

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

A HEURISTIC FEATURE BASED QUANTIFICATION

FRAMEWORK FOR EFFICIENT MALWARE DETECTION

Measuring the Malicious intent of a file using anomaly probabilistic scoring and

evidence combinational theory with fuzzy hashing for malware detection in

Portable Executable files.

Anitta Patience Namanya

Submitted for the degree

of Doctor of Philosophy

School of Electrical Engineering and Computer Science

University of Bradford

2016

ii

To my Mum and Dad, Alice and Nathan for their love, prayers and never

ending encouragement.

To Mac, thank you for being you.

To Amara, very excited to meet you.

To my sisters Itah, Anolyne, Anglyne and Anabella, the best siblings anyone

would ever ask for.

iii

ABSTRACT

Anitta Patience Namanya “A HEURISTIC FEATURE BASED QUANTIFICATION FRAMEWORK
FOR EFFICIENT MALWARE DETECTION”
Keywords: Malware detection, evidence combinational theory, hashes, portable executable, file
features, anomalies, probabilistic scoring, automated static analysis, malware

Malware is still one of the most prominent vectors through which computer

networks and systems are compromised. A compromised computer system or

network provides data and or processing resources to the world of cybercrime.

With cybercrime projected to cost the world $6 trillion by 2021, malware is

expected to continue being a growing challenge. Statistics around malware

growth over the last decade support this theory as malware numbers enjoy almost

an exponential increase over the period. Recent reports on the complexity of the

malware show that the fight against malware as a means of building more resilient

cyberspace is an evolving challenge. Compounding the problem is the lack of

cyber security expertise to handle the expected rise in incidents.

This thesis proposes advancing automation of the malware static analysis and

detection to improve the decision-making confidence levels of a standard

computer user in regards to a file’s malicious status. Therefore, this work

introduces a framework that relies on two novel approaches to score the

malicious intent of a file. The first approach attaches a probabilistic score to

heuristic anomalies to calculate an overall file malicious score while the second

approach uses fuzzy hashes and evidence combination theory for more efficient

malware detection. The approaches’ resultant quantifiable scores measure the

malicious intent of the file.

The designed schemes were validated using a dataset of “clean” and “malicious”

files. The results obtained show that the framework achieves true positive – false

positive detection rate “trade-offs” for efficient malware detection.

iv

ACKNOWLEDGEMENTS

I would like to thank God for everything; His Grace, Guidance and the faith I have

in Him to enable me finish this study. I would like to thank my parents for loving

me unconditionally and their belief that allowed me to believe that I could

accomplish all I set out to do. I am eternally grateful for Mac, baby Amara and my

sisters. You are the inspirations that make me do my best each day.

I am very grateful to the University of Bradford for funding this research degree.

This was an amazing opportunity that I shall forever be thankful for.

This work would not have been possible without the untiring support of my

supervisors; Prof Irfan Awan, Dr Jules Pagna Disso and Dr Andrea Cullen who

gave me so many chances to get this right that I am glad, I did not let you down.

Thank you very much for your belief in me and your support. I also would like to

extend both my examiners for the corrections suggested that enabled me to make

this thesis a better write-up of my work.

My guardians in faith; Pastor Akpo. Pastor Andrea and Chapel of Grace friends,

thank you for standing with me in prayer and being my tether to the Lord that

makes all things amazing in His time.

A big thank you to Nettitude Ltd for all the support during this study. Access to

data, technical support and the opportunity to work with such an amazing group

of people shaped my thinking process every day.

I am indebted to all my siblings for being the much-needed inspiration, my

colleagues in the cybersecurity research group; Adeeb, Rashid, Qublai and

Hammad for being great sounding boards in these 4 years. To my new working

family at Nettitude especially my boss Mark, my colleagues in Research at

Bradford, thank you for all the laughter and jokes that kept me sane. To all my

friends and family that kept me believing I could do this, Rashid, Mac, Bashir,

Kabiru, Odili, Mwanja, Kemi, Pamela, Amanda, Aunt Joy, Aunt Jadress and many

others, thank you and May God bless you.

v

PUBLICATIONS:

1. Namanya, A.P; Pagna-Disso, J; Awan, I (2015): Evaluation of automated

static analysis tools for malware detection in Portable Executable files; UK

Performance Engineering Workshop(UKPEW), 2015 31st UKPEW, pp. 81-

95, 17 Sept 2015, University of Leeds, UK.

2. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Pagna-Disso, J; Awan, I

(2016): Detection of Malicious Portable Executables using Evidence

Combinational Theory with Fuzzy Hashing; Future Internet of Things and

Cloud (FiCloud2016), 2016 IEEE 4th International Conference, 22-24 August

2016, Vienna, Austria.

3. Al-Mohannadi, H; Mirza, Q.K.A; Namanya, A.P; Pagna-Disso, J; Awan, I

(2016): Cyber-Attack Modelling Analysis Techniques: An Overview; Future

Internet of Things and Cloud Workshops (W-FiCloud2016), 2016 IEEE 4th

International Conference, 22-24 August 2016, Vienna, Austria.

4. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Cullen, A; Awan, I

(2016): Towards Building a Unified Threat Analysis and Management

Framework; UK Performance Engineering Workshop(UKPEW)& Cyber

Security Workshop (CyberSecW), 2016 32nd UKPEW&CyberSecW, 7th – 8th

Sept 2016, University of Bradford, UK.

5. Munir, R; Ahmed, B; Al-Mohannadi, H; Rafiq, M; Namanya, A.P;

(2016): Performance Security Trade-off of Network Intrusion Detection and

Prevention Systems; UK Performance Engineering Workshop(UKPEW)&

Cyber Security Workshop (CyberSecW), 2016 32nd UKPEW&CyberSecW,

7th – 8th Sept 2016, University of Bradford, UK.

6. Namanya, A.P; Pagna-Disso, J (2013): Performance modelling and analysis

of the delay aware routing metric in Cognitive Radio Ad Hoc

networks; Wireless and Mobile Networking Conference (WMNC), 2013 6th

Joint IFIP , vol., no., pp.1,8, 23-25 April 2013, Dubai, UAE.

Submitted Journal Work:

1. Namanya, A.P; Mirza, Q.K.A; Al-Mohannadi, H; Pagna-Disso, J; Awan, I:

Malicious Portable Executables Scoring Methodology using Evidence

http://www.comp.leeds.ac.uk/scswsci/ukpew15/proceedings.pdf
http://www.comp.leeds.ac.uk/scswsci/ukpew15/proceedings.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6549030&queryText%3DPerformance+modelling+and+analysis+of+the+delay+aware+routing+metric+in+Cognitive+Radio+Ad+Hoc+networks
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6549030&queryText%3DPerformance+modelling+and+analysis+of+the+delay+aware+routing+metric+in+Cognitive+Radio+Ad+Hoc+networks
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6549030&queryText%3DPerformance+modelling+and+analysis+of+the+delay+aware+routing+metric+in+Cognitive+Radio+Ad+Hoc+networks

vi

Combinational Theory with Fuzzy Hashing.; Second stage review - IEEE

Transactions on Dependable and Secure Computing 2017.

Posters:

1. Namanya,A.P; Pagna-Disso, J, Awan, I (2015): A framework for automated

hybrid signature generation for Portable Executable malware detection;

Poster presented at the ACM-W UK Inspire 2015 Celebration of Women in

Computing. Imperial College, London, UK – Awarded 2nd Prize in Best Poster

Award.

2. Namanya, A.P; Pagna-Disso, J, Awan, I (2016): Malicious PE Static Scoring

method using Evidence Combinational Theory with Fuzzy Hashing; Poster

Presented at ACM-W Europe WomENcourage 2016 Celebration of Women

in Computing. Johannes Kepler University, Linz, Austria.

https://www.computer.org/web/tdsc
https://www.computer.org/web/tdsc
https://www.dropbox.com/s/9lxllarchb0hbm8/ACM-%20Women%20Poster%202015-%20Anitta%20P%20Namanya.pdf?dl=1
https://www.dropbox.com/s/9lxllarchb0hbm8/ACM-%20Women%20Poster%202015-%20Anitta%20P%20Namanya.pdf?dl=1

vii

CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

PUBLICATIONS: ... v

List of Tables.. xi

List of Figures ... xii

List of Algorithms .. xv

CHAPTER 1. INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Proposed Solutions .. 2

