new 

malware shows a decreasing trend over the last 3 years. This percentage shift 

enables us to predict that if old malware can be detected and eliminated from the 

samples automatically, then the analysis time spent on the discovered samples 

can be greatly reduced. 

 

Figure 2.6 Malware sample statistics for the last decade 
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2.2 Portable Executable File Format (PE) 

The Portable Executable (PE) format is an independent file structural format used 

for 16 bit and 32 bit windows systems. Pietrek [44] best describes the PE file 

format in a construction analogy “a PE file is like a prefabricated home. It's 

essentially brought into place in one piece, followed by a small amount of work to 

wire it up to the rest of the world (that is, to connect it to its DLLs and so on).” PE 

file format were introduced as part of the original specifications for Win32 with the 

release of Windows NT 3.1 in 1993 and was derived from the earlier Common 

Object File Format (COFF) [44]. It allows the Windows Operating system loader 

to manage the compiled executable code.   

The PE file types are referred to as image files in [24] and the two types; DLL and 

EXE files are solely differentiated at the semantic level. DLL (Dynamic- Link 

Library) type files are used to export data or functions that other programs use. 

The functions are defined based on their intended use; internal or exported [45]. 

Internal functions are used with the DLL where they are defined while exported 

functions are used by other modules as well as with the DLL in which they are 

defined.  A modular format provided by the design of the DLLs allows for easier 

modification and reuse in the ever evolving windows environment [24]. DLLs have 

various file extensions; .sys, .dll, ocx, .cpl, .fon, and .drv  EXE type files (.exe) 

when launched run within their own process, not loaded into existing processes 

of other programs unlike DLL type files [46].   

The creation and usage of EXE and DLL files is defined by the linker and loader 

as shown in Figure 2.7. 

Preprocessor

Source Code

Libraries

CompilerPreprocessed Code

Assembler

Assembly Code

Linker

Object Code

Loader Executable Code

Debugger
 

Figure 2.7 Relationship between the linker, executable(Image) and loader 
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A linker is a process that collects and combines different pieces of data and code 

into an executable file that can be loaded into memory. The linker combines 

libraries and object files into an executable code /image file. This processes leads 

to an image also called the portable executable file [24]. The loader is the 

program that loads the executable into main memory and an example is the 

windows installer.   

Being Relocatable is one of the most important characteristics of the PE type files 

and this means that addressing during the loading process and therefore how 

internal address is handled in an PE file is important [46].  The addressing of the 

PE file is defined by the physical address, Base Address and the Virtual 

Addresses; relative or absolute.  Physical addresses are used to access PE file 

parts that must be read from the storage disk. The base address stored in the 

field called ImageBase is the address of the first byte where the image file is 

loaded into memory [47]. The address specified in the ImageBase is always the 

preferred address although it is possible during the loading process of the image 

that this address might not be available in memory. This leads to the relocation 

of the module where another base address is chosen [46]. Relative virtual 

addresses (RVA) are offset addresses into the file that are used while the image 

file is loaded in memory.  The loader calculates the required absolute address for 

the specific instruction by adding the base address to the RVAs. Using RVAs that 

are independent of the base address allows for the relocation of the image without 

having to re-calculate all the addresses. Although Virtual addresses are defined 

in [24] as absolute in-memory addresses , they are actually used relative to the 

BaseImage specified address. Addressing is important because malicious files 

tend to have anomalies in PE address field as intentional malformations, 

obfuscations mechanisms or malicious intent. These can be used as detected file 

vulnerabilities or indicators of compromise in malware prevention and detection. 

The PE file Format has evolved over the years of the MS-DOS to the Win32 

specifications to the now Win64 specification. Only a few changes have been 

introduced with each new specification because there is always need for 

compatibility across the operating systems and it makes sense for developers to 

use already existing and working file formats. The basic PE file format is best 

defined by Figure 2.8. 
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Figure 2.8 Generic PE File Structure [48] 

 

Figure 2.9 The PE File details in PEiD 

This known specification of the PE file allows for deeper file analysis based on its 

structure. For example, Figure 2.9 shows a file’s structural details using PEiD; 

one of the many static parsers for the PE file format. However, the extract of the 

PE file details in PEiD in Figure 2.9 is quite limited based on the PE file detailed 

structure. There is more to explore in the PE file format and to do that, there is 

need to understand the standard structure as discussed in the next section. 

2.2.1 PE Standard Structure 

The PE Standard structure is a collection of different subdivisions which are 

necessary because the memory manager treats each differently when the file is 

loaded. Each subdivision contains different file content that are important for 
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proper execution of the file. A normal PE standard file consists of the MSDOS 

Stub, PE File Header, and sections. Any other optional data is appended to the 

file also called an overlay [24] . Some applications use the overlay to store data 

without having to worry about the PE format or sometimes to prevent the data 

from being loaded into memory by the operating system.  

As seen in [24], [44], [47], the PE file structure shown in Figure 2.10 starts with 

the MS-DOS Stub which is an application that has the ability to run in MS-DOS 

and is mainly supported for backward compatibility. The stub contains the file 

format signature; “MZ” in its magic feature and prints out the message “This 

program cannot be run in DOS mode“ if there is an attempt to run the image in 

DOS. This stub is ignored when the program is loaded in operations systems of 

higher versions. Next in the format is the PE File Header which consists of the 

PE signature (‘PE\0\0’), the COFF File Header, the Optional Header, and the 

Section Table. Compatibility of the PE file format to the operating system is 

specified by the certain signatures found within the file structure and always 

defined at the very beginning of the file. The PE signature is placed after the MS-

DOS-Stub and its offset is defined in the e_lfanew field of the MS-DOS Stub.  

 

Figure 2.10 PE file stucture [49] 
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After the PE signature, the COFF file Header is located at the fixed offset relative 

to the start of the PE signature. Some of the features in this subheader are 

important in terms of anomaly analysis as a means for malware detection. Like 

all the substructure before, one of its features helps define the next chunk; 

SizeofOptionalHeader defines the size of the next subheader. The Optional 

Header which appears right after the COFF file Header is subdivided into 3 import 

chunks; Standard COFF Field, Windows Specific Fields and Data Directions. 

Some of the fields in these different subdivisions are later examined for the 

possibility to be heuristic indicators of compromise in case of detection of 

anomalies. After the optional Header, the Section table that contains the section 

headers; each defining the properties of related section found within the PE 

image file. 

The sections as a chunk appear next and are subdivided based on the sections 

contained with the PE file. Each section defined as ‘basic unit of code or data 

within a PE or COFF file’ contains information specific for certain applications but 

not relevant to all. The naming convention of the sections allows for identification 

of the purpose of the section. However, since this naming convention is not strict, 

many malicious files and some legitimate packers and compile do not follow it. 

Misuse of section names is one of many anomalies is an interest in heuristic 

based detection despite the possibility of high false positives. Some of the section 

names that follow the standard convention are .text - a section that contains the 

executable or object code, .data- a section which consists of variable, uninitialized 

data, .bss – this section is typically used for program-wide initialized, global data, 

.rsrc – the resource section that consists of the embedded items.  

2.3 Hashing algorithms 

Hashing algorithms are computed digests of a file that are unique to the sequence 

of the file binary contents and structure [50].  

2.3.1 Cryptographic Hashing algorithms 

The cryptographic hashes like MD5, SHA1 and SHA256 shown in Figure 2.11 

have been very popular in malware identification for integrity checking [51].  Since 

they are so unique, they are used when there is a need to have 100% match in 

the compared files as seen on most legitimate software distribution websites. An 

exact match of the file download shows that the file has not been compromised 
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and is, therefore, safe before it is executed [22]. Whilst this is a safety measure 

that works for files where care is taken during file installation, sometimes, files 

are downloaded and installed in a hurry or without the knowledge of the computer 

user.  

 

Figure 2.11 The Cryptographic Hashes of a malware Sample 

These are the cases where detection of malicious or compromised files is very 

important. Although the different file hash types might not be very useful in such 

cases since a simple bit change in the file affects the hash digest computed, they 

have been repurposed and become useful in other methods.  For example, 

section md5 and SHA hashes can be used to detect types of packing [52] and in 

some cases classification of malware families [53]. For this study, these specific 

hashes are not used, however, the work focuses on fuzzy hashing and feature 

specific file, section hashes that are further discussed in detail in the next 

subsections. 

2.3.2 Fuzzy Hashing algorithms 

Fuzzy hashing algorithms are designed to compare two different files and 

produce a percentage measure that represents the similarity between the files 

[54]. In this work, we review fuzzy hashes of interest that have been designed for 

malware detection and used in different studies focused on malware classification 

and detection. 

2.3.2.1 Ssdeep Hash  

Also known as Context Triggered Piecewise Hashing(CTPH) [54] or fuzzy 

hashing was first introduced in anti-spam research to detect similarity in files. 

Ssdeep one of the most famous methods of fuzzy hashing is a freeware, open 

source program that generates fuzzy hashes that when compared one against 

another, a similarity percentage score between the files is returned with a very 

high confidence of 99. The original idea of fuzzy hashing was developed by 
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combining the piecewise hashing (Fowler/Noll/Vo –FNV hash) and the rolling 

hashing to produce a none cryptographic hash that is then used by a comparison 

algorithm that uses Levenshtein Distance to compare any 2 generated hashes 

for sequence similarity [50], [55]. The score is normalised to a range of [0-100] 

and the 50 is noted to be a reasonable threshold for a good match for spamsum 

algorithm.  

 

Figure 2.12 Calculating the Ssdeep Signature 

 

Figure 2.13 Ssdeep Signature Form 

Kornblum [54] adopted it for Ssdeep for the purposes of forensic science and this 

application was extended to malware by the Mandiant cybersecurity firm with the 

purpose of providing the malware analysts [56] with information to guide their next 

step in the file analysis. An Ssdeep signature of a file takes the form shown in 

Figure 2.13 which also includes an extract of an Ssdeep hash of a file. When two 

hashes of two different files are compared, a similarity percentage score between 

the files is returned with a very high confidence of 99.  

It is now a very crucial step in static analysis with many analysis tools attaching 

this hash next to the cryptographic hashes in any malware analysis report. This 

string is used to provide the similarity percentage [0-100] when compared with 

another hash from another file. The percentage of similarity attached to any two 

files can be sometimes the justification why the files are the same or in the same 

family of malware. In this work, the file Ssdeep hash and the resource section 

Ssdeep hash are considered. 

Blocksize: Block_Signature:Double-Block_Signature 

6144:tkDtqNp95Ltuj5K2gvuHqeYPYg31eaJq1DWBEU/e:utUpDtqKmw/LqJW 
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2.3.2.2 Imphash  

First proposed by Mandiant cybersecurity firm [57], Imphash   is a hashing 

method that is calculated from the digest of the import section of the executable 

file. With many researchers focusing on the imported APIs as a way of 

understanding how the file would interact with the system based, the Import table 

which holds the APIs under traditional conditions provides added insight into the 

expected behaviour of the file. Its algorithm is implemented following these 

stages: 

• Extract the structure of the PE file. 

• Populate the imports in the order {API, Function (dll or sys or ocx)} for APIs 

found. 

• Return the MD5 digest of the import strings populated. 

Imphash matching allows the analyst to cluster malware based on the order and 

the contents of the import table. This means that a change of order in the imports 

in table compromises this hash value and packers can also be used to overcome 

this hash as a detection method since the import table is sometimes hidden. 

However, Imphash is still very useful considering that most malware share some 

common behaviour on how they interact with systems which allows for clustering 

and detection of similar structured malware. Imphash has been incorporated in 

many static analysis tools like VirusTotal.com, Peframe and Pefile among others.  

2.3.2.3 PeHash  

It is a function that generates the binary cryptographic hash value of the structural 

data found in the file header and executable’s sections [58]. Apart from the 

structure of the file, it also uses bzip2 compression ratio as an approximation for 

Kolmogorov complexity for obfuscated data in the sections. With the possibility 

that some malware repeat the use of specific encryption techniques, different 

instances of the malware sample can result in the same Kolmogorov complexity 

thus creating a clustering mechanism. The algorithm first creates 2 classes of 

hash buffers; global properties and Section hashes buffer. The structural features 

whose hash is included the calculation of the hash buffers in Table 2.1. 
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Hash Buffer Structural Features used 

Global properties Image Charactersitics, Subsystem, Stack Commit 

Size and Heap commit size. 

Section Virtual Address, Raw Size, Section Characteristics 

Table 2.1 PE file features included the PeHash Calculation 

The bzip2 compression ratio for each section is included in the calculated 

section’s hash buffer. The PeHash that is the result used is the SHA1 value of 

the overall hash buffer of the file. The analysis of this hash shows that this metric 

hash provides good clustering matches for instances of similar polymorphic 

malware samples. PeHash has not been fully extended into most static analysis 

tools since it is file type specific. However, since this work focuses on PE type 

files, this hash is considered.  

2.4 Evidence Combinational Theory Methods. 

These are methods used for decision support when there is uncertainty in the 

data being used to make the decision [59]. The introduction of uncertainty works 

well for malware detection as with each new sample analysed, there is always a 

degree of ignorance. This is mainly true because each file is deemed non-

malicious until confirmed to be malicious. In malware analysis, analysts are more 

likely to obtain uncertain information from different analysis methods. Based on 

their expertise, they make decisions on the malicious status of the file. Evidence 

combinational theory provides a way to automate this process. If there are two 

different pieces of evidence with two different degree of belief (X with Degree x 

and Y with degree y) that support the hypothesis (M) that the file is either 

malicious or not, the result heavily depends on the degree of belief placed on the 

different pieces of evidence. Methods of how to combine the different evidence 

is what is needed to be applied in the systems to make better informed decisions 

about how malicious the file is. However, with the need to keep the already 

designed systems working as they are modified to do better, there is need to look 

at building the frameworks using the existing and new tools to keep the malicious 

files out of the computing systems. In this study, likelihood of a file being malicious 

is based on different results of the hashing analysis. Using the fuzzy set union 

operators T-conorms introduces logical connectives to design the reasoning 
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system [60] based on the degrees of belief. Strict Archimedean t-conorm are used 

because they can approximate every continuous t-conorm that takes the value in 

the range [0-1] [60]. This section discusses the two identified methods; fuzzy logic 

and the certainty-factor model that can be used to provide mathematically 

supported uncertain based decisions.  

2.4.1 Fuzzy Logic  

It is used in decision making where there is no deterministic data on which to rely 

the decision. The theory based on fuzzy sets was introduced in 1965 [61]and the 

resultant the fuzzy logic approach follows that the end result is only true if and 

only if either of the support evidence is true. Considering the initial hypothesis of 

Maliciousness (M), the degree in belief of this hypothesis using fuzzy logic 

approach defines the function: 

x*y in M         (2.1)  

Using the important class of “strictly Archimedean” t-conorms of fuzzy logic [62] 

the algebraic sum is given by: 

 
yxyxyx 

         (2.2) 

This is the sum that used to assign a new percentage belief on the overall degree 

of belief in the hypothesis.  

2.4.2 The Certainty Factor model  

A reasoning method that manages uncertainty in rule based systems which was 

developed in 1975  for MYCIN expert system [63]. MYCIN was a rule based 

expert system that was designed to diagnosis infections due to bacteria [64]. To 

compute the overall belief in the hypothesis, an expert represents the uncertainty 

in the rule by using a single Common Factor (CF) for every rule. The CFs work 

as the degree of belief attached to each rule. Following the T-conorms, the 

degree of belief in the overall hypothesis using two supporting evidence is always 

higher or equal to the degree of belief in M obtained from one piece of evidence 

[65].  Using the notation defined, the overall belief is given by:  

yx

yx
yx






1           (2.3) 
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2.5 The Challenge of Evaluating Anti-Malware Solutions 

Building an “anti-malware algorithm” that perfectly determines whether a PE file 

is malicious or not with 100% accuracy [66] is challenge that is yet to be 

overcome.  To evaluate that the designed methods work, they should be trained 

and tested by a dataset. In this section, we discuss our dataset preparation and 

the evaluation metrics used to validate the designed systems. 

2.5.1 Proposed solutions evaluation method 

In this study, we use the binary classification matrix to test the proposed solutions. 

Evaluating the proposed algorithms follows the same approach where the 

achieved detection rates are calculated using the confusion matrix in Table 2.2. 

The objective is to achieve high true positive detection rates while keeping the 

false positive detections very low [43]. Therefore, the confusion matrix based 

metrics are computed for all the proposed algorithms to evaluate the 

effectiveness of the proposed methods. Based on the metrics achieved, the 

proposed method is analysed and discussed. 

                                     Analysis Results 

Actual 

Sample 

State 

 Malicious Clean 

Malicious True Positive(TP) False Negative (FN) 

Clean False Positive (FP) True Negative (TN) 

Table 2.2 Confusion Matrix 

The options in the confusion matrix describe the different detection rates in the 

system and metrics are defined as [67]: 

 True Positive (TP): files that form part of the malicious dataset that are identified 

by the method as malicious.  

 False Negative (FN): files that form part of the malicious dataset that not flagged 

as malicious by the method.  

True Negative (TN): files that form part of the clean files dataset that not flagged 

as malicious by the method. 

 False Positive (FP): files that form part of the clean files dataset that are flagged 

as malicious by the method wrongly.  

False Positive Rate (FPR): a measure of the negative samples flagged as 

positive. 
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FPR = FPTN

FP

         (2.4) 

Recall/ True Positive Rate: a measure of the actual positive samples detected.  

Recall =    FNTP

TP

        (2.5) 

Precision/ Positive Predictive Value (PPV): a measure of the actual positive 

samples for all the positive detections.  