1.3 Aims and Objectives .. 4

1.4 Contributions .. 4

1.5 Thesis Scope ... 5

1.6 Thesis Structure ... 6

CHAPTER 2. BACKGROUND .. 8

2.1 Malware Overview ... 9

2.1.1 Evolution of Malware ... 13

2.2 Portable Executable File Format (PE).. 16

2.2.1 PE Standard Structure .. 18

2.3 Hashing algorithms .. 20

2.3.1 Cryptographic Hashing algorithms .. 20

2.3.2 Fuzzy Hashing algorithms ... 21

2.4 Evidence Combinational Theory Methods. .. 24

2.4.1 Fuzzy Logic ... 25

2.4.2 The Certainty Factor model ... 25

2.5 The Challenge of Evaluating Anti-Malware Solutions 26

2.5.1 Proposed solutions evaluation method .. 26

2.5.2 Dataset preparation ... 27

2.6 Chapter Summary .. 28

CHAPTER 3. LITERATURE REVIEW .. 29

3.1 Malware Analysis Techniques ... 29

3.1.1 Fully Automated Analysis .. 30

viii

3.1.2 Basic Static Malware Analysis ... 31

3.1.3 Dynamic Malware Analysis ... 32

3.1.4 Reverse Engineering ... 33

3.2 Malware Evasion of Analysis and Detection Evasion. 34

3.2.1 Anti-Analysis Techniques: ... 35

3.2.2 Obfuscation Techniques .. 37

3.2.3 Types of Obfuscated Malware ... 40

3.3 Existing Malware Detection Techniques and Solutions........................ 42

3.3.1 Integrity Checker ... 42

3.3.2 Signature Based Detection .. 43

3.3.3 Semantic Based Detection. ... 44

3.3.4 Behavioural Based Detection .. 44

3.3.5 Heuristic Based Detection ... 45

3.4 Recent Heuristic Based Malware Detection Research Solutions 46

3.5 Chapter summary .. 49

CHAPTER 4. EVALUATION OF AUTOMATED STATIC ANALYSIS TOOLS

FOR MALWARE DETECTION IN PORTABLE EXECUTABLE FILES 50

4.1 Introduction: ... 50

4.2 Overview of automated Static Analysis tools. 51

4.2.1 Peframe ... 51

4.2.2 Pyew ... 52

4.2.3 Mastiff .. 53

4.3 Test Environment ... 54

4.3.1 Comparison, Analysis and Evaluation Approach 54

4.4 Test Scenarios ... 55

4.4.1 File Identification: .. 55

4.4.2 Detection of Obfuscation Techniques .. 55

4.4.3 Analysis of APIs .. 56

4.4.4 PE file feature analysis .. 56

4.4.5 Ssdeep hashing and Malware clustering 56

4.4.6 Call Graph Extraction and Comparison ... 57

4.4.7 String Analysis... 57

4.4.8 Third Party Plugin .. 58

ix

4.4.9 Usability ... 58

4.5 Feature Comparison, Analysis and Evaluation. 58

4.5.1 Tool Feature Comparison .. 58

4.5.2 Analysis and Evaluation .. 59

4.6 Chapter Summary .. 67

CHAPTER 5. MALSCORE: AN ANORMALY HEURISTIC FEATURE BASED

PROBABILISTIC SCORING METHOD FOR DETECTION OF MALICIOUS

PORTABLE EXECUTABLES .. 68

5.1 Introduction .. 68