Precision/ PPV =  FPTP

TP

        (2.6) 

Accuracy: a measure of the true detections. 

Accuracy (ACC) = FNFPTNTP

TNTP





     (2.7) 

F1 score is defined as the harmonic mean of precision and recall and calculated 

by: 

F1     =     RecallPPV

RecallPPV



2

                           (2.8) 

2.5.2 Dataset preparation 

In training and evaluating anti-malware solutions, there is need to test them 

against malicious files and clean files to achieve the best true positive vs false 

positive trade-off. The dataset of choice in our experiments a set of malicious files 

and a control dataset made up of clean files.  

Dataset Total Files 

Malicious files 104528 

Clean files 1638 

Table 2.3 The Experiment Dataset 

Malware dataset samples were downloaded from different online repositories, 

captured using our own honeypots over a period and downloaded from the 

malware repository at Nettitude Ltd, UK. All the collected malicious files (104528) 

were run through ClamAv engine version 0.99.2 [68]  to ensure that they were all 

indeed malicious files. The malware family distribution datasets used in the study 

extracted from the ClamAV scan results are as shown in Table 2.4. The clean 

files were collect from fresh new installations of Windows XP, Vista, 7, 8 and Win 

10 by running a customised batch script to collect all .exe files.  The total dataset 
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is shown in Table 2.4 Malware type distribution in the Malware Dataset and this 

dataset subdivided into various sub datasets per the requirement of the algorithm 

designed and under test. 

Malware Type Percentage Malware Type Percentage 

Trojan 66.84% Dropper 0.65% 

Adware 22.30% Virus 0.29% 

Worm 9.03% Spyware 0.11% 

Downloader 0.71% Exploit 0.08% 

Table 2.4 Malware type distribution in the Malware Dataset 

2.6 Chapter Summary 

This chapter has introduced the world of malware by briefly discussing the various 

types, the evolution and the number trends of malware seen in the last decade. 

We then discuss the Portable File format structure, the hashing algorithms, 

evidence combinational methods, the evaluation methods employed in this study 

and the dataset preparation process. This chapter has provided the background 

information to the study carried out in this thesis. The next chapter will review the 

literature works that were explored during this study.
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CHAPTER 3.  LITERATURE REVIEW 

Present malware detection especially commercial anti-malware solutions 

struggle to keep up with the evolving landscape of malware [69]. Despite the 

various breakthroughs in malware detection research, it is always a game of 

“catch me if you can” with malware writers deploying new techniques to thwart 

the devised analysis and detection methods [70]. Malware use various 

techniques in order to survive as long as possible in the wild thus creating more 

revenue for the writers [71]. The anti-malware community both in the industry and 

academic continue to build systems that are targeted at fighting malware as a 

way of ensuring that our cyberspace is more resilient. In this chapter, we review 

the known malware analysis techniques, the various evasion techniques 

observed in malware samples and malware detection techniques.  Applying 

selective reference to existing literature on malware detection, we present an 

extensive review of previous research work using heuristic based detection as 

defined by the scope of study. 

3.1 Malware Analysis Techniques 

Malware analysis describes how information about a malware sample is 

gathered. When a malicious PE sample is discovered in the wild or on a machine, 

it is usually an executable which has been compiled and therefore presented in 

machine language [30]. The main goal of malware analysis is to extract as much 

information from the discovered sample. This information is used to understand 

the malicious threat associated with the sample in order to contain the damage, 

reverse it where possible and build a method to guard systems against future 

infection by the same type of malware [11]. There are two types of analysis; static 

and dynamic which can be carried out at a basic level or advanced level based 

on the tools and methods used. These two can be combined in various stages of 

malware analysis for optimum result. We adopt and define malware analysis 

based a combination of the 4 stages of malware analysis proposed by Zeltser 

[72] and common analysis strategies used in software analysis as shown in 

Figure 3.1. The skill level required in the analysis stages increases with increase 

on the vertical axis. 
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This multistage analysis allows for the analyst to stop at any of the four stages as 

long as they can make a conclusive decision on the file malicious status; whether 

malicious or benign. After fully analysing the malware, its signature can be 

modelled so that it can be used in future to detect similar malware in other 

systems. 

Reverse Engineering

H
ar

d
e

r Dynamic Analysis

Basic Static Analysis

Full Automated 
Analysis

 

Figure 3.1 Stages of presentday Malware analysis 

3.1.1 Fully Automated Analysis 

Today, the landscape of malware analysis has evolved due to the development 

and release of open source, online and or readily available automated malware 

analysis tools. Automated static analysis tools like Peframe [73], Pyew [74] and 

Mastiff  [75] provide sample analysis reports very easily that can help a malware 

analyst with the much needed initial results. They are limited by the requirement 

that the user should learn how they are used and the requirement to step up a 

simple analysis laboratory.  Automated dynamic analysis tools like cuckoo [76], 

Anubis [77] and ThreatExpert [78] among other provide malware analysis reports 

on submission of the malware sample without the need for a laboratory.  

However, some of the reports require specialised skill and knowledge to full 

comprehend and therefore can be quite limiting to a user. A tool like VirusTotal 

[79] that uses over 50 antivirus engines to analyse uploaded malware samples 

provides a free report after analysis. Sometimes, the reports from these 

automated systems can lead to very conclusive decisions about the malicious 

status of the file. 
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Figure 3.2 Virus Total Report of a malicious sample 

3.1.2 Basic Static Malware Analysis 

Static Malware analysis is when the malware is examined without executing it 

[30]. Many automated static analysis tools are available and although we include 

them in the full automated analysis stage, their main purpose is to perform static 

analysis.  The tools use known syntax or structural properties of the malware 

code to extract information from the file. Sometimes, an analyst uses the 

conventional command line based analysis to extract information. The 

information collected during this type of analysis is very simple and not always 

sufficient for a conclusive decision on the malicious intent of the file. It is however 

advised to start with this type as it can provide information to direct the next step 

in analysing that specific malware sample [11]. One of the basic static malware 

analysis methods is string analysis in Figure 3.3 

 

Figure 3.3 Basic String analysis command in a Linux Enviroment  
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The extracted information is analysed for any interesting information that might 

lead to understanding its intent like, APIs, URLs, IPs, Passwords and usernames 

to mention but a few. This information can be used for detection signatures. 

However, analysis evasion techniques like packing and encryption normally lead 

to this analysis step providing incorrect information or information that is not 

useful. 

3.1.3  Dynamic Malware Analysis 

Dynamic Malware analysis involves analysing the program while it is running on 

a system [80]–[82]. The malware is run in a “safe” and controlled environment 

also called sandboxing to avoid transference of the malware to other systems 

or networks.  

Basic dynamic malware analysis involves observing how a collected sample 

interacts with system. Normally, virtualisation is used where a snapshot of the 

original state of the machine is taken, the malware is then introduced into the 

system and executed. The new state and the original state are compared for 

changes. The observed changes are then used to remove the infection from 

infected systems and/or modelling effective signatures. Like basic static malware 

analysis, it is an important initial step of malware analysis though it does not 

provide exhaustive information on the malware [16], [22], [30], [46]. This is mainly 

due to the fact that there is no investigative analysis done during the execution 

process of the malware to understand how it changes the system and the 

changes are made. 

Advanced dynamic analysis involves using tools to examine the state of the 

executed malware as it is running. The internal state of the malicious code is 

examined to obtain more detailed information about the malware. This technique 

provides information that would normally be impossible to gather when using 

other techniques [30]. The analysis is always run in a controlled environment to 

ensure that all the inputs and output of the system are known and their effects 

can be accounted for. Various tools used at this stage will monitor the APIs, 

system function calls invoked, files created and/ or deleted, registry changes and 

the data processed by the program under analysis as it interacts with the system. 

Analysis of the parameters used during the API and function calls allows for the 

functions used to be grouped semantically while analysis of the data processed 
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and propagated within the system gives an understanding of the files used and 

produced by the malware. These lead to the identification of the tasks that the 

malware undertakes to fulfil its functionality [83]. Advanced dynamic malware 

analysis is very helpful in identification of malware variants and obfuscated 

malware techniques as detailed analysis can provide behaviour profiles that can 

be correlated to existing malware families.  

Automated dynamic malware analysis tools exist which give reports that can be 

used to group the malware according to behavioural properties [76], [83] and 

have been explored in the fully automated analysis section. However, most 

automated tools report require skill to understand and sometimes information 

gained from the manual advanced dynamic analysis and the analysis tools 

provide a clear understanding of the malware behaviour. The extracted 

information can then be used to develop counter measures and model the 

malware signatures to be used for future detection and system recovery. 

3.1.4 Reverse Engineering  

Reverse engineering, also called advanced static malware analysis involves 

loading the executable into a disassembler to loop through its execution process 

and then examining the instructions to understand what the program does [30], 

[42], [46]. In order to understand the instructions and flow the execution path of 

the program, one requires an understanding of the operating system that is being 

used or that was targeted and specialised knowledge of disassembly, the 

instruction codes/set and architecture of the system [46]. Debugging tools like 

IDA Pro [84], OllyDbg [85] and WinDbg [86] are few of the tools that are normally 

used at this stage to describe the execution process path followed by the 

malware. The Control Flow Graph which describes all the possible paths the 

program can take is normally extracted from these programs and can be used to 

detect malware variants.  Information gathered during advanced static analysis/ 

Reverse Engineer  can be used in building advanced protection mechanisms [83]. 

Since Reverse Engineering uses static analysis, analysis evasion techniques like 

instruction replacement can produce ambiguous results and malware that needs 

input information that cannot be statistically determined for example time and 

date can be hard to analyse using this technique [22], [30]. 
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 In almost all malware analysis instances, most of the techniques described 

above are combined to obtain as much information about the malware sample as 

possible. There is no defined specific order that an analyst follows to obtain the 

needed information [72]. It is normally up to experience and skill and known data 

that the decision about the malicious intent of the file is made.  

3.2 Malware Evasion of Analysis and Detection Evasion. 

The first malware to exhibit detection avoidance was the Brain virus, written in 

1986 by the Farooq Alvi brothers [28]. Any attempt to read the virus infected disk 

section led to the computer displaying clean data [71] instead of the infected lot.  

This was the start of a fresh breed of malware written with the idea that they could 

work around the anti-virus systems employed in computer systems. The 

advancements seen in newly discovered piece of malware all point to the fact 

that the survival is the number one priority since the longer the malware is 

undetectable, the more profitable it is to the malware writer [71].   

For the piece of malware to survive in any system, it must avoid being detected 

by the many security measures employed by the systems which include anti-virus 

software, firewall, and intrusion detection systems among others. Therefore, the 

evolution of these techniques adds another dimension to the challenge of fighting 

against malware [28]. Some of the known malware analysis and detection 

evasion techniques mainly target avoiding being fully analysed or being detected 

while other serve to evade both analysis and detection.   

Originally, anti-reverse engineering was used in legitimate software as a way of 

protecting intellectual property by software companies and individuals [22], [30]. 

Malware writers then adopted the idea of anti-analysis, the tools and also created 

customised versions to evade detection by security solutions [30]. This evolution 

has led to the development of a new generation of malware and the birth of 

various variants of the same malware. In this section, we explore some of the 

known malware analysis and detection evasion techniques which we have 

classified into 2 categories; Anti-Analysis and Obfuscation techniques. Since the 

purpose of utilising the described techniques is to produce malware variants that 

are harder to detect and analyse, we later describe the various types of malware 

variants known. 

http://en.wikipedia.org/wiki/Farooq_Alvi_Brothers
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3.2.1 Anti-Analysis Techniques: 

No malware writer would like to have their program analysed, reverse engineered 

or detected. Therefore, modern malware use tricks to hinder the analysis process 

of the malware files [87]. If the anti-analysis tricks are undetected by the analyst, 

they can lead to dead ends, wrong information or being stuck in an infinite 

execution loop. In this section, we explore some of the known anti-analysis 

techniques seen in malware samples. 

3.2.1.1 Anti- File Processing 

File parsing is one of the methods used in malware analysis and detection where 

malware detectors use the known file structure to parse the file contents. This 

method is called file processing [88] and is shown in Figure 3.4. This allows for 

detection of malware using heuristic based analysis where extracted file features 

are used to determine if the file is malicious or not.   

 

Figure 3.4 File Processing in Anti-virus systems [88] 

Malware employ anti-file processing method to thwart scanners that rely on 

known file formats leading to the file parsers throwing errors instead of extracting 

the file features [89]. There are two identified exploits in this technique [88]: 

• Chameleon attacks: This attacks the file interference stage of the file 

processing where it exploits the heuristic variations.  It leads to the file 

appearing as one file type to the file parser while appearing as a different 

type to the target operating system.  
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• Werewolf attacks: This creates malformations in the file format that leads 

to the file parser being unable to extract information. The file under 

analysis appears to be of a different structure and this is common in 

executables and application specific formats.  

3.2.1.2 Anti- Debugging 

Anti-debugging techniques can be deployed by hooking to various interrupts, 

using interrupts to generate new decryption keys, through the use of runtime code 

checksums, checking debugging API routines loaded, checking various registry 

keys (according to a particular debugger software), using registers and stacks 

[30], [42], [46]. 

A debugger is a program that allows one to observe the rendered code as it runs 

and the most basic features include the ability to set breakpoints and trace 

through the executable code [46]. Some of the common debuggers are IDAPro 

[84], OllyDbg [90], Immunity Debugger [91] and WinDbg [86]. These tools are 

used because compiled programs are too complex for the human eye to be able 

to trace and predict all the possible execution paths. Malware writers try to 

frustrate such efforts  by writing the malicious program to detect the presence of 

debuggers and then either give the wrong output or unexpected events [92].  

Some of the APIs used in antidebug are CheckRemoteDebugger, 

DebugActiveProcess, FindWindow, GetLastError, GetWindowThreadProcessId, 

IsDebugged, IsDebuggerPresent, NtCreateThreadEx, NtGlobalFlags, 

NtSetInformationThread, OutputDebugString, pbIsPresent, Process32First, 

Process32Next, TerminateProcess, ThreadHideFromDebugged, 

UnhandledExceptionFilter and ZwQueryInformation [22], [28], [42], [46], [73], [87]  

3.2.1.3 Anti- Virtual Machine 

Running malware in a virtual machine is common and considered a safe method 

used to analyse the behaviour of the malware as it theoretically infects the virtual 

machine and never the host [42].  
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Figure 3.5 Some of the Anti- Vm tricks seen in Peframe [73] 

Virtualisation or malware sandboxing also enables faster analysis times than 

installing new hosts every time one needs to examine a new malware sample. To 

thwart the analysis of samples inside a virtual machine malware include anti-VM 

protection or they simply exit when malware is run in an isolated environment. 

Anti-VM techniques can be deployed by detecting whether they are running in a 

virtual machine or not. Some of the known anti- VM techniques identified by 

Peframe analysis tool is shown in Figure 3.5. This is achieved either by looking 

at VME artefacts in processes, file system, registry and memory or by looking for 

VME-specific virtual hardware, processor instructions and capabilities [22]. 

3.2.2 Obfuscation Techniques 

Sometimes, once a program (P) is written, the program lines can be re-ordered 

or lines can be replaced without affecting the intended behaviour resulting into an 

equivalent but transformed program (P’) [30] as shown in Figure 3.6. This 

transformation is called obfuscation. Obfuscated malware performs the same 

function as the original malware only that the signature is changed due to the 

applied changes without affecting the semantic functions.  

 

Figure 3.6 Program Obfuscation 

Obfuscation techniques server as anti-disassembly techniques since they try to 

thwart the reverse engineering process once the sample is loaded into a 

Obfuscation Technique 
P P′ 
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debugger [46]. These are some of the techniques identified under malware 

obfuscation. 

3.2.2.1 Binary Obfuscation 

Binary obfuscation techniques are methods of detection avoidance that are 

applied after the program has been compiled [93]. They enable the malware 

program to be packed or encrypted so that the malicious code cannot be 

accessed until it is in the system memory. 

3.2.2.1.1 Encryption 

Malware encrypt the original code or blocks of the original code transforming the 

code into blocks of code that do not make sense to the human eye. Malware 

writers are known to use existing encryption techniques for example the bitwise 

XOR base operator was used in ZeroAccess as shown in Figure 3.7. Since more 

encryption techniques like the base64 encoding and ROT operators can be 

decrypted once the pattern is realised, malware writers complicate their patterns 

by customising their patterns for example creating their own alphabets [94].   

 

Figure 3.7 Extract from Zero Access Self decoding Subroutine 

3.2.2.1.2 Entry point obfuscation 

The Entry point obfuscation (EPO) techniques is implemented by the malware 

scanning the host file and then changing the pattern of certain API especially the 

ExitProcess to point to the beginning of the malicious execution code[95], [96]. 

This way, the program relies on a function call to get executed and not on the 

operating system loader. The malicious code is embedded safely inside the host 

file at a random location which this then called by the function call. Once it is 

executed, it passes the call routine control back to the actual subroutine. 

Examples of these types of malware are Rainsong, Zmit and Zhengxi [82]. 
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3.2.2.1.3 Packing  

The most common and default feature of packers is compressing the file into a 

smaller size. The packer works as an envelope that hides the program from any 

outside sources until it is run in the system. It also pre-pends the unpacker to the 

newly formed program which is the encrypted original program stored as data in 

the new executable [30]. This was initially developed by commercial software 

companies when disk size was of prime importance [52]. However, malware 

writers have adopted it and misused it. An example of a basic packer software is 

UPX as shown in Figure 3.8. In the analysis of malware especially when trying to 

reverse engineer the program, a packed program is easy to detect using analysis 

tools. With the introduction of custom built packers, reverse engineers must 

manually unpack the code using debuggers because of lack of the original packer 

information. 

 

Figure 3.8 Malware sample details packed with UPX (a) and after unpacking (b) 

3.2.2.1.4 Stealth 

A stealth malware is a type of malware that tries to remain undiscovered by hiding 

the infection events [28], instead of trying to obfuscate its code. It achieves this 

by restoring certain original properties of the host file for example, timestamps. It 

also intercepts system calls to hide any other resulting changes like the increase 

in the size of the host file. Other techniques used are creating alternate data 

streams (NTFS) [94] for infected files with malware in the alternate data streams. 

Alternate Data Streams is a feature developed by Microsoft NTFS to enable 

Windows support Macintosh Hierarchical File System (HFS). Files use multiple 

forks which allows the program to store the code and icons separately. Although 

the feature is intended for internal use, it can be used to hide files and therefore 

malware can be attached to a legitimate file and go undetected for a while. 
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3.2.2.1.5 Condition based Execution 

Some Malware require specific inputs and unless these inputs are met, it does 

not execute. Some of the conditions are specific days or presence of specific 

features on the system. Unless these inputs are known previously and emulated, 

analysis of this malware normally leads to incorrect information [42] or the inability 

to perform a full analysis. 

3.2.2.2 Code Obfuscation 

Code Obfuscation techniques are applied to the program during the writing of the 

code itself [93]. These enable the code to have a confusing structure to the eye 

and the antivirus systems but the code will still perform the same function as an 

originally simple structured code. In other words, these methods are employed to 

change the syntax of the program without changing the semantics of the program. 

Some of the known methods are[93], [97]–[99]:   

• Dead-Code Insertion; where "trash-code" lines are added in the program 

without changing the behaviour of the code.   

• Code Transposition where the code is shuffled so that the binary order is 

different from the execution order.  

• Register Reassignment which uses the replacement of registers with 

others within a specific code live range.   

• Instruction Substitution where equivalent instructions are used to replace 

existing ones.   

• Code Integration where the virus code is interweaved into the code of its 

target program. 

3.2.3 Types of Obfuscated Malware 

Obfuscated malware is defined by the structural and syntactic similarities and 

differences to already existing malware. These are grouped into 4 groups; 

packed, oligomorphic, metamorphic and Polymorphic malware depending on the 

detection evasion technique used.  

3.2.3.1 Packed Malware 

Most malware writers apply packers or even multiple packers to produce different 

variants of the same malware code. Perdisci, et al [52] states that more than 80% 
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of the new malware discovered are actually packed versions of already existing 

malware.  Packers compress the file into a smaller size and sometimes 

encryption is applied to the compressed version of the file to make the unpacking 

process more difficult. "The packer program automatically transforms an 

executable into a syntactically different but semantically equivalent 

representation” [83] as seen in Figure 3.9. Some packers are custom built by 

malware writers and these can be used to actually detect that the file is malicious 

without the need for further analysis while commercial packers that are readily 

available online are seen in many malware variants [94]. 

 

Figure 3.9 Structure of a Packed PE File[100] 

3.2.3.2 Oligomorphic Malware 

These malware also sometimes called ‘Semipolymorphic’ [31] employ multiple 

decryption routines which are chosen randomly at infection as a way of avoiding 

signature based detection. The Whale virus was the first malware to use this 

technique and it carried a few dozens of different descriptors and picked one 

randomly [82]. More malware were subsequently seen employing the same 

methods however the decryption engines grew in number. This led to the birth of 

a new type of malware; polymorphic malware. 

3.2.3.3 Polymorphic Malware. 

Polymorphic malware like oligomorphic malware, use decryption routines to 

change the look of the execution codes for every infection [101]. They have a 

wide range of decryption engines since they tend to use mutation engines. The 

mutation engines perform all the logic computations in rearranging the code to 

prevent detection by signature matching. The decryptor is run first once the 
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malware is copied to the machine and it enables the execution of the malware. 

When the malware replicates itself, it encrypts the new malware with a different 

key and encloses the new decryption routine in the new code. It can however 

only generate up to a few hundred decryptors so it can be detected [98].  

3.2.3.4 Metamorphic Malware 

In this type of malware, the malicious code body is changed by using a 

combination of various obfuscation techniques. By using dead-code insertion, 

register reassignment and code transposition, the body of the code is changed 

into a new generation but it works the same way [98], [99]. This way, every 

generated variation of the malware looks different and therefore signature 

generation and signature based detection is very hard. Unlike most polymorphic 

malware which decrypt to a single constant code body in memory, metamorphic 

can have varying codes which makes their detection in memory rely on 

algorithmic scanning [28]. Metamorphic malware can also insert and interweave 

their code into the host program which makes the malware harder to detect [99].  

3.3 Existing Malware Detection Techniques and Solutions 

Malware detection is the process of identifying malicious code from benign code 

so that the system can be protected or recovered from any effects the specific 

malware. Malware detection requires the knowledge of the malware sample and 

therefore heavily relies on the analysis process retrieving correct and sufficient 

information. Detection techniques utilise a combination of the analysis techniques 

for a more conclusive answer about the malicious code [28], [30], [80], [82].  

3.3.1 Integrity Checker 

Compromising a computing system or network requires that some changes be 

made within the target environment. Integrity checkers are used in intrusion 

detection on the premise that a file which exists within the uncompromised 

operating environment is used as a measure to counter any future changes [28]. 

A hashing function like the MD5sum. SHA1or SHA256 is used to calculate the 

digest of the program or file and stored in the database [102]. When necessary, 

the digests of the program/ file are re-calculated and then compared against the 

originally calculated hash to check if the file has been modified. The challenges 

that this method presents are:  
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• The system initially used to calculate the stored hashes must be deemed 

clean and this is sometimes hard to guarantee. 

• System updates and patches that are very prevalent in computer systems 

do modify system files and programs which means that the database of 

hashes needs to be updated for every update or there will very high false 

positives affecting the detection method. 

• There is need to ensure that the reference database of hashes is stored 

offline and safely otherwise it presents a single point of failure in the 

detection mechanism. If the database is compromised, then all the 

resultant comparison checks are compromised as well. Hackers gaining 

access to the database implies that the database can be changed to 

include the hashes of the malicious programs. 

Integrity checking is still considered quite important in malware detection and 

detection of any system modifications performed by a malicious program. It is 

however more of an incident recovery process method than malware infection 

prevention method [82]. 

3.3.2 Signature Based Detection 

Signature based detection uses specific byte code sequences that are identified 

to be unique to a sample of malware in a specific family or variant and using them 

to detect the presence of similar coded files in the system [28]. This method is 

the most significant methods used by commercial anti-viruses. The unique byte 

of code sequence are saved in the anti-virus database as signatures and are 

developed by a group of malware experts after detailed analysis a significant 

number of malware [25]. Any file being scanned by the antivirus that is found to 

contain the signature of the unique byte code sequence is deemed to be 

malicious. This implies that a database of signatures must be maintained by the 

antivirus and updated every time new signatures are generated in order detect 

new malware. This creates one of the major challenges faced by system users 

as updating these signatures requires access to networking resources that might 

not be readily available all the time. Lack of optimisation of the signatures can 

also lead to the method being plagued by a high rate of false positives [82]. 
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Research has proved that metamorphic can evade this type of detection using 

obfuscation techniques which implies that this method is susceptible to high false 

negative in present day environments [103]. However, the study in [104] shows 

that the mutation engine signatures can be used to detect metamorphic malware 

as a way of extending the signature based detection by successfully tracking 

variants of W32.Evol. Chouchane and Lakhotia argue that given known 

parameters of a mutation engine, the proposed technique can detect malware 

that has been generated using the engine and suggest that the method can be 

further extended to detect malware produced by specific toolkits. This work 

however fails to address the content growth of the signature database which 

implies more storage requirements and therefore resource utilisation. This 

suggested approach can also lead to false negatives if a syntactic change is 

applied to the mutation engine. 

3.3.3 Semantic Based Detection. 

Semantics-based malware detection is a detection approach which looks to 

identify the malware by deducing the logic of the code and matching it to already 

known malicious logic patterns. It follows the semantics of the code instructions 

within the file instead of looking at the syntactic properties unlike signature based 

detection [105].  This allows for the semantic based detection approaches to 

overcome obfuscation and can improve the detection of unknown malware since 

logic pattern is used. An overview of semantic based detection approaches is 

provided in [106].   

3.3.4 Behavioural Based Detection 

Behaviour-based detection techniques focus on using specific system/ 

application behaviour and activities that are observed during dynamic analysis of 

the sample to form patterns that can be used to identify software that invoke 

similar patterns. Although these techniques are largely immune to obfuscation, 

their applicability is limited by their performance as dynamic analysis requires 

time [107].  A survey of behavioural based malware detection is provided in [108].  

Filiol present that one of the major challenges that is faced by behavioural based 

approaches is the difficulty associated with establishing the rule set of what is 

considered normal behaviour that a software invokes within a controlled 
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environment. This implies that without the inference point of the expected normal 

behaviour, determining the unsafe activities and behaviour within the 

environment becomes an evolving challenge [108].  

3.3.5 Heuristic Based Detection 

Heuristic in computing is defined as “Proceeding to a solution by trial and error or 

by rules that are only loosely defined” [109]. The main idea behind heuristic based 

detection is that there is no need to know so much about the inner structure or 

logic of the program being scanned and the main aim to reach as close to a 

conclusive decision as possible using the best optimal path [110]. Therefore, 

heuristic based detection approaches use algorithms and or rules that scan for 

known patterns to identify malicious programs within an environment. The first 

heuristic approaches are known to have been built in1989 to detect DOS viruses 

[17]. Most antivirus programs today use a combination of heuristic engines and 

signature based scanners. Heuristic based detection have the following 

advantages [17], [28], [82]: 

• They are fast because they are static analysis based which means that 

they scan the file without executing it unless emulation based analysis is 

included in the design of the engine. 

• The heuristic rules and algorithms can be changed, customised and 

optimised based on the files being scanned, the operating environment 

and any new rules/ indicators identified by malware analysts. 

• Since heuristic scanning is not predefined and evolves based on the 

requirements of the operating environment, targeted evasion is quite had 

to achieve.  

Heuristic based approaches also have some limitations which are: 

• They are plagued by high rates of false positives and false negatives if 

they are not properly fine-tuned, validated and optimised. 

• Has access to limited information especially if relying on static based 

analysis and therefore there is need to use a combination of different 

features or applying integrated approaches to scanning for better results.  

Heuristic based malware detection is achieved in 2 phases [82]:   
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Phase 1: Train the malware detector using a dataset so that important 

characteristics can be captured. In this training phase, sometimes, there 

is always need to use both the malicious dataset and the clean/benign 

dataset as a control measure. In other cases, the engine is trained with 

normal activity so that the engine can detect any abnormal activity.  

Phase 2: Test and validate the heuristic engine to ensure that it is making 

decisions that are in line with what is expected.   

Recent research in the use of datamining for malware detection [111] are 

considered heuristic based detection approaches. Since the study in this thesis 

uses heuristic detection based techniques, the next section explores related 

research works that were reviewed as foundation areas to this study. 

3.4 Recent Heuristic Based Malware Detection Research Solutions 

Our work examines how PE anomalies can be scored for more efficient malware 

detection and extends the functionality of file hash similarity functions. Therefore, 

using selective literature review, we focus on studies around; file hash similarity 

functions are used in malware analysis and detection, malware detection using 

PE anomalies and how multiple feature based decision making has been utilised 

to improve malware detection rates in various instances. We also explore some 

of the malware scoring methods that have been proposed. 

Hashing functions are used for malware clustering and triaging in many malware 

analysis scenarios.  Since there is no predefined meaning to the file similarity 

achieved between two malicious files, the interpretation of the hashing result is 

better left to the deduction skills of the analyst. Many studies have been 

conducted on the clustering sensitivity of hashing methods. A section of a 

technical report by DigitalNinjas [112] provides an initial study of hashing 

similarity. The work shows promise for the detection of the different families of 

malware that provides a level of confidence of 67% using only the Ssdeep hash 

technique. Although this work serves as a baseline, there is no comparison study 

against clean files as a control. This work is further extended by French and 

Casey [113] who carry out a study on the different fuzzy hashing methods 

available, Ssdeep and Sdhash. French and Casey provide insight into how and 

why fuzzy hashing works, validate the use of hashing in clustering families of 

malware and call for a cost benefit analysis of the hashing methods. Choi [114] 
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proposes a methodology to use Imphash for  malware clustering which was first 

introduced by Mandiant in [57]. New fuzzy hashing methods are introduced in 

[50] as new clustering algorithms that provide higher sensitivity rates for the 

clusters. Although the results show higher sensitivity matching, hashing is still 

restricted to clustering of the malware samples. Furthermore, [50], [53], [57], 

[112]–[115], [58] all use one hash to study each clustering experiment without 

looking at the potential increase in detection rates one could achieve combining 

different hashing methods.  

Combining file features and file relations in order to improve malware detection 

results is introduced in [20] and thereafter the work develops a file verdict system 

called “Valkyrie”. The authors build a semi-parametric classifier model to perform 

the combination and test the model against a dataset of 39,138 malware samples. 

The work states that the system has been incorporated into the scanning tool of 

Comodo Anti-Malware software. Although this work shows high detection rates, 

the use of file relations introduces an interesting but ever evolving concept in 

malware detection. The comparison of their model against Kaspersky Anti- virus 

and McAfee Virus scan along with tools show their model outperforming the tools 

for both the detection and time efficiency. This is questionable as the latest tests 

on AV-test institute show that Kaspersky antivirus outperforms Comodo antivirus 

[10].    

Kolter & Maloof in [18] examine the results of various classifiers on malware 

detection through a simple heuristic based technique of text classification, known 

as n-grams. The proposed approach tests the techniques including Naïve Bayes, 

decision trees, support vector machines and boosted variants. This approach not 

only uses multiple methodologies to train and test the algorithm, it also shows 

good detection rates, between 95-98%. However, the experiment used a limited 

dataset of 1971 malware which is a very small dataset compared to the malware 

samples collected nowadays. This method requires a lot of computational 

overhead which with our proposed method, we work to overcome by using 

hashes and implementing it using light weight methods.    

The MaTR [15] approach combines static heuristic file features and decision tree 

machine learning algorithm to propose a method of improved malware detection. 

The work initially recreates the experiment environment of the approach in 
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[18], highlights it’s weaknesses which are then used to build a better and efficient 

detection algorithm.  Experimentation using a dataset of 31193 clean malicious 

and 25195 clean files leads to 99.9 accuracy in the detection rates. Although this 

approach shows near ideal malware detection results, there is a possibility that 

malware obfuscation could introduce a limitation in the method as this is not 

addressed in the work. 

Xinjian et al, [19] propose combining both statically and dynamic features to 

improve malware classification. The method proposes using classifiers and 

adopting the prediction if and only if the output is the same. They test the 

proposed method on 282 samples which achieves high detection rates. The small 

size of the test dataset creates a challenge for the method in addition to the 

method not being tested against other known techniques. 

Combining features using evidence combination methods was introduced in the 

detection of android malware in [116] where the authors propose treating each 

feature statically extracted from an android applications as an information source 

and using Dempster-Shafer theory of evidence combination to combine the 

information sources. Using a dataset of 1580 malware samples the method 

achieves a detection accuracy of 97% and a false positive rate of 1.9%. The 

results show that combining different features does indeed improve malware 

detection rates and our work follows the same approach. We apply and extend 

this method to PE files and use basic static based hashes as representatives of 

heuristic features which reduces the used resources, cost and effort used in the 

proposed method in [116].  

Studies towards attaching a malicious score to a file as a method of malware 

detection has been an evolving topic in security research. Taking the approach 

of the CVSS (Common Vulnerability Scoring System), MAEC project is 

introducing the concept of malware threat scoring system which uses predefined 

categories to attach a threat score to a file [117]. RSA, the security division of 

EMC has introduced the RSA Security Analytics Malware Analysis scoring 

categories [118]. The work is presented as a module but does not present a 

working prototype or a method on how to design the scoring mechanism.  Both 

the MAEC and RSA categories look at Static analysis as a required category. 

Kumar et al [119] propose attaching a heuristic score to a PE file based on the 
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features extracted. Using 10 static features and a dataset of 1360 malware and 

1230 clean files, the proposed model achieves an accuracy detection rate of 85%. 

Although the detection rates are not high, the scoring approach proposes a 

method of allowing a malware analyst in classifying malware based on urgency. 

The initial results achieved by Kumar et al provide a foundation in file malicious 

scoring in a quest to build a more resilient cyber space. And the work presented 

in this thesis further explores and expands this initiative achieving an easier way 

of scoring and providing more detailed approaches on how to achieve the file 

malicious score.  

3.5 Chapter summary 

In chapter, we discuss malware analysis techniques, the evasion techniques 

malware use to thwart analysis and detection and the known malware detection 

techniques. We then review relevant literature of recent research approaches to 

malware analysis and detection. Using this foundational information as reflection 

point, the next chapter evaluates three known popular automated static analysis 

tools whose functionalities are analysed. This allows for development of the 

framework approaches that are the contributions of this thesis.
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CHAPTER 4.  EVALUATION OF AUTOMATED STATIC ANALYSIS TOOLS 

FOR MALWARE DETECTION IN PORTABLE EXECUTABLE 

FILES 

4.1 Introduction: 

Malware detection requires both static and dynamic analysis. However, static 

analysis is always considered the best first step when dealing with malicious files 

because it allows for malware to be analysed without the need to execute it [120]. 