5.2 Heuristic observations from the static analysis data of 1.6 million malware

samples and discussion. .. 69

5.3 Methodology Design and Implementation .. 74

5.3.1 Test Environment and Dataset formulation. 74

5.3.2 Aggregation of the Anomalies. .. 75

5.3.3 Application of the Conditional Probability Theories. 76

5.3.4 Identification of Trigger features. ... 76

5.3.5 Formulation of the Individual Anomaly Score. 77

5.3.6 MalScore: The Heuristic Scoring Algorithm. 77

5.3.7 Formation of the Heuristic Detection Score threshold. 79

5.4 Proposed Scoring and detection Method Results and Analysis 79

5.5 Chapter Summary .. 81

CHAPTER 6. MALHASCORE: MALICIOUS PORTABLE EXECUTABLE

STATIC SCORING METHODOLOGY USING EVIDENCE COMBINATIONAL

THEORY WITH HEURISTIC FEATURE CALCULATED HASHES. 83

6.1 Introduction .. 83

6.2 Design choice of Hashes in scope ... 85

6.3 Modelling and implementing the proposed method design. 86

6.3.1 Single File Hashing Study ... 87

6.3.2 Collecting the Datasets ... 87

6.3.3 Populating the Database of Hashes Signatures 89

6.3.4 Hashes Similarity Based Criteria Factor Index (CFI) Formulation. 89

6.3.5 Application of Evidence Combination Theory Approach 93

x

6.3.6 Generation of the Traffic Light Based Scoring Assessor (TLBSA)

Thresholds. ... 94

6.4 Dataset preparation and test environment. .. 97

6.5 Experimentation results and analysis .. 98

6.5.1 Observations from the single file study test 98

6.5.2 Malware detection performance of the individual in-scope Hashes

and calculation of the CFI. .. 98

6.6 Results Discussion of the proposed Evidence Combination of Hashes

methods for malware detection. ... 105

6.7 Chapter Summary. ... 107

CHAPTER 7. CONCLUSION .. 109

7.1 Findings ... 109

7.2 Comparison of the two proposed approaches 109

7.3 Limitations and Challenges .. 110

7.4 Future work .. 111

7.5 Summary ... 112

References.. 113

xi

LIST OF TABLES

Table 2.1 PE file features included the PeHash Calculation 24

Table 2.2 Confusion Matrix ... 26

Table 2.3 The Experiment Dataset ... 27

Table 2.4 Malware type distribution in the Malware Dataset 28

Table 4.1 Experiment Setup Specifications for the evaluation of automated

static analysis tools ... 54

Table 4.2 Static Analysis Tool Feature Comparison ... 59

Table 4.3 Comparison of Mastiff Similarity detection vs Pyew cluster graph

similarity analysis .. 64

Table 4.4 Top URLs extracted .. 65

Table 4.5 VirusTotal analysis results giving 0% detection of known malware ... 66