The work by Egele et al [83] covers most of the present day dynamic analysis 

techniques and discusses the different analysis programs and tools that use 

these techniques. Although Ligh et al [42] provides insight into many static 

analysis tools, there is still a need for a detailed evaluation of some of the more 

recent prominent tools available today. The recent release of numerous 

automated static analysis tools which have given the cyber security community a 

much needed boast towards efficient static malware analysis requires additional 

exploring. This is especially true given that the rate at which malware samples 

are released is much higher than the rate at which malware analysts can fully 

investigate.  The malware statistics from AV- test institute show that the number 

of malware samples collected each year keeps increasing as cybercrime takes 

advantage of increased dependency on technology due to the big drive towards 

the Internet of Things. There is a need for faster detection to reduce the impact 

of malware if people are to benefit from the evolution of the Internet of Things. 

This chapter evaluates three prominent, open source malware automated static 

analysis tools focusing mainly on the analysis of Portable Executable files. It 

provides an overview of the automated static analysis tools in the first section, 

the test environment in the second section and the 9 test scenarios with emphasis 

on PE features to perform a comparison of the tools and extract information from 

the samples.  It also presents the findings of the scenarios and the tool feature 

comparisons and present a summary of the fingerprints found which can be used 

as indicators of compromise in executable files. 
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4.2 Overview of automated Static Analysis tools. 

This section provides summarised overviews of the automated static analysis 

tools that are being evaluated in this study.  

4.2.1 Peframe 

Peframe is an open source, command line based static malware analysis tool 

written by Gianni Amato that extracts information from Portable Executable files 

[73]. It is written in python and uses the pefile module written by Ero Carrera [73] 

and the Anti-Virtual Machine Signatures written by Joxean Koret [74]. In its folder 

called …\peframe\signatures, there are 3 lists of signatures that are used to 

identify different characteristics present in the application being analysed.  

alerts.txt: a list of APIs that peframe flags as suspicious in an application 

antidg.txt: A list of APIs that peframe uses to identify the presence of 

debugger detection in the application 

userdb.txt: A list of data block signatures used to flag the presence of 

packers detected, anti- VM and anti-debugging tricks. Peframe searches 

through the hex-dump of the file for the specified sequence of data block 

and if it is matched, the packer shown in the square blanket is identified 

as the packer used by the file under analysis.  

 
Figure 4.1 Hex-Dump of entrypoint of file md5- 

a3c5e50c55c901767b0c3b7749a48c9b 

The file is analysed as a hex-dump and the signature highlighted in  

Figure 4.1 is identified to be identical to the signature in the userdb.txt. In the 

results, it returns that it has identified the presence of the packer UPX 2.93 as 

shown in the extract of the report below: 

 

Figure 4.2 Peframe Report Extract of the file 
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Although the results are described in the command line, it provides the option of 

printing the results to a text file which can be manipulated further for analysis. 

4.2.2 Pyew 

Pyew is a static analysis framework written by Joxean Koret that performs file 

and code analysis on PE, PDF, ELF and OLE2 file types [74]. It is mainly 

command line based although the tool bokken which has a GUI can use it as a 

backend to provide better user interaction. Pyew uses the standard Pefile.py 

module to read the file contents of the PE File. This enables it to read PE structure 

and display the contents depending on the command used. It also provides 

debugger properties without the need to install a debugger. The scripts of interest 

for a malware analyst are found in the folders:  

…\pyew\plugins 

Vmdetect.py contains some signatures of known anti-VM tricks which are 

used to detect the presence of these tricks in the file.  

Virustotal.py is the script that searches the virustotal website for a report 

on the file being analysed using the MD5 and prints out the report it 

retrieves.  

UserDB.txt:  It is a copy of the PEiD packer detection signatures used by 

Packer.py to detect the presence of a packer. 

  …\pyew 

gcluster.py; A new module that is not seen in any of the other tools which 

uses the graph vertices to compute the similarity between the call graphs.  

graph.py: The script that retrieves the call graph of the file and an example 

of the extract can be seen in the Figure 4.3 

 

Figure 4.3 Call Graph of a sample malware 

Using Pyew analysis is limited as it requires additional scripting to allow for 

automated multi analysis and requires for changes to be applied to the modules 
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to get output logs that can be further manipulated as the information saved in the 

SQLite database is very limited and not of great value during the analysis. 

4.2.3 Mastiff 

Mastiff is a framework developed in python that performs static analysis of files 

and is command line based. It is designed to extract the characteristics of the file 

by automatically identifying the type of file being analysed and using the right 

techniques to analyse it. Mastiff relies on plugins which makes it easy to be 

extended for further use and can be used as a building block in the design of 

other frameworks.  

 

Figure 4.4 Mastiff Work Flow [75] 

Mastiff functions and workflow as seen in Figure 4.4 are further documented by 

Hudak [75] with details on how the different modules work together to provide an 

in-depth analysis of the file. Mastiff supports the analysis of different file formats 

but the plugins of interest are found in the folders 

…\mastiff\plugins\analysis\EXE and …\mastiff\plugins\analysis\GEN: 

EXE-peinfo.py which is the script that extracts and dumps information the 

PE header and the structure of the executable. 

EXE-resources.py extracts the information on the PE Resources directory 

EXE-sig.py extracts the PE digital Signatures in the file. 

EXE-Singlestring.py extracts single byte strings found in the file. 

GEN-fuzzy.py which extracts the fuzzy hash of the file and files in the 

sample that match. 

GEN-String.py extracts and decodes any of the embedded strings found 

in the code. 

Mastiff provides an option of using the Virus Total API so that the files uploaded 

can be analysed by the virus total website and the report generated downloaded.  
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4.3 Test Environment 

This section discusses the steps taken to setup the analysis environment to 

ensure validity and reliability of the results. It also describes the evaluation and 

analysis approach used in the study. Table 4.1 provides the details of the different 

machine specification, environment, files and tools used. 

Tool Specifications/ Details 

Computer Dell 745, CPU – Intel duo core @ 2.13GHz, RAM 2GB. 
Hard Disk – 150GB 

 Host Machine OS Windows 7 Professional N Service Pack 1 (64 bit) 

Virtual Machine 
Manager 

Oracle VM VirtualBox Manager Version 4.3.20 r96997 

Virtual Appliance Honey Drive 3 – Royal Jelly installed with 80 GB vmdk 
space 

Tools of analysis Pyew version 3X 
Mastiff version 2.0 
Peframe as seen on the GitHub accessed April 2015. 

Dataset 2620 samples of malicious PE files were downloaded 
from http://www.nothink.org/honeypots/malware-
archives/http://www.nothink.org/honeypots/malware-
archives/ 

Data management 
tools 

SQLite Studio version 3.0.6. 
Python IDLE version 2.7.9 

Table 4.1 Experiment Setup Specifications for the evaluation of automated 

static analysis tools 

4.3.1 Comparison, Analysis and Evaluation Approach 

The dataset was downloaded and analysed to pick only PE type files.  Since the 

dataset included many malware samples which could only be analysed one at a 

time by any of the tools it was necessary to write scripts to automate this process. 

With all the malware files saved into a single folder, each file as analyse and the 

results were dumped as a text file into another folder. By modifying the script 

written by tekdefense in [121] different scripts were written to enable auto multi-

file analysis for Mastiff, Pyew and Peframe.  The script used for Pyew also utilised 

its call graph module and call graph clustering module to obtain results necessary 

for this evaluation. Data analysis was performed on the information retrieved to 

obtain meaningful results. Figure 4.5 shows the study approach taken during this 

study. 

 

http://www.nothink.org/honeypots/malware-archives/
http://www.nothink.org/honeypots/malware-archives/
http://www.nothink.org/honeypots/malware-archives/
http://www.nothink.org/honeypots/malware-archives/
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Figure 4.5 Pictorial representation of evaluation study Approach 

4.4 Test Scenarios 

The test scenarios were formulated based on the information required to be 

extracted from PE files to detect any suspicious characteristics and the additional 

features that the tools provide that add value to the detection process. This 

section discusses the test scenarios chosen and the reasons to why they were 

deemed important.  

4.4.1 File Identification: 

Fields that identify the files such as the Filename, File size, MD5, SHA and 

SHA256 are important to extract because these can be used to check the integrity 

of the file downloaded. In addition to being used as identifiers when performing 

further analysis, they can be used to query existing databases for known 

malware.  

4.4.2 Detection of Obfuscation Techniques 

Obfuscation is a major characteristic of many malware as they try to evade 

detection or slow down analysis. Detection of some of the signatures that show 

that an application is using one or more of some of the obfuscation techniques 

may lead to detecting a malicious file. For this test scenario, three common 

methods applied in the binary obfuscation techniques as seen in malicious files 

are investigated. With the tricks discussed in chapter 3 known, analysts have 

developed signatures that detect specific packers, anti- VM and anti-debug 

obfuscation techniques. So, the results obtained from the tools will be analysed 

to determine the ability of the tool to detect; packers, Anti-VM and Anti- debug 

tricks in the file information. The tools are also expected to identify the specific 
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packer type where possible which should assist in the next step where unpacking 

is required. 

4.4.3 Analysis of APIs 

The API calls extracted from a PE file can highlight the expected behaviour and 

characteristics of the file [46]. Some APIs may indicate that the file employs some 

obfuscation technique and how the file would interact with the system.  

Some of the APIs used for anti-debug detection for example are [122] 

IsDebuggerPresent: This function checks whether the application is being 

debugged by returning a non-zero. 

NtQueryInformationProcess: Returns internal Operating System 

structures related to the process passed. This function is no longer 

available for newer versions of Windows but it can still be seen in some 

malware samples 

CheckRemoteDebuggerPresent: Returns a non-zero value if the process 

passed to the function is being debugged. 

OutputDebugString: The function sends the debugger a string to display.  

Some other notable characteristics are if the file expects to connect to the 

internet, how it will execute and/or how it accesses memory. Depending on the 

APIs clustered, files can be partially grouped into clusters of predicted behaviour 

so extraction of APIs is a very important feature of an analysis tool. For this field, 

two sub-definitions are considered; the extracted suspicious APIs per the tool and 

the general extracted APIs.  

4.4.4 PE file feature analysis 

Many of the PE file fields have specific standards set by Microsoft [24] so changes 

in these standards might indicate that the file is suspicious [42], [87], [100]. In this 

scenario, the test focuses on how much of the PE file field information is extracted 

by the tools or if used, whether the tool provides suspicious alerts for the fields 

that have invalid information in the fields or identification of any anomalies in 

relation to the PE structure formation. 

4.4.5 Ssdeep hashing and Malware clustering 

Cryptographic hashing computes a hash value on a data block and any changes 

in the data block produces are different hash value. If one file has the same 

cryptographic hashing value as a known malware sample, then it is concluded 
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that the file is a copy of the known malware. Since malware variants tend to 

change some bit values of the original malware code, normal cryptographic 

hashing like the MD5 fails to detect the similarity of such files. So, to counter this 

limitation, fuzzy hashing uses a rolling window to produce a continuous stream of 

hash values. These hash values can be compared to produce a percentage score 

of similarity between the files compared which enables malware analysts to 

detect malware variants. Many hashing algorithms; Ssdeep, imphash and others 

have been investigated in different works [53], [115], [123] to show how they 

improve the accuracy of detection when used. This scenario looks at analysing 

what file hashes are computed and how they are used in file clustering. 

4.4.6 Call Graph Extraction and Comparison 

A call graph is a directional graph with nodes (N) that represent the functions that 

are interconnected with function calls represented by edges (E (i, j) where i to j 

define the execution path taken as shown in Figure 4.6. Extraction of a call graph 

represented by G = (N, E) provides a graphical representation of the execution 

process of the program.   
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Figure 4.6 Call Graph (G) Structure 

Call graphs have been used in different research works to show how they can 

predict the behaviour of the file [29], [30]. The work carried out by Kinable [124] 

shows that call graph matching and clustering can be used to detect malware 

variants.  Availability of such information from a tool provides a way to increase 

the accuracy of the malware detection. The fields analysed in this scenario look 

at the extraction of code call graphs and comparison capabilities of code call 

graphs performed by the tool. 

4.4.7 String Analysis 

Strings obtained from a file during static analysis when not encrypted can provide 

a lot of information for a malware analyst, like URLs, executable files, registry key 
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paths, command line options, passwords and IP addresses. Similarity in the 

information across different samples may be used to cluster them. However, it is 

important to note that sometimes, the malware obfuscates the strings and may 

also provide misleading information in the strings. 

4.4.8 Third Party Plugin 

The ability of the tools being evaluated to support the integration of third party 

tool as this enables the additional of new features during the analysis of malware 

is also analysed. 

4.4.9  Usability 

Although this is not a metric that would lead to determining how malicious a file 

might be, the ease of use for an analysis tool is an important feature to consider. 

This section is broken down into 2 subsections: 

 User Interface: Command line, Graphical User interface and online 

analysis presence are what are considered as the measure for these tools. 

 Output data management: During analysis, the most important factor is 

how easy it is to handle to information one gets from the analysis tool. 

The observations made during the use of the tools in analysing the malware 

samples collected are further discussed; the technical skill level required and 

availability of tools that supplement the analysis of the output files. 

4.5 Feature Comparison, Analysis and Evaluation. 

Once the dataset of malware were analysed by the tools, the output data is 

analysed and results from the three tools are compared against each other 

including the tool features and usability as observed during the experiments.  

4.5.1 Tool Feature Comparison 

This section shows the comparison of the kind of information that the tools 

extracted and the additional features of the 3 tools. Table 4.2 provides the 

summary that would be important to know when deciding which tool would be 

best depending on the depth of static analysis required to be done on a file 

sample. This information was collected by observation during the analysis phase 

of this study. 



CHAPTER 4 

59 

 

4.5.2 Analysis and Evaluation 

This section discusses the observations made during the study and provides a 

more detailed breakdown under each subsection. 

Metric  Peframe Pyew Mastiff 

General File 
Details 

Filename ✓ ✓ ✓ 

File size ✓ ✓  

MD5 ✓ ✓  

SHA  ✓ ✓  

SHA256 ✓ ✓  

Obfuscation 
Technique 
Detection 

Packer ✓ ✓  

Anti- Vm  ✓ ✓  

Anti-Debug ✓ ✓  

APIs General APIs Extraction ✓ ✓ ✓ 

Suspicious API extraction ✓   

Calculated 
Hashes 

SsDeep hash   ✓ 

imphash ✓   

File Clustering based on hash   ✓ 

PE File 
Details 

Header ✓ ✓ ✓ 

Sections ✓ ✓ ✓ 

Section Entropy   ✓ 

Exports ✓ ✓ ✓ 

Imports ✓ ✓ ✓ 

Hex- Dump ✓ ✓ ✓ 

Call Graph Generation  ✓  

Cluster Comparison  ✓  

U
s
a

b
il
it

y
 

User 
interface 

Command line ✓ ✓ ✓ 

Graphical User Interface  ✓  

Online Analysis option   ✓ 

Output 
Data. 

.txt files ✓ ✓ ✓ 

.json files ✓ ✓  

.db output  ✓ ✓ 

Additional 
Features 

String Extraction ✓ ✓ ✓ 

Virus Total API utilisation  ✓ ✓ 

Disassemble  ✓  

File metadata ✓  ✓ 

Extension by plugin ✓ ✓ ✓ 

Table 4.2 Static Analysis Tool Feature Comparison 

4.5.2.1 File Identification: 

The tools considered in this study provide different information that identifies the 

file. While mastiff logs the file results in a folder identified by the file name, it does 

not provide the MD5 or other hash values for the whole file. It instead computes 
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the MD5 for each section and appends it at the beginning of each section. The 

Pyew module provides the option for the tool user to request for the filename, 

hash values and file name using a script called runme.py that can be edited to 

automate the request for each analysis. Peframe provides the most information 

for file identification. The comparison of the file identification information provided 

by the tool is shown in Table 4.2 in the general File details section. This shows 

that Peframe and Pyew are the stronger of the tools when there is need to 

immediately get file identification information upon analysis.  

4.5.2.2 Detection of Obfuscation Techniques. 

For this scenario, only Pyew and Peframe are considered. Pyew detects packers 

and anti-vm using known signatures while Peframe detects packers, anti-vm and 

anti-debug based on the signatures provided in the signature folder. Peframe 

allows for better extension options than Pyew especially for anti-vm and anti-

debugging techniques as the text files used as comparison signatures can be 

edited. Pyew’s signatures save for the packer signatures are hard-coded in the 

module. Analysis the results obtained from the tools based on the dataset and 

the comparison of the detection percentages are presented in the Figure 4.7. 

 

Figure 4.7 Comparison of Obfuscation Detection 

4.5.2.3 Analysis of APIs 

All the three tools extract the APIs that are identified in the file during analysis.  

While Peframe allows for only APIs deemed as suspicious based on the signature 

saved in its comparison file, Mastiff returns string.txt that contains all the strings 

in the analysed file which contains the APIs and Pyew returns a list of all the APIs 

when the command to return imports and exports are called.  There is a variation 
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in the top APIs detected by the different tools which can be explained by the fact 

that Peframe is heavily affected by packing where some packers led to the tool 

throwing an error and it returns only APIs it has matched to be suspicious in its 

signature database. Pyew and mastiff extract all the APIs and Pyew can perform 

deep code analysis to retrieve more APIs than Mastiff. For this scenario, in the 

future work, API calls will be extracted from a set of benign executables to 

perform a comparison on these functions.  

4.5.2.4 PE header analysis 

Here, the information given by the tools that can be used to detect if a file is 

suspicious or not is analysed. For example, Peframe extracts the compile time 

and an extract from a report of a malware sample analysed 

6ec7e5c29b87c724735fea3c98b10288 shows that the file has an invalid date 

and it is also a good example of abnormal section names. Figure 4.8 shows that 

the compilation year analysis of the malware samples. 

 

Figure 4.8 Compile year analysis of the files analysed 

 

Figure 4.9 Pyew Report 
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Figure 4.10 Peframe report  

 

Figure 4.11 Mastiff Report 

Figure 4.9, Figure 4.10, Figure 4.11 show the various report samples from the 

three different tools of the same sample- 6ec7e5c29b87c724735fea3c98b10288. 

By analysing the three reports, the information provided by the various tools 

defers in the level of detail. Pyew provides the shortest file report with the section 
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names, the section addresses and sizes which are important when deeper 

analysis is required. Peframe provides detailed information about the header with 

the important field of the compile time and flags it because it detects that the time 

given is indeed invalid, it then also flags the 3 sections that have names that are 

unknown together with the hash values. These hashes can be used for hash 

matching during further detailed analysis.  

The mastiff report provides findings in more detail even providing alerts based on 

the discrepancies it has detected. For example, like the file having an address of 

Entry Point that lies outside the section’s boundaries which a known indicator that 

the file is malicious, a rawdata size that is larger than the actual file size. The 

mastiff report also provides more warning details like the section characteristic 

flag warnings, section field warnings, section entropy and directory warnings that 

can be used by analyst to deduce that a file is malicious based on PE header 

analysis than the other two tools. However the information from all the three tools 

is equally important to improve detection accuracy.  

4.5.2.5 Ssdeep hashing and Malware clustering 

Mastiff is the only tool of the three that calculates the Fuzzy Hash of the file and 

compares the hash against the hashes of the files already in the database to give 

similarity percentage in the files. Figure 4.12 shows an extract of one of the 

reports. 

 

Figure 4.12 Mastiff Fuzzy Hashing results 
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4.5.2.6 Call Graph Extraction and Comparison 

Only Pyew has the modules that are responsible for generating call graphs and 

call graph comparison. However, the tool was unable to produce call graphs for 

packed malware and could only do so once the malware was unpacked.   

To measure if the call graphs produced are good enough, call graphs generated 

by this tool and the ones generated by IDA Pro are analysed. The nodes identified 

by Pyew are fewer, however, it still produces a call flow that can be used to 

classify the malware based on the graph clustering module in the tool. This 

module was analysed next to measure the accuracy of its findings against the 

results obtained using Ssdeep hashing. Using the report shown in Figure 4.9, the 

graph clustering module was used to analyse the original file against 3 of the files 

in the extract. Analysis of the similarity detection was further performed using the 

file identified with MD5: 5f232bc72932b846855cdddc8d86a01 and its’ fuzzy hash 

matches from Mastiff. The files were uploaded in the graph clustering similarity 

module in pyew and Figure 4.13 shows the comparison of the results achieved. 

The results obtained from the module in Pyew gave 100% similarity across all the 

files for expert, Alist and Primes as shown in Table 4.3 and then in Figure 4.13 

which argues against the module’s accuracy in graph cluster matching. 

 

   File MD5 

Mastiff Pyew 

 Expert Alist Primes 

dfc4b5f3559ffbccaf7d003fbf5577f4 97 100 100 100 

4623c45a08d8ecc8e6646437ab3c7771 85 100 100 100 

78d9013678a334bf52a93b0f24680a2d 74 100 100 100 

Table 4.3 Comparison of Mastiff Similarity detection vs Pyew cluster graph 

similarity analysis 

Mastiff gives more defined answers than pyew results although the difference can 

be seen in one file. While the graph clustering module in Pyew is a very good tool 

to be used in conjunction with other information extracted, it is not best to use it 

as a reliable tool but rather combine it with other tools to build a framework with 

better detection accuracy.  
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Figure 4.13 Similarity Detection Comparison 

4.5.2.7 String Analysis 

All the three tools extract strings. Using Peframe, URLs were extracted and a 

count was used to see how many times each URL appears in the dataset and the 

top 10 are listed in Table 4.4 

Top 10 URLs No. 

http://ocsp.thawte.com0 43 

http://nsis.sf.net/NSIS_Error 40 

http://crl.thawte.com/ThawteTimestampingCA.crl0 39 

http://ts-aia.ws.symantec.com/tss-ca-g2.cer0 39 

http://ts-crl.ws.symantec.com/tss-ca-g2.crl0 39 

http://ts-ocsp.ws.symantec.com07 39 

http://crl.thawte.com/ThawtePCA.crl0 31 

http://www.usertrust.com1 31 

https://d.symcb.com/cps0% 28 

https://d.symcb.com/rpa0 28 

Table 4.4 Top URLs extracted 

The URLs extracted can be used as fingerprints to detect if a file is malicious and 

they can also be used to group what kind of malware they are. 

4.5.2.8 Third Party Plugins 

Using the virus total plugin, the detection across the samples gives good results 

because the samples are older than one year. However, from the analysis, even 
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given that the samples are old, Table 4.5 has a list of files where the Anti-Virus 

engines that Virus Total uses return a detection rate of 0 %.  

Sample MD5 %  

f2d69c64f6e98deb05243213e5561bf6 0% 

6c55b3c4d59420b2f4198b2b2ea32d25 0% 

7e7deb713a16c0ad00f3a7f7a9ae3eca 0% 

77cfb9a441eb8516943da23dbd035cba 0% 

e97143b1c63caf1db8e4a3ca086c3834 0% 

049630bfdfa9f2d19aa9f9073352012d 22% 

345004633174388211c2475cedb6de9a 54% 

Table 4.5 VirusTotal analysis results giving 0% detection of known malware 

This shows that even some malware are not detected by a collection of anti –

virus engines and therefore there is a need to fill this gap. The overall detection 

analysis obtained from virus total is shown in  

Figure 4.14. 

 

Figure 4.14 Virus Total Detection Analysis of the samples 

Vigna [13] notes that relying on Anti-viruses to detect malware is not a good 

solution even a year after malware has been discovered.  Vigna further argues 

that some engines would not detect the malicious files while detection of the 

malware on the day of discovery is limited to 51% of the engines sometimes and 

there are some cases where it takes up to 2 days before the anti-viruses can 

even detect a new malware sample. These statistics do not favour the reliance 
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on the protection offered by anti-virus engines and particularly for virus total.  

There is always a time delay of 10 minutes between upload and retrieval of the 

report. However, the information offered by Virus total is a great addition for 

malware analysts when detecting malware in systems. 

4.6 Chapter Summary 

In this chapter, 3 new static analysis tools that provide advanced static analysis 

statistics are evaluated. Although most of the tools provide the same information, 

mastiff is more detailed than the others and Pyew introduces new modules which 

can improve the detection and clustering rates while Peframe provides a simple 

but straight forward report. During the experimentation, some of challenges faced 

that allowed us to develop scripts that allow for better automation of the analysis 

process and analysis output log manipulation and management. Some of the 

limitations of the tools that were identified were that not all indicators of 

compromise in a PE file are been fully explored in all the tool. This is a window 

that provides opportunity for newer automated static analysis tools. 

The evaluation of the three tools provides a foundation for the next phase of study 

that looks at using information for the tools together with scoring methods to 

provide a quantifiable metric for the maliciousness of a file.
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CHAPTER 5. MALSCORE: AN ANORMALY HEURISTIC FEATURE BASED 

PROBABILISTIC SCORING METHOD FOR DETECTION OF 

MALICIOUS PORTABLE EXECUTABLES  

5.1 Introduction 

In 2015, Forbes reported that it takes about 46 days for reported cyber incidents 

to be resolved [125] . One contributor to this big mean time to recover is that most 

incident responders are faced with the challenge of figuring out which files on the 

system could be malicious over those that are not. Given the ever-changing 

environment on a computer, such a determination is very challenging. Numerous 

static analysis methods provide the initial information required for an experienced 

analyst to deduce the intention of the file as long as the analyst has the expertise 

to use the tools. No matter how experienced the analyst is, analysis of high 

volumes of files will always require a lot of time. This challenge has led to the 

growth of automated static analysis tools whose results still require the use 

malware analysis expertise to deduce the intent of file under analysis. For most 

PE static analysis tools, file anomalies are some of the information used to decide 

if the file is malicious or not. Various studies show that anomalies in file features 

extracted can be used as indicators of compromise [52], [126]–[128].  Attaching 

a scoring method to anomalies as heuristic indicators of compromise (HIoC) 

could allow for a faster and more efficient automated static analysis while 

increasing the decision-making confidence level even to a standard system user. 

Following the evaluation of the 3 tools in chapter 4, this chapter proposes a 

method of measuring the malicious intent of file based on the identified heuristic 

anomalies by using probabilistic scoring. We initially present interesting heuristic 

anomalies observed from the analysis data of 1.6 million malware samples in 

section 5.2. Section 5.3 details the used test environment, the method design and 

the implementation process. 5.4 presents and analyses the achieved results and 

finally we conclude and summarise the chapter in section 5.5.
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5.2 Heuristic observations from the static analysis data of 1.6 million 

malware samples and discussion. 

During this study, we had access to data from Nettitude Research and Innovation 

Department’s analysis of 1.6 million malware samples using a customised version 

of Peframe static analysis tool. For security reasons, the experiment setup of this 

analysis is not included in this work. We however, present the interesting 

observations made from this data.  

Top 20 Malware Families in the Sample by ClamAv. 

Win.Adware.Imali-17 Win.Adware.Multiplug-60223 

Win.Adware.Multiplug-5 Win.Trojan.Vilsel-4621 

Win.Adware.Domaiq-1 Win.Trojan.Madangel-1 

Win.Trojan.Antifw-171 Legacy.Trojan.Agent-1388596 

Win.Trojan.Ramnit-1847 Win.Adware.Multiplug-53339 

Win.Trojan.Agent-1388669 Win.Worm.Allaple-5 

Win.Adware.MultiPlug-1 Win.Spyware.78636-2 

Win.Adware.Multiplug-3 Heuristics.W32.Parite.B 

Win.Trojan.Agent-1388655 Win.Trojan.Redir-13 

Win.Trojan.Agent-1388676 Js.Malware.Autolike-1 

Table 5.1 The top 20 malware types identified during analysis 

In instances of file analysis using static analysis tools, it is possible for the 

analysis process to fail due to file malformations or anti- analysis techniques. 

Some of the errors obtained from the analysis data are shown in Figure 5.1.  

 

Figure 5.1 Peframe errors based on failed file analysis 

The compile time analysis as shown in Figure 5.2 shows that there is some 

questionable compile times for example a file having been compiled in 2055 and 

seen in 2016. We see that about 19% of the files were compiled before the year 
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2000. Given that most legitimate software providers always work to update their 

software, it is reasonable to flag such a compilation timeline.  

 

Figure 5.2 Malware compile time 

Packer 
Malware 
Samples 

% of total 
sample 

Microsoft Visual C++ 8 408013 25.5% 

Nullsoft PiMP Stub -> SFX 73572 4.6% 

Microsoft Visual C# / Basic .NET 72610 4.5% 

Borland Delphi 3.0 64234 4.0% 

Microsoft Visual C++ v6.0 52572 3.3% 

PECompact 2.x -> Jeremy Collake 36672 2.3% 

UPX 2.93 (LZMA) 16901 1.1% 

Microsoft Visual Basic v5.0 16307 1.0% 

Microsoft Visual C++ v7.0 15839 1.0% 

AHTeam EP Protector 0.3 (fake PCGuard 4.03-
4.15) -> FEUERRADER 11106 0.7% 

MingWin32 GCC 3.x 9671 0.6% 

Microsoft Visual Basic v5.0 - v6.0 7668 0.5% 

MSLRH V0.31 -> emadicius 7347 0.5% 

UPX v0.80 - v0.84 5981 0.4% 

UPX -> www.upx.sourceforge.net 5521 0.3% 

ASProtect V2.X DLL -> Alexey Solodovnikov 4091 0.3% 

Microsoft Visual C++ v6.0 DLL 2486 0.2% 

Microsoft Visual C++ 5.0 2294 0.1% 

ACProtect 1.3x - 1.4x DLL -> Risco Software Inc. 1809 0.1% 

Safeguard 1.03 -> Simonzh 1611 0.1% 

Table 5.2 Top 20 identified Packers 

Based on these results, compile time is a heuristic feature worth comparing when 

building a heuristic scanner. Another feature that was extracted from the samples 

was the top 20 packers identified as shown in Table 5.2. Next, we analyse data 

about the file sections and Figure 5.3 shows the distribution of the number of 
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sections in the files while Figure 5.4 shows the 20 most popular section names 

extracted from the data and Figure 5.5 shows the distribution of the calculated 

section entropy.  

 

Figure 5.3 The Distribution of the number of sections in the analysis data 

 

Figure 5.4 Top 20 Section Names in analysed sample 

 

Figure 5.5 The Section Entropy distribution 

The most common libraries seen in the malware samples were populated as 

shown in Figure 5.6. Peframe as a tool has API signatures that are deemed 

suspicious when seen in analysed files. The top 20 anti-debug APIs extracted are 
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shown in Figure 5.7 are extracted and Figure 5.8 shows the distribution of the top 

20 suspicious APIs seen. 

 

Figure 5.6 Top DLLs in the Analysed sample 

 

Figure 5.7 Top 20 Anti-debug APIs indentified 

 

Figure 5.8 Top 20 Suspicious APIs indentified 
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One of the most important extracts from the file are the strings which can 

sometimes lead to initially understanding what the file functions are. Therefore, 

analysing the strings extracted from the analysis data was very relevant. The 

first step was to extract any data related to the filenames that could be extracted 

from the strings. The filenames shown Figure 5.9 are what were extracted.  

 

Figure 5.9 Filenames extracted from the data 

Today, malware are known to try and connect to the outside world to either 

establish command and control, retrieve other files or even send data [80]. 

Therefore, any strings that look like URLs or emails can be very useful. 

Performing this analysis on the sample led to populating Table 5.3 and Table 

5.4 which show the top 20 email addresses and top 20 URLs respectively. 

Email Addresses 

support@getwebcake.com info@mbsoft.gr 

support@mitcsoftware.com jdeb@autoscript.com 

support@rjlsoftware.com pop@harzing.com 

support@yontoo.com sales@totusoft.com 

71174.2675@compuserve.com sandy-cyf@163.com 

Soft@leinao.com supermca@yandex.ru 

csli534@ctimail3. support@buzzdock.com 

huidawo@hotmail.com support@bytessence.com 

support@puffinwarellc.com support@mypropertyprogram.com 

Table 5.3 Email Addresses extracted from the data 
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Top 20 URLS 

http://ocsp.thawte.com 

http://crl.thawte.com/ThawteTimestampingCA.crl 

http://ts-ocsp.ws.symantec.com 

http://ts-aia.ws.symantec.com/tss-ca-g2.cer 

http://ts-crl.ws.symantec.com/tss-ca-g2.crl 

https://www.globalsign.com/repository/ 

http://crl.globalsign.net/root-r3.crl 

https://www.globalsign.com/repository/ 

http://crl.globalsign.com/gs/gscodesignsha2g2.crl 

http://ocsp2.globalsign.com 

http://secure.globalsign.com 

http://www.w3.org 

http://ocsp.comodoca.com 

http://bi.downthat.com 

https://secure.comodo.net 

http://crl.comodoca.com/COMODOCodeSigningCA2.crl 

http://crt.comodoca.com/COMODOCodeSigningCA2.crt 

http://nsis.sf.net 

http://schemas.microsoft.com/SMI/2005/WindowsSettings 

http://ocsp.usertrust.com 

Table 5.4 Top 20 URLs extracted from the analysis data 

5.3 Methodology Design and Implementation  

The proposed method design and implementation are discussed in this section.  

The different steps and algorithms built and used are described herein. The 

approach is broken down into steps with the aim of obtaining a scoring method 

for PE files based on the anomalies identified during the study.  

5.3.1 Test Environment and Dataset formulation. 

The test bench environment is built to allow for fast analysis with output 

information being saved to a single file log for malicious files analysed and 

another for the clean files to allow for easier data analysis. The algorithm uses 

the prepared dataset that is subdivided as shown in Table 5.5 and the tools used 

are described in Table 5.6. 

Dataset 
Number of files 

Use in the system 
Total Clean Malicious 

A ⟵ {Am, Ac} 50654 698 49956 
Aggregate and score the 
Heuristic Indicators of 
Compromise  

B ⟵{Bm, Bc} 55373 940 54433 
Detection Scoring -method 
evaluation phase. 

Table 5.5 MalScore datasets formation and their uses 
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Tool Specifications/ Details 

Computer Dell T1700, CPU – Intel Xeon@ 3.1GHz,  
RAM 32GB.  Hard Disk – 500GB 

Machine OS Linux Mint 17.1 (#64 – Ubuntu SMP) 

Analysis and detection 
tools 

Scripted in Python using some from Pefile [129], 
Peframe [73] and Pescanner [130] integrated 
with customised functions specific to this study.  

Table 5.6 Malscore Test Bench Specifications 

5.3.2 Aggregation of the Anomalies. 

Creating a list of anomalies to consider in this study required extracting file 

features of the sample PE files both clean and malicious and aggregating them. 

For this we revisited work in Chapter 4. The anomalies are defined in this work 

as values with in the PE file that do not conform to the predefined values in the 

PE specification document [24]. Analysed malicious file extracts are used and the 

features of clean files are extracted as a control measure using dataset A.   

PE File Feature Analysis

Load PE File
Read PE 

Structure

Parse 

Structure to 

Logstash

Load to 

Elasticsearch

Get Query Result 

on Kibana

 

Figure 5.10 PE file Feature Analysis Component Layout 

 

ANORMALY PROBABILISTIC SCORE GENERATION MODULE

Feature Correlation 

& 

Anormaly Probability 

Score Calculation

 

File 

HIoCs -  Scores Set 

Clean Files Malicious Files

Extract 

PE File features
Extract 

PE File features

File Static Analysis

 

Figure 5.11 Pictorial representation of the Heuristic anomaly probabilistic score 

generation module 
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A customised PEparser based Python tool is used to parse PE files and the 

extracted information in Json format is passed to an ELK (Elastic Search, 

Logstash and Kibana) server [131] for better aggregation and visualisation of the 

data. The Clean PE file features are also analysed to extract corresponding 

information. The Heuristic features extracted of the Malicious and clean files are 

compared to obtain the Heuristic Indicators of Compromise Set (HIoCs) as shown 

in Figure 5.11. This comparison allows for the defining of the scoring rules that 

are used to define the trigger references.  

5.3.3 Application of the Conditional Probability Theories. 

Taking the hypothesis that a file is either malicious (M) or Clean (C) and A 

represents the likelihood of an Anomaly being detected in a file based on the 

defined scoring rule. Using Bayes’ theorem, the hypothesis that the file is 

malicious given the anomaly is defined by [132]: 

)(

)()|(
)|(

AP

MPMAP
AMP

•


       (5.1) 

However, P(A) is not known so applying the theorem of total probabilities, it can 

be broken down to known outcomes: 

)()|()()|()( CPCAPMPMAPAP ••
     (5.2) 

Where P(A|M) and P(A|C) are determined from the training set. In designing this 

method, P(M )  and P(C) are assigned a value of 0.5 each due to the principle of 

indifference. It assumed that the file is either clean or malicious and therefore: 

)()( MPCP 
         (5.3) 

Since the hypotheses Clean and Malicious define the total probability space;  

P(C) = P(M) = 0.5 

5.3.4 Identification of Trigger features. 

In this step, Dataset A in Table 5.5 is use to formulate the HIoC set using the 

features which are shown to be more dominant in malware files as compared to 

clean files are identified. A dominance rule is used to identify these trigger 

features and characteristics in the dataset. We define this dominance rule as: 

) ) X|  C P( (  ) X|  M P( (   X)   feature (Dominant   S(X) iii 
  (5.4) 
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Where: S(X) is a set of all anomalies collected by the dominance rule. 

X is a Heuristic Indicator of compromise/ anomaly, i= {1,2, 3,…} 

We revisit work in [126] and perform analysis to create the scoring rules that are 

used as triggers to attach the different heuristic scores during the training phase. 

The top 25 dominant features that provided high dominant feature scores as 

shown in Table 5.7 form the HIoCs based score. 

5.3.5 Formulation of the Individual Anomaly Score. 

With the triggers of HIoCs set, scoring the anomaly means attaching a 

probabilistic score so that the overall file score is a quantifiable metric measuring 

file maliciousness.  

Once the probability of the file being malicious given a specific anomaly is 

detected is known for each of the selected 25 HIoCs, there is need to normalise 

the probabilities so that the total anomalies score of the file adds up to 100. This 

requires defining the principle score attached to each anomaly detected 

individually S(Ai) as: 

%
)|(
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AS         (5.5) 

Where: S(A) is a score of the anomaly A, n is the total number of 

anomalies used in the study (n = 25), i= {1,2, 3,…} 

The different anomaly scores are populated in a set S_Anom_set which are used 

by MalScore algorithm to score files under analysis.  

5.3.6  MalScore: The Heuristic Scoring Algorithm. 

In this algorithm, the file is analysed by Pefile and the file features are extracted.  

MALSCORE 

FILE SCORE (%)

MALSCORE MALWARE DETECTION AND SCORING ENGINE

Attach Scores to Flagged Features

File Feature 

Matching

 

File 

HIoCs -  Scores Set 

STATIC 

ANALYSIS

Extract 

PE File features

File

 

Figure 5.12 Pictorial representation of the MalScore approach 
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P( M ) = P( C ) = 0.5  

 Features (HIoCs) Scoring Rule P(A/M) P(A/C) P(A) P(M/A) S(A) 

F
il

e 
h

ea
d

er
 Compile Time Year < 1992 or Year > 2016 0.361 0.004 0.183 0.989 4.24% 

CheckSum Value != Calculated Checksum 0.532 0.000 0.266 1.000 4.28% 

Number of Sections Value < 1 or Value  >9 0.637 0.009 0.323 0.986 4.22% 

Characteristics (RELOCS_STRIPPED) Value = 1 0.752 0.100 0.426 0.883 3.78% 

Characteristics 

(LINE_NUM_STRIPPED) Value = 1 0.820 0.351 0.586 0.700 3.00% 

O
p

ti
o
n

a
l 

H
ea

d
er

 

NumberOfRvaAndSizes Value != 0 0.351 0.000 0.176 1.000 4.28% 

Size of Image 

Value != SizeOfHeader + Sections 

SizeOfRawData 0.400 0.000 0.200 1.000 4.28% 

SizeOfOptionalHeader Value != 224 0.310 0.003 0.157 0.990 4.24% 

Address of Entry Point/ File Size Value >2 0.223 0.004 0.114 0.982 4.21% 

LoaderFlags  Value !=0 0.525 0.000 0.263 1.000 4.28% 

S
ec

ti
o
n

s 

Section Entropy Value < 1 or Value > 7 0.470 0.022 0.246 0.955 4.09% 

Size of Raw Data value = 0 0.930 0.005 0.468 0.995 4.26% 

Pointer to Raw Data Value = 0 0.871 0.410 0.641 0.680 2.91% 

Section Virtual size and Raw size Virtual size < Raw size 0.870 0.420 0.645 0.674 2.89% 

Section Names Not in List 0.783 0.010 0.397 0.987 4.23% 

R
sr

c Resource Section Sub-language Value = 0 0.394 0.008 0.201 0.980 4.20% 

Resource Size/ file size Value > 0.05 0.120 0.002 0.061 0.984 4.21% 

O
th

er
s 

URLs Present? 0.486 0.005 0.246 0.990 4.24% 

Anti-debug APIs Number >2 0.983 0.060 0.522 0.942 4.04% 

Suspicious APIs Number >5 0.990 0.050 0.520 0.952 4.08% 

File Entropy Value > 7 0.792 0.034 0.413 0.959 4.11% 

Packer File Packed? 0.970 0.362 0.666 0.728 3.12% 

Anti - VM Present? 0.586 0.006 0.296 0.990 4.24% 

Embedded file TRUE 1.000 0.000 0.500 1.000 4.28% 

File Signed FALSE 0.651 0.001 0.326 0.998 4.28% 

Table 5.7 The HIoC set Scoring formulation. 
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As shown in Figure 5.12. for each marked anomaly from the populated HIoCs 

detected in the extracted features, the score corresponding to that anomaly is 

attached to the total file MalScore (Fms). The Fms is returned after the algorithm 

has looped through the all the extracted features matching them against the set 

of HIoC as the quantifiable metric to measure the malicious intent of the file. The 

pseudo code for the algorithm is described in Algorithm 5.1. 

Algorithm 5.1 MalScore- Heurisitic scoring 

Input: PE file f , HIoCs, S_Anom_set 
Output: Fms 

Overall Heuristic Scoring Phase 

procedure: Malscore  
     Extract  
               Ff ⟵ File Features (f) 
     for a in Ff do 
           if a ∈ HIoCs then  
                 Fmsf =+ S_Anom_set (a) 
            end if 
       end for 
return Fmsf 
end procedure 

 

5.3.7 Formation of the Heuristic Detection Score threshold. 

Like any other malware detection method, the purpose of this technique is to 

capture all the malicious files while letting the clean file through. However, there 

is yet to be the perfect system with 100% true detection and 0% false detection. 

The best strategy is always to design a system that has very high true positive 

detection while keeping the false positive rates very low. The true positive – false 

positive trade-off creates a need for creating a threshold percentage above which 

the file is said to be malicious and below which the file is labelled clean.  

5.4 Proposed Scoring and detection Method Results and Analysis 

The validation of the designed method involved scoring both malicious and clean 

files. Using Dataset B in Table 5.5, the results achieved are as discussed here 

in. The MalScore file score area covers in Figure 5.13 show that most of clean 

files scored in the lower half of the scoring range while most malicious files score 

above it. Further analysis involved determining the MalScore threshold which 

determines at which point the file is deemed suspicious. We define this threshold 
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as: File Score≤ 45%; File is clean and File Score > 45%; File is malicious. Using 

Figure 5.14, 45% provides a trade-off of 97.6% true positive detection vs 0.6% 

false positive detection. It is our recommendation based on the dataset tests that 

45% is the threshold. To evaluate the fitness of the designed model, Figure 5.15 

provides the ROC curve of the model which plots the true positive rate against 

the false positive rate. The trend of the ROC curve shows that this model is good 

fit and therefore, it can be used for efficient malware detection.  

 

Figure 5.13 MalScore Malicious and Clean files Score Area curves 

 

Figure 5.14 False and True Positive Detection Rates against the MalScore file 

scores 
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Further analysis of the method based on the malware family distributions in the 

dataset as seen in Figure 5.16 shows that the method performs better for some 

malware types; adware, Trojan and worm in comparison to other type. The 

average analysis time for each file for this method achieved in this study is 6 

seconds which makes the method fast. 

 

Figure 5.15 The Malscore ROC curve 

 

Figure 5.16 The detection ratio of the malware types in the test Dataset 

5.5 Chapter Summary  

This chapter presents the study strategy taken to design a heuristic anomaly 

based scoring approach MalScore that is one of the contributions of this thesis. 
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Initially, statistics and observations from the static analysis of 1.6 million malware 

samples using a customised Peframe are presented and discussed. Using these 

observations, we explain the design and implementation process of the heuristic 

malware detection approach proposed that uses anomaly probabilistic scoring. 

The results obtained from the testing process are presented and discussed and 

this approach allows for quantifying the file’s malicious status. The results 

achieved at the suggested threshold 45% of 97.2% true positive detection vs 

0.6% false positive detection provide a basis for arguing for this approach. The 

method is built using python scripts that can be customised, are very light which 

makes for a light but effective solution.
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CHAPTER 6. MALHASCORE: MALICIOUS PORTABLE EXECUTABLE 

STATIC SCORING METHODOLOGY USING EVIDENCE 

COMBINATIONAL THEORY WITH HEURISTIC FEATURE 

CALCULATED HASHES. 

6.1 Introduction 

Malware detection is an area with a lot of uncertainty especially in cases where 

we need to rely on the human factor for the better part of the analysis and 

therefore detection. Malware analysis is a challenge especially given the big 

number of malware that analysts must handle to build signatures. For instance, 

as of writing this report, nearly 600 million malware have been collected according 

to AV-Test Institute compared to the almost 500 million malware collected last 

year, 2015 [43] of which only 12% were new malware.  

 

Figure 6.1 Old malware and New malware statistics 

The evolution of networking technologies implies that malware delivery channels 

are readily available. The high-performance systems used today require similarly 

high performance security methods and therefore new optimised malware 

detection techniques that can perform real-time detection with very low effect on 

the performance of the system are needed. This automatically limits the use of 

dynamic analysis based detection methods. Dynamic analysis requires setting a 

time frame for the execution and observation of the file under analysis which can 

be quite time consuming. Fuzzy hashing is a known technique first developed for 

anti-spam research that is used to find the measure of similarity between two files 

[133]. It has been adopted in malware analysis and detection to speed up the 

processes given the exponential increase in malware samples discovered daily.
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File similarity is used to cluster malware into families whose common signature 

can then be designed. However, Hashing has not been fully implemented to be 

used in malware detection because it can easily be evaded by applying a simple 

obfuscation technique such as packing. This challenge has limited the usage of 

hashing to triaging of the samples based on the percentage of similarity between 

the known and unknown. Various publications on the different fuzzy hashing 

methods show promising results mainly for the clustering of malware [50], [53], 

[56], [113], [134]. Although hashing faces the issue of high false negatives, a 

combinational approach could lead to better results. By focusing on files of the 

same type, structure as a discerning factor is eliminated. The introduction of 

various hashing functions that have been tested include some that overcome 

obfuscation allows this design and implementation of this approach as a means 

of better malware detection. 

Most expert systems show low errors in decisions that are based on uncertainty 

because of the different mathematical theories developed and implemented [59]. 

Although reasoning under uncertainty introduces interesting concepts that can be 

applied to malware detection, there is need to better integrate these theories into 

the systems that are mainly dedicated to malware detection. Many reasoning 

models based on uncertainty have been developed to enable expert systems to 

make decisions based on unreliable data [59] and this theory is used in this study 

to propose a new approach to malware detection.  

If the similarity in the files detected by the hashing functions is used as the heuristic 

attribute similarity factor for a sample dataset for the decision-making process of 

malware detection, multiple attribute decision making and evidence combination 

mathematical models are applicable in the automation of this process.  

The proposed method is appealing because: 

• Hash functions are easily calculated during the basic static analysis of a 

malware sample.  This implies that the deployment cost and manual effort 

required for dynamic analysis and advanced static analysis are avoided. 

• It is scalable and can be customised to needs of a malware analyst and the 

algorithms can be adopted to other file types using file similarity matching 

hashes. 
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• Considering the different hashes as heuristic file attributes reduces the 

storage capacity required by the system making it very light and therefore 

not impacting system resources heavily. 

• We combined tried and tested similarity matching hashes that are popular 

in the field of malware detection that are provided in almost all automated 

static analysis tools like Peframe and Virustotal. 

In this chapter, we explore the different ways fuzzy hashing can be used to detect 

similarities in a file by investigating hashes of interest. Each hashing method 

produces independent but related interesting results which are presented herein. 

The application of two different methods of combining the hash values to improve 

the detection rates is presented. The results show that the detection rates are 

improved when evidence combination techniques are used. File and section 

Ssdeep hashing, PEHash and Imphash techniques are used to calculate the 

similarity of the Portable Executable files. The similarity in the files detected by 

the hashing functions is used as the Heuristic content similarity factor for the 

sample of the dataset used.  

6.2 Design choice of Hashes in scope 

The choice of hashes used in the design of this method relied on their current use 

in similarity matching and the various file sections used to calculate the hashes. 

Table 6.1 shows the reasons as to why the various hashes were chosen. PeHash 

design purpose argument is that it works to overcome polymorphic malware. 

Imphash is proven to classify malware based on the import table. Ssdeep Hash 

is used to calculate both the overall file similarity and the resource section. File 

Ssdeep hash is a very common hash used for similarity matching in common 

automated static analysis tools like Mastiff. 

 Hash Type Reason 

PeHash (PeH) Overcoming Malware Obfuscation 

Imphash (ImpH) Classification by API 

File Ssdeep Hash (FuzH) Overall File similarity 

Resource section Ssdeep Hash 

(ResFH) 

PE Resource section file similarity. 

Table 6.1 Argument for in scope Hashes 

The resource section (.rsrc) of a PE file is known to contain the information about 

any names and or types of embedded resources [80]. By combining the various 
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aspects of the file sample using the 4 various hashes, the overall achieved score 

is intended to represent the file’s similarity to already known malware samples. 

6.3 Modelling and implementing the proposed method design. 

Our approach is presented in this section and we describe the model design and 

implementation of the different algorithms that form the proposed method.  Table 

6.2 shows the notations used in the design of the different algorithm with the 

approach which is divided into 6 different Step. While designing the methodology 

for this study, the PE format [24]  and the work in [135] are revisited. 

Notation Meaning 

DB Database 

ImpH Imphash 

PeH PeHash 

FuzH File Ssdeep Hash 

ResFH Resource Section Ssdeep Hash 

Xi Set of elements of i attribute 

MD5 MD5 sum 

CFH(a, b) 
Ssdeep Hash Comparison Function to detect similarity 
percentage of a and b hashes. 

HashFlag_set (H) The Hash flag setting function  for H type of hash 

𝝅𝒊(DB) All the tuples in DB of attribute i 

 DBba  Generalised selection of all tuples in DB where a= b 

Pop_MASHDB Populate Malware Sample Hash Database Function 

MALHACompare(f 
) 

Malware Hash Compare Function for file f 

Mal (f ) Malicious Measure of File f 

i 
Hash i where:  i = {1, 2,3,4} ⟺ { ImpH, PeH, FuzH, 
ResF} 

FST Fuzzy Logic Combinational Metric 

CFM Certainity Factor model Combinational Metric 

TDR True Detection Rate 

CFi  Common Factor of Attribute i 

SFi Evidence Support Factor of Attribute i 

FuzzyLogicSum The Fuzzy Logic Algebraic sum function 

MYCINSum The Common Factor (MYCIN) Algebraic sum function 

Table 6.2 The Algorithm Notations 
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By focusing on only the hashing aspect of static analysis, we investigated ways 

in which the different hashes that define PE fields of interest can be used to detect 

the malicious samples in the dataset.  

6.3.1 Single File Hashing Study 

This was initial study done on one clean file (arp.exe) found in Windows systems. 

The file hashes including the cryptographic, peHash, Ssdeep hash for all the 

sections and for the file were calculated. Then the file was edited using Radare 

[136] to write “?a” characters into the file which is then saved with a different 

name. The hashes for the new file were also calculated. The hashes from the two 

files; the original and the edited version were compared as shown in Figure 6.2 

so that the differences would provide a baseline for the next phase of the study. 

 

Figure 6.2 The single file Hashes Study 

6.3.2 Collecting the Datasets 

Using the files collected as discussed in section 2.5.2, each file was saved as its 

MD5 sum to ensure that there was no duplication of files in the dataset. The files 

were also clearly labelled clean or malicious and were kept in separate folders 

depending on the known status of the files.  The malicious files dataset was split 

into 3 different subsets with the sets; A, Bm and Cm and the Clean files into 2 

subsets; Bc and Cc which were used for different steps as shown in Table 6.3. 
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Figure 6.3 The pictorial representation of the system
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Dataset Use in the system 

A Training phase. 

B ⟵ {Bm, Bc} Baseline-Creation phase and CFI generation.  

C ⟵ {Cm, Cc} Detection-method evaluation phase. 

Table 6.3 Datasets Formation and their uses 

6.3.3 Populating the Database of Hashes Signatures 

The database of hashes (DBFH); the malicious hashes that are used as the initial 

signatures are populated with the randomly selected malware samples in dataset 

A using the process described by Algorithm 6.1.  

 

 

The design of this framework also allows for this database to be updated should 

more signatures be identified that are not already saved in the database of 

hashes. The imphash, peHash, file Ssdeep hash and file resource section hash 

were computed and saved into an SQlite managed database with the file MD5 as 

the key identifier. 

6.3.4 Hashes Similarity Based Criteria Factor Index (CFI) Formulation.   

Once the training database was populated, the next phase involved determining 

how the individual hashes perform in terms of malware detection and how they 

can be combined to optimise the malware detection rate. Dataset B which 

comprises of both malicious files and clean files is used at this stage. The clean 

files are used as a control in this training stage. MD5 hash is ignored at this stage 

because the file MD5 gives us absolute certainty that the files are similar and thus 

the file would be malicious. Since we initially saved all the files in the datasets 

Algorithm 6.1 Algorithm for Populating database of Hashes 

Input: Malware Dataset A 
Output: Flagged Hashes Database DBFH 

 procedure: Pop_MSHDB  
for malware m in A do 
          Extract the file hashes 
                    Hashes (m) ⟵ {MD5, ImpH, PeH, FuzH, ResF} 
          If Hashes(m) ∉ DBFH then 
               add Hashes to DBFH 
end for 
end procedure 
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with their calculated MD5 as their identifiers, there was no possibility of 

duplication of a file in the dataset. This step was broken down into 2 sub-steps; 

6.3.4.1 The individual performance of the hashes in relation to malware 

detection. 

The initial stage of determining the individual performance of the hashes involved 

comparing the hashes calculated for files in dataset B against the DBFH. This 

was done by formulating the HashFlag_set where each of the 4 hashes had a 

specific position. The algorithm designed to set the HashFlag_Set fields is 

described by Algorithm 6.2 and Figure 6.4.  

Algorithm 6.2 Algorithm for Hash Comparison 

Input: PE file f and DBFH 
Output: HashFlag_set 

procedure: MALHACompare(f) 
Extract  
            Hashes(f) ⟵{ ImpH, PeH, FuzH, ResFH} 
 return Hashes(f) 

ImpH Comparison Phase 

ImpHf  ⟵  Hashes(f) ImpH 

XImpH ⟵ 𝜋𝑀𝐷5  (𝜎 "𝐼𝑚𝑝𝐻=𝐼𝑚𝑝𝐻𝑓"(𝐷𝐵𝐹𝐻)) 

if XImpH ≠ null then 
        HashFlag_set (ImpH) = true 
  else 
        HashFlag_set (impH) = false 
end if  

PeH Comparison Phase 

PeHf  ⟵  Hashes(f) PeH 

X PeH ⟵ 𝜋𝑀𝐷5  (𝜎 "𝑃𝑒𝐻=𝑃𝑒𝐻𝑓" 
 

(𝐷𝐵𝐹𝐻)) 

if X PeH ≠ null then 
         HashFlag_set (PeH) = true 
  else 
         HashFlag_set (PeH) = false 
end if  

FuzH Comparison Phase 

FuzH f  ⟵  Hashes(f) FuzH 
XFuzH ⟵ 𝜋𝑚𝑑5,𝐹𝑢𝑧𝐻 (𝐷𝐵𝐹𝐻) 

if Max(CFH (FuzH,∀x1 ,({x0,x1}∈ XFuzH ))  > 0 then 

        HashFlag_set (FuzH) = true 
  else 
        HashFlag_set (FuzH) = false 
end if  

ResFH Comparison Phase 
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ResFH f  ⟵  Hashes(f) ResFH 
XResFH ⟵ 𝜋𝑚𝑑5,𝑅𝑒𝑠𝐹𝐻 (𝐷𝐵𝐹𝐻) 

if Max(CFH (ResFH,∀x1 ,({x0,x1}∈ XResFH ))  > 0 then 
         HashFlag_set (ResFH) = true 
  else 
         HashFlag_set (ResFH) = false 
end if  
return HashFlag_set 
end procedure 

 

 

Figure 6.4 Flow chart for Algorithm used to set the HashFlags 

For each file in Dataset B, the 5 respective hashes are computed and 4 different 

queries were run against the database. Each query returns a set of tuples; 

PE file - f

Start

Extract PE file Hashes

(Hashes(f) {} ⟵MD5f, ImpHf, PeHf, FuzHf, ResHf)

Database 

of Hashes

        XImpH ⟵ Pull 

∀MD5 , ImpH = ImpHf

XPeH ⟵ Pull  

∀MD5 , PeH = PeHf

  XResFH ⟵ Pull 

∀(MD5 , ResFH) 

        XFuzH ⟵ Pull 

∀(MD5 , FuzH) 

Is XImpH  null? 

Is Max(CFH (FuzH,∀x1 
,({x0,x1}∈ XFuzH ))  > 0?

Is XPeH  null? 

Is Max(CFH (ResFH,∀x1 

,({x0,x1}∈ XResFH ))  >0? 

Set the HashFlag_set(ImpH)Yes

No

Stop

Set the HashFlag_set(PeH)Yes

No

Set the HashFlag_set(FuzH)

Yes

Set the HashFlag_set(ResFH)

Yes

Return the HashFlag_Set {}

No

No
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 XHi ← {md5, Hi}           (6.1) 

Where; Hi = {PeH, ImpH, FuzH, ResFH} 

During the comparison of PeHash and Imphash, only the hashes similar to the 

calculated hash were pulled from the database. If the set Xhi was Ø (null), the 

HashFlag_set position corresponding to the hash of type i was not set. It was set 

otherwise. While for resource Ssdeep hash and file Ssdeep hash, all the hashes 

were pulled from the database and an Ssdeep similarity match was done for the 

file hashes and the respective database populated hashes.  

Algorithm 6.3 Algorithm for populating Detection Rates 

Input: ds ⟵B , DBFH 
Output: DetectionRates  

Overall Hash Based Detection Rate Phase 

procedure: HaBaDR  
for file (f) in B do 
    H_flagset f  
for i = 1 →  4                           ⊳Loop through the hashes set ids 
      if f ∈ B then 
              if H_flagset fi  then 
                    TPi = +1  

                      else  
                    FNi = +1 
             end if 
           end if 
           if f ∈ Clds then 
              if H_flagset fi  then 
                    FPi = +1  

                      else  
                    TNi = +1 
                end if 
             end if 
           Update DetectionRatesi ⟵{ TPi, FNi, FPi, TNi} 
    end for 
return DetectionRates 
end procedure 

 

If the maximum similarity percentage calculated was greater than zero, the 

HashFlag_set position corresponding to the hash of type i was set. It was not set 

otherwise. Each file corresponds to one set of HashFlag_set. The second phase 

entailed populating total count of instances where the flag position of the hash is 

set. For the malicious subset (True Positive –TP if set. False Negative –FN if not 
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set), Clean subset (True Negative – TN if not set. False Positive – FP if set) as 

shown in Algorithm 6.3. 

6.3.4.2 Calculate the CFI of all the individual hashes. 

The detection rates obtained in the above sub-step are used to calculate the CFI 

of each hash which is used as a measure of belief for each hash detection factor. 

True detection rates are used as a measure of the hash methodology accuracy 

to minimise the error incorporated in the support factors. To make the detection 

rates compatible with the combinational theories, the positive detection rates are 

normalised to probabilities that add up to 1. The normalised detection rates take 

the form of the degree of belief in the uniform range [0, 1]. Simple Additive 

weighting [137] is applied to the detection rates so that the degree of belief/ 

Criteria Factor Index (CFI) for each Hash method is defined as: 

CFIa =    a

-1
4

1

TDR *








n

nTDR       (6.2) 

Where TDRa = 
DatasetBinNumber

TNTP aa

__

  

These CFI values are used as the expert factors for the respective hashing 

techniques to support the hypothesis that the file is malicious. 

6.3.5 Application of Evidence Combination Theory Approach 

The CFI values obtained in step 6.3.4 are inputs to Algorithm 6.4 for the 

combinational approach application to the analysis as further shown in Figure 

6.5. The MD5 comparison phase is used as a known malware filter for the 

designed method. This phase is a redundancy step introduced to avoid replication 

of the malware samples in the evaluation experiment. The Hashes comparison 

phase uses the file calculated hashes and compares them against DBFH. The 

query in equation 6.1 is used in this phase too. The support factors for the hashes 

are computed from the results obtained from the respective queries. For Pehash 

and Imphash, if the resulted set is not null, then the corresponding Support Factor 

(SF) is equivalent to the CFI of the respective hash. Otherwise the hash’s SF is 

set to zero. For Resource Section Ssdeep hash and file Ssdeep hash, the 

corresponding SF is equivalent to the CFI multiplied with the maximum similarity 

percentage achieved from comparing the file and the hashes in the database. 
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The Calculated SF values of the various hashes are combined using the evidence 

combinational models to get the algebraic sum for the overall hypothesis. The 

result is feed into the TLBSA (Traffic Light Based Scoring Assessor) which returns 

the calculated quantitative file status measure and a recommendation for the 

user. 

6.3.6 Generation of the Traffic Light Based Scoring Assessor (TLBSA) 

Thresholds. 

The calculated malware detection rate evaluation values provide a way of 

identifying how well the designed method works. However, to ensure that there 

is as high true positive detection vs very low false positives trade-off, we need to 

design thresholds. Therefore, the resultant percentages from the combined 

hashing technique are compared to add an overall “Traffic Light Based Scoring 

Assessor” (TLBSA) that evaluates the score attached to the file to give the user 

a recommendation based Table 6.4 

TLBSA 
Colours 

Deduced Malicious 
intent of the file 

System Recommendation 

Red Definitely malicious Do not Install 

Amber Medium Suspicion 
Highly encouraged to submit it for further 
analysis 

Green Low Suspicion May submit it for further analysis 

Table 6.4 The TLBSA Colour definitions 

The TLBSA threshold percentages are defined by best effort True positive- false 

positive trade-off. Since the system does not completely guarantee that the file is 

safe, the final decision is left to the user. The system however, ensures that the 

user is informed with the file malicious score and the system recommendation so 

that the human factor risk is controlled. 
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Figure 6.5. Flow chart showing the calculation of the MalHaScore for file samples.
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Algorithm 6.4 Combination of Hashes Based Detection Mechanism 

Input: PE file f , CF and DBFH 
Output:  Mal(f) 

Extract file Hashes Phase 

procedure:HaBCoMalD(f) 
Extract  
            Hashes(f) ⟵{MD5, ImpH, PeH, FuzH, ResFH} 
 return Hashes(f) 

MD5 Comparison Phase 

MD5f  ⟵  Hashes(f) MD5 

 XMD5 ⟵ πMD5  (σ "MD5=MD5f" 
 

(DBFH)) 

 if XMD5 ≠ null then 
         Mal(f) = 100% 
         end procedure 
 else 
       goto HashComp 
end if 
return Mal(f)     ⊳provide a system recommended action for the user   
end procedure 

Hashes Comparison Phase 

HashComp: 
     ImpHf  ⟵  Hashes(f) ImpH 
     PeHf  ⟵  Hashes(f) PeH 
        FuzH f  ⟵  Hashes(f) FuzH 
        ResFH f  ⟵  Hashes(f) ResFH 

        XImpH ⟵ 𝜋𝑀𝐷5  (𝜎 "𝐼𝑚𝑝𝐻=𝐼𝑚𝑝𝐻𝑓"(𝐷𝐵𝐹𝐻)) 

     if XImpH ≠ null then 
          SFimpH = CF impH  * 1.0 
     else 
          SFimpH = 0 
      end if 
 

      X PeH ⟵ 𝜋𝑀𝐷5  (𝜎 "𝑃𝑒𝐻=𝑃𝑒𝐻𝑓" 
 

(𝐷𝐵𝐹𝐻)) 

      if X PeH ≠ null then 
          SF PeH = CF PeH  * 1.0 
     else 
          SF PeH = 0 
      end if  
 
XFuzH ⟵ 𝜋𝑚𝑑5,𝐹𝑢𝑧𝐻 (𝐷𝐵𝐹𝐻) 
     if X FuzH ≠ null then          
          SFFuzH = CFFuzH  * (Max (CFH (FuzH f , ∀x1 ,({x0, x1} ∈ XFuzH)))) 
     else 
          SFResFH = 0 
      end if  
 
XResFH ⟵ 𝜋𝑚𝑑5,𝑅𝑒𝑠𝐹𝐻 (𝐷𝐵𝐹𝐻) 
    if XResFH ≠ null then 
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        SFResFH =CFResFH * (Max (CFH (ResFHf , ∀x1, ({x0, x1} ∈ XResFH)))) 
     else 
          SF ResFH = 0 
      end if 
 
MalHaScore(f)FST  = FuzzyLogicSum(SF PeH , SFimpH , SFResFH, SFResFH )* 100% 
MalHaScore(f)CFM  = MYCINSum(SF PeH , SFimpH , SFResFH, SFResFH )* 100% 
end procedure 

 

6.4 Dataset preparation and test environment.  

We initially test the method on smaller dataset containing a total of 22988 files 

and these were prepared as seen in Table 6.5.  

Dataset A B C Total Files 

Malicious files 7124 7355 7269 21748 

Clean files   623 617 1240 

Table 6.5 The Initial (St.1) Study Dataset 

We then extended our study after collecting more files and the final total dataset 

was prepared as shown in Table 6.6 for the different required sub-datasets. 

Dataset A B C Total Files 

Malicious files 34224 32844 37460 104528 

Clean files  698 940 1638 

Table 6.6 The Final (St.2) Experiment Dataset 

The test environment uses the tools specified in Table 6.7. We use a Linux-based 

operating system because the files under analysis are .exe files. The algorithms 

are scripted in python and some functions from Peframe and Pefile are extended 

to compute the file hashes under consideration; Ssdeep, PeHash, and Imphash.  

The algorithms are python scripts and the database of Hashes is managed using 

SQLite. 

Tool Specifications/ Details 

Computer Dell T1700, CPU – Intel  Xeon@ 3.1GHz,  

RAM 32GB.  Hard Disk – 500GB 

Machine OS Linux Mint 17.1 (#64 – Ubuntu SMP) 

Static Analysis tool Study specific Static Analysis Tool  

 calculates the Ssdeep, Resource Section 

Ssdeep hash, Pehash, and Imphash 

Data management tools SQLite Studio version 3.0.6. 

Python IDLE version 2.7.9 

Table 6.7 Test Bench Specifications 
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6.5 Experimentation results and analysis  

The result log is formulated to be interpreted as follows: The first column is the 

filename. The second column the calculated hashes flags of the file that found 

to be similar to those already existing in the database where I – Imphash, P – 

PeHash, F – File Fuzzy hash and R – Resource section fuzzy hash. The Third 

column gives either one value; “Unknown” if there is no database hash matched 

or two values; Fuzzy logic method score and Common factor method score.  

 

Figure 6.6 Result Log showing the Analysis results of 6 different files 

6.5.1 Observations from the single file study test 

The results from the single file test shown in Table 6.8 validate the interest in this 

study for similarity matching. Since obfuscated malware tend to reorganise their 

code to evade detection, these changes can be reflected in similarity matches.  

The results show that a small change in a file can greatly affect the results of 

similarity matching in some hashes while having very little to no effect in others. 

This justifies the investigations further carried out in this study on the hashes that 

return a similarity score greater than 0%. 

6.5.2 Malware detection performance of the individual in-scope Hashes 

and calculation of the CFI.  

In the second phase of the study, the main aim was to design a method to 

calculate the CFI metrics of the hashing techniques used. Dataset B is used in 

this step not only to set the CF metrics for the framework, the results obtained 

are also used to evaluate detection rates of the different hashing techniques as 

shown in. The counts of the hash fields in HashFlags_set for each achieved 

similarity match are tallied to obtain the confusion matrix performance metrics for 

all the hashes. The graphs in Figure 6.7 show how various hashes stack up 

against each other in detection rates.  
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Hash Type Original File Value Edited File Value Score(%) 

MD5 33f9b0e02d9d93f920605d02fb53f3fd accd6591b8b8dad5f7f1470c90971e75 0 

SHA1 4a22e401ad5adb7b3de8f819e86d8461d764d195 06b98e35c1f92f844b57376ee467ee977cc074bd 0 

SHA256 1f4c090dfa389b3c6b16eb42299fb815f24efac7ca54

1bb60821e3da0131b8f6 

bd4f056223439e83f2fffbe3c463e178da8465fabe

b51243c04a3d2922de8fa2 

0 

Ssdeep-File 384:5u3Smmq6aYaBpYFAfjhXrToHWS4mW4sme9

V:Avmq6affYFAfjhr8sgE 

384:5u3Smmq6aYaBpYFmfjhXrToHWS4mW4s

me9V:Avmq6affYFmfjhr8sgE 

99 

PeHash 5515f8e47661c7e170aee948cca7c8dc6198c08f 5515f8e47661c7e170aee948cca7c8dc6198c08f 100 

Imphash 880bb6799a6e1a5ff7b4f022ff4003a9 880bb6799a6e1a5ff7b4f022ff4003a9 100 

Ssdeep -

Resources 

96:8EWS1pEmWwOh/VsBgtAb88caS5Ur9I5fa9VW

PBMXsmrC9V:NWS4mWNJXCu6Xsme9V 

96:8EWS1pEmWwOh/VsBgtAb88caS5Ur9I5fa9

VWPBMXsmrC9V:NWS4mWNJXCu6Xsme9V 

100 

Table 6.8 Comparison of Hashes from the Single File Study 
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Malware detection performance of the individual in-scope Hashes and calculation of the CFI 

 Recall (%) PPV (%) ACC (%) 
F-score 

(%) 

Detection Rates 
CFI (%) 

TRUE (%) FALSE (%) 

 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 

ImpH 97.2 85.6 99.4 93.3 96.9 89.7 89.3 96.9 85.7 3.1 14.3 25.6 27.0 

PeH 96 82.8 100 100 96.4 91.4 90.6 96.4 83.1 3.7 16.9 25.4 26.2 

FuzH 95.21 76.2 100 100 95.6 88.1 86.5 95.6 76.7 4.4 23.3 25.3 24.1 

ResFH 88.97 71.7 99.9 99 89.9 85.5 83.2 89.9 72.3 10.2 27.7 23.7 22.7 

Comparative analysis of the individual hashes 

against the proposed Combined Hashing 

Methods. 

Comparative analysis of the performance of the proposed method after 

application of the TLBSA. 

 Detection Rates 
 PPV (%) Recall (%) Acc (%) F-Score (%) TRUE (%) FALSE (%) 

 St. 1 St. 2 St. 1 St. 2 

ImpH 97.2 84.6 2.8 15.4 ImpH 74.2 84.9 77.7 79.2 

PeH 96.3 82.7 3.7 17.3 PeH 99.7 82.3 91 90.2 

FuzH 96.1 75.6 3.9 24.4 FuzH 79.9 75.5 78.2 77.6 

ResFH 90.4 71 9.6 29 ResFH 60.5 71.5 62.4 65.5 

Combined 

Hashing 

Methodology 

(CHM) 

98.2 93.2 1.8 6.8 

FL_GTP (< 25%) 99.2 92.2 91.6 95.5 

FL_ATP (≥ 75%) 99.9 70.5 71.2 82.7 

CF_GTP (< 25%) 99.2 92.1 91.6 95.5 

CF_ATP (≥ 70%) 100 69.8 70.4 82.1 

Table 6.9 Experimentation Calculated Metrics 
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Figure 6.7 The Hashes Detection Rates using Dataset B for the final study 

6.5.2.1 Comparative analysis of the individual hashes against the proposed 

Combined Hashing Methods.  

Data C is used to calculate the overall file malicious percentage to validate the 

proposed framework. The output logs of the large-scale detection are analysed 

with the confusion. The results achieved for the proposed method are compared 

against the results achieved for each individual hash in Figure 6.8 and Figure 6.9 

in the two studies. To further analyse how the methodology scores the clean and 

malicious files, there was need to investigate the different curves defined by the 

clean and malicious file scores for the two proposed methods.  Figure 6.10 and 

Figure 6.11 show the file scoring area curves of each adopted method for the 2 

studies which shows that most of the malicious files score higher than the clean 

files. The repeatability of the experiment using various datasets and observing 

similar trends in the end result file scores provides an argument for the proposed 

approach. 

6.5.2.2 Performance of the proposed method after application of the TLBSA. 

Since the aim of this study is to devise an optimum malware detection 

methodology, we investigate the true positive and false negative trade-off of the 

two proposed evidence combination methods. The following comparisons are 

made based on the results from the final study. The true positive rate against 



CHAPTER 6 

102 

 

false positive rate curves of the two proposed methods are compared in Figure 

6.12 and the precision against recall plots are compared in Figure 6.13. Since F-

score is known to be a weighted measure of precision and recall, it is plotted 

against the file score threshold in Figure 6.14. 

In Table 6.9, we compare the two proposed methods to determine the best 

TLBSA threshold percentages.  

Where FL – Fuzzy Logic Method. 

   CF – Common Factor Model Method. 

   GTP – Green Threshold Percentage. 

   ATP – Amber Threshold Percentage. 

 

Figure 6.8 Comparing the individual hashes against the proposed combined 

method for the initial study 

 

Figure 6.9 Comparing the individual hashes against the proposed combined 

method for the final study 
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Figure 6.10 The Combined Hash Score Clean and Malware 

file Area curves (a) Common Factor method and (b) Fuzzy 

Logic Method from the initial study 

 

Figure 6.11 The Combined Hash Score Clean and Malware 

file Area curves (a) Common Factor method and (b) Fuzzy 

Logic Method from the final study 
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Figure 6.12 True positive rate vs False positive rate curves for Evidence 

Combination methods 

 

Figure 6.13 Precision- Recall curve of the proposed evidence combination 

methods 

 

Figure 6.14 Model F-score for the different score percentage threshold 
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Figure 6.15 Recall, Precision, Accuracy and F-score Comparison for the 

proposed methodology percentage thresholds 

Further analysis of the detection ratios of the malware types in the datasets is 

done in Figure 6.16 which shows that proposed method performs well for specific 

malware types. Given the deviation between the detection achieved in this 

method and the one in the earlier proposed method provides an argument for 

situations where they can be used in combination. 

 

Figure 6.16 Malware type detection ratios for the dataset used. 

6.6 Results Discussion of the proposed Evidence Combination of 

Hashes methods for malware detection. 

This study proposes and evaluates two methods for combining the individual 

hashes results for malware detection. The initial study of the single file analysis 

provides the foundational argument for this investigation. Having created a small 



CHAPTER 6 

106 

 

change in the contents of a clean PE file, the fact that the hashes return different 

similarity results substantiates the premise that similarity matching using hashing 

can overcome obfuscated malware. In the second phase of the study, the 

individual hash results achieved further support this argument. The introduced 

resource section hash matching gives the second precision value in the 4 

algorithms. From the comparison in this phase of the study, PeHash is the best 

performing of the 4 hashes. In the third phase of the study, normalising the log 

so that the files which return a no similarity match score have a 0% score. This 

allows for easier analysis of the results as earlier mentioned.  Analysis of the logs 

to validate the Combined hashing methodology results into achieving an overall 

false detection rate of 6.8% and a true detection rate of 93.2 %; the best 

performance values in comparison to the results achieved by the individual 

hashing algorithms.  This shows that the proposed methodology out performs all 

the individual methods. However, reviewing the true positive to false positive 

detection trade-off for this proposed method shows that this technique is 

susceptible to very high false positive of 60% this required evaluation of the model 

to achieve a better trade off. We therefore introduce the TLBSA assessor at this 

stage so that the file status has 3 zones; Green zone where the file is less likely 

to be malicious, Amber zone where the file is likely to be malicious and the Red 

zone where the file is most likely to be malicious. Creating the percentage 

thresholds for these zones in this method required the analysis of the two 

proposed and evaluated methods. The initial analysis at this stage involved 

evaluating the analysed dataset clean file scores vs malicious file scores for the 

two evidence combination methods. Both curves in Figure 6.11 show that 83% of 

the malicious files obtain a malicious score above 50% while 78% of the clean 

files have a malicious score less than 50%. We then analyse the two proposed 

performance results against each other to gain an understanding of the better 

performing technique.  

The main aim for this analysis is to increase the overall true positive detection 

rates while decreasing false positive detection rates. Therefore, Figure 6.12 

compares how the two methods measure up against each other and the curves 

show that Fuzzy Logic provides a better performance of 65% True Positive Rate 

(TPR) to 0% False Positive Rate (FPR) vs 60% TPR to 0% FPR of the Common 
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Factor method initially and then both methods follow the same trend thereafter.  

For further evaluation, Figure 6.13 evaluates the methods’ precision to recall and 

to pinpoint the thresholds that would work best for this method, Figure 6.14 

compares the F-score achieved for both methods across the different malicious 

file scores of the tested dataset. With the thresholds obtained as discussed earlier 

and shown in Table 6.9, we evaluate how well our method works against the 

individual hashing algorithms in Figure 6.15. The Amber threshold percentage 

(ATP) which marks the percentage above which the file is said to be in the red 

zone out performs all the individual hash techniques. However, since this 

percentage creates a very low TPR of 70% for the Fuzzy logic method and 62% 

for the Common Factor Model method, there is need to analyse the needed 

Green threshold percentage (GTP). GTP marks the percentage below which the 

file is said to be in the green zone and above which it is said to be in the amber 

zone. It creates a much-needed raise in TPR of 92% for both the proposed 

techniques. With this integrated design to detecting malicious files based on the 

Traffic Light Based Scoring Assessor (TLBSA), the number of files detected is 

higher. The threshold percentages that allow optimum trade-offs and enable the 

system provide a user with information that helps protect their system with an 

accuracy of at least 92% achieved in this study. 

6.7 Chapter Summary. 

This chapter introduces a heuristic malware detection approach that successfully 

combines the hashing results to provide an overall best performing recall of 92%, 

a precision of 99%, an accuracy of 91% and an F-score of 96% which are higher 

than the detection rates for the independent hashes. The method can also be 

open sourced to allow for customised manipulation and extension of the 

algorithms by malware analysts. Since the technique uses static analysis, it is 

safe against malware that evade sandboxes and dynamic analysis environments. 

As a way of controlling the risk introduced by the human factor in security system, 

we present a quantitative measure for the malicious status of the file. The 

limitation of this system is that one needs a starting baseline of the database of 

malicious file hashes. However, the use of a simple database working with light 

weight analysis scripts reduces the impact of this limitation. In this study, the 

database of hashes created with 34224 rows of hash signatures only occupied 
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18MB. The methodology designed also allows for easy update of the signatures 

so the built model’s performance increases with the number of hashes signatures. 

The results achieved in this study show that the proposed methodology provides 

a way of building an efficient integrated malware detection system. Our system 

was designed using light weight tools which makes it fast. In malware detection, 

the objective is to build a filter like system and with this work, we introduce a way 

of detecting malicious PE type files without the need for dynamic analysis unless 

the result is inconclusive.  
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CHAPTER 7. CONCLUSION  

7.1 Findings 

This work proposes two approaches of building a heuristic feature based 

framework that quantifies the malicious intent of a file. Our approaches are 

designed to be light, fast, and efficient and at the end attach a numerical score to 

how malicious a file is deemed to be to the system. This numeric values is 

intended to ensure that even a standard computer user can decide with high 

confidence levels about the effect the file might have on the system. We limit our 

scope to Portable Executable files to design the schemes and use multiple 

attribute based decision making and evidence combination theory. We also limit 

the amount of storage resources required by the signatures by using similarity 

hashes that are calculated values and probabilistic scoring heuristic anomalies 

so that the approaches are not resource heavy.  

Our MalScore study introduces a technique for scoring file feature anomalies by 

attaching a probability score to identified PE heuristic anomalies. The designed 

approach achieves a true positive detection rate of 97.6% to a false positive 

detection rate of 0.6% trade-off at a threshold score of 45%  

The MalHaScore study successfully introduces a way of combining the similarity 

hashing results for a more efficient malware heuristic detection approach that 

provides an overall best performing true detection rate of 93.2%, a false detection 

rate of 6.8%. Recall of 92%, a precision of 99%, an accuracy of 91% and an F-

score of 96% which are higher than the detection rates for the independent 

similarity hashes.   

These approaches can be further customised based on the file type and extended 

based on the requirements of the malware analyst.   

7.2 Comparison of the two proposed approaches 

In this work, we designed two approaches that attach scores to PE files to 

measure the malicious intent of the file. We took a two-dimension approach 

where we designed methods that can be used by a standard computer user and 

a malware analyst by focusing on reducing the analysis time and providing a 

metric measure for file maliciousness. 
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The two approaches perform differently and have various strengths over each 

other as compared in Table 7.1 and Table 7.2 and can therefore, also be used in 

combination.  

Feature MalScore MalHaScore 

Average PE File 
detection time 

6.1 Seconds 4.3 Seconds 

Signature Storage 
Usage 

15KB (This is for the 25 
top features) 

18MB (Varies based on the 
number of hashes stored) 

Detection Rates 
TPR– 97.6%, FPR – 
0.6% 

TPR- 93.2%, FPR - 6.8% 

Recommended 
for 

Standard Computer 
User 

Malware Analyst 

Table 7.1 Comparing the two proposed methods 

The comparisons show that while MalHaScore is faster than MalScore, it requires 

more signature storage as MalHaScore relies on having a populated database of 

Hashes as its signature. MalScore out performs MalHaScore in terms of the 

detection rates. Therefore, we recommend that MalScore is more suited for the 

standard computer end user while MalHaScore can be used by an analyst since 

there is also an option for the analyst to revisit the similar files hashes that lead 

to the file score. The malware type detection rates show that MalScore 

outperforms MalHaScore in all the categories expect the Downloader malware 

type.  

 

MalScore MalHaScore 

Detected unDetected Detected unDetected 

Trojan 97.8% 2.2% 92.3% 7.7% 

Adware 98.5% 1.5% 94.9% 5.1% 

Worm 97.9% 2.1% 94.6% 5.4% 

Downloader 75.5% 24.5% 88.7% 11.3% 

Dropper 96.7% 3.3% 93.3% 6.7% 

Virus 92.7% 7.3% 93.9% 6.1% 

Spyware 81.8% 18.2% 55.0% 45.0% 

Exploit 85.7% 14.3% 25.0% 75.0% 

Table 7.2 Comparing the malware type detection ratios for the two proposed 

methods 

7.3 Limitations and Challenges 

Although the framework approaches achieve efficient malware detection rates, it 

has some limitations. During the design phase of this study, we limited our study 
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to only Portable Executable files and therefore the designed heuristic methods 

were trained and tested on files of PE format only. This implies that it would not 

work for other file types although it is our belief that if the same processes are 

followed, the approaches can be adopted for other file types. 

During the validation stage of our study, we intended to compare our work against 

already existing tools and approaches. However, after extensive research, we 

were unable to find a finished system that scored files and therefore these tests 

were not possible. Testing the methods against other anti-virus systems that do 

not achieve the same end output as our approaches would not yield results fair 

to our approaches. 

 Since the intent was to design a fast heuristic approach, we limit our malware 

analysis techniques to static based analysis to perform the feature extraction and 

hash function calculations. This allows the proposed methods to be very fast and 

not resource intensive. However, this also implies that heavily obfuscated 

malware might be able to evade detection by this framework. 

One of the main challenges of this study was collecting the training and testing 

dataset. We actively searched and collected malware and clean files during the 

study in that the initial studies were fully explored using the large dataset that we 

had in the end. This led to the replication of various studies. 

7.4 Future work 

In this work, we present a quantification framework for efficient malware detection 

in portable executable files by proposing two approaches. These can be further 

extended to include some additional features. Some of the identified extensions 

are: 

a) Combining the designed approaches: we propose using evidence 

combinational methods that would not be affected by the use similar 

theories in the component approaches. Investigating the achieved 

results could lead to an overall file score as one metric for measuring 

malicious status. 

b) Adopting the methods for other file types: One of our hypotheses is that 

the designed approaches can be adopted for other file type for both 

mobile and Personal Computer malware. So, it would be worth 
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exploring and testing the adoption of the approaches for android based 

malware and other file types like .pdf, macro malware among others. 

c) Integrating n-gram code based analysis and detection approaches in 

the framework. Due to various recent research work that utilise n-gram 

code malware analysis, we believe that this is an approach that can be 

used in conjunction with the suggested approaches. So, it would be 

worth exploring to see how an extension of this work using the n-gram 

approach results would affect the detection rates achieved in this 

study. 

d) Further explore the effectiveness of our detection method for different 

malware variants and unknown malware. Although we test the 

methods against known and identified malware types, it is our 

expectation that the designed methods can be used to detect variants 

of known and unknown malware.   

7.5 Summary 

As internet use evolves and the internet of things becomes a reality, there is need 

to be more vigilant about protecting networked systems from being compromised. 

This is especially important as Cybercrime is expected continue to raise up to 

costing the world $6 trillion by 2021 as earlier stated. Malware which is one of the 

ways through which computer systems are compromised and exploited is also 

expected to be a growing challenging with statistics showing that each year, the 

number of malware discovered keeps growing. Protection of the end systems is 

very important as they are the target due to the commercial value attached to 

information, processing resources or even the ability to disrupt their use as seen 

in the ransomware attacks. Anti-malware solutions available today allow for the 

protection of the system however there is still more improvement needed as 

systems become more high performance and computer usable becomes more 

individual controlled. Providing a standard user with more cognitive information 

for more efficient decision making on a file malicious intent can be the difference 

between a compromised system and a safe system.  
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