Table 5.1 The top 20 malware types identified during analysis 69

Table 5.2 Top 20 identified Packers .. 70

Table 5.3 Email Addresses extracted from the data ... 73

Table 5.4 Top 20 URLs extracted from the analysis data 74

Table 5.5 MalScore datasets formation and their uses 74

Table 5.6 Malscore Test Bench Specifications ... 75

Table 5.7 The HIoC set Scoring formulation. .. 78

Table 6.1 Argument for in scope Hashes .. 85

Table 6.2 The Algorithm Notations .. 86

Table 6.3 Datasets Formation and their uses ... 89

Table 6.4 The TLBSA Colour definitions ... 94

Table 6.5 The Initial (St.1) Study Dataset ... 97

Table 6.6 The Final (St.2) Experiment Dataset ... 97

Table 6.7 Test Bench Specifications ... 97

Table 6.8 Comparison of Hashes from the Single File Study 99

Table 6.9 Experimentation Calculated Metrics .. 100

Table 7.1 Comparing the two proposed methods ... 110

Table 7.2 Comparing the malware type detection ratios for the two proposed

methods .. 110

xii

LIST OF FIGURES

Figure 2.1 OS Market Share [23] .. 9

Figure 2.2 An Example of a Botnet layout [37] .. 12

Figure 2.3 Ransomware display messages [38], [39] 12

Figure 2.4 Elk Cloner Poem seen on infected Apple computers in 1981 13

Figure 2.5 The evolution of generations of malware over the years 14

Figure 2.6 Malware sample statistics for the last decade 15

Figure 2.7 Relationship between the linker, executable(Image) and loader 16

Figure 2.8 Generic PE File Structure [48] ... 18

Figure 2.9 The PE File details in PEiD .. 18

Figure 2.10 PE file stucture [49] .. 19

Figure 2.11 The Cryptographic Hashes of a malware Sample 21

Figure 2.12 Calculating the Ssdeep Signature .. 22

Figure 2.13 Ssdeep Signature Form ... 22

Figure 3.1 Stages of presentday Malware analysis ... 30

Figure 3.2 Virus Total Report of a malicious sample ... 31

Figure 3.3 Basic String analysis command in a Linux Enviroment 31

Figure 3.4 File Processing in Anti-virus systems [88] .. 35

Figure 3.5 Some of the Anti- Vm tricks seen in Peframe [73] 37

Figure 3.6 Program Obfuscation ... 37

Figure 3.7 Extract from Zero Access Self decoding Subroutine 38

Figure 3.8 Malware sample details packed with UPX (a) and after unpacking (b)

 .. 39

Figure 3.9 Structure of a Packed PE File[100] .. 41

Figure 4.1 Hex-Dump of entrypoint of file md5-

a3c5e50c55c901767b0c3b7749a48c9b ... 51

Figure 4.2 Peframe Report Extract of the file .. 51

Figure 4.3 Call Graph of a sample malware .. 52

Figure 4.4 Mastiff Work Flow [75] ... 53

Figure 4.5 Pictorial representation of evaluation study Approach 55

Figure 4.6 Call Graph (G) Structure .. 57

Figure 4.7 Comparison of Obfuscation Detection ... 60

xiii

Figure 4.8 Compile year analysis of the files analysed 61

Figure 4.9 Pyew Report .. 61

Figure 4.10 Peframe report ... 62

Figure 4.11 Mastiff Report .. 62

Figure 4.12 Mastiff Fuzzy Hashing results .. 63

Figure 4.13 Similarity Detection Comparison .. 65

Figure 4.14 Virus Total Detection Analysis of the samples 66

Figure 5.1 Peframe errors based on failed file analysis 69

Figure 5.2 Malware compile time .. 70

Figure 5.3 The Distribution of the number of sections in the analysis data 71

Figure 5.4 Top 20 Section Names in analysed sample 71

Figure 5.5 The Section Entropy distribution .. 71

Figure 5.6 Top DLLs in the Analysed sample ... 72

Figure 5.7 Top 20 Anti-debug APIs indentified ... 72

Figure 5.8 Top 20 Suspicious APIs indentified ... 72

Figure 5.9 Filenames extracted from the data .. 73

Figure 5.10 PE file Feature Analysis Component Layout 75

Figure 5.11 Pictorial representation of the Heuristic anomaly probabilistic score

generation module .. 75

Figure 5.12 Pictorial representation of the MalScore approach 77

Figure 5.13 MalScore Malicious and Clean files Score Area curves 80

Figure 5.14 False and True Positive Detection Rates against the MalScore file

scores ... 80

Figure 5.15 The Malscore ROC curve .. 81

Figure 5.16 The detection ratio of the malware types in the test Dataset 81

Figure 6.1 Old malware and New malware statistics .. 83

Figure 6.2 The single file Hashes Study ... 87

Figure 6.3 The pictorial representation of the system 88

Figure 6.4 Flow chart for Algorithm used to set the HashFlags 91

Figure 6.5. Flow chart showing the calculation of the MalHaScore for file

samples. ... 95

Figure 6.6 Result Log showing the Analysis results of 6 different files 98

Figure 6.7 The Hashes Detection Rates using Dataset B for the final study ... 101

xiv

Figure 6.8 Comparing the individual hashes against the proposed combined

method for the initial study .. 102

Figure 6.9 Comparing the individual hashes against the proposed combined

method for the final study .. 102

Figure 6.10 The Combined Hash Score Clean and Malware file Area curves (a)

Common Factor method and (b) Fuzzy Logic Method from the initial study ... 103

Figure 6.11 The Combined Hash Score Clean and Malware file Area curves (a)

Common Factor method and (b) Fuzzy Logic Method from the final study 103

Figure 6.12 True positive rate vs False positive rate curves for Evidence

Combination methods ... 104

Figure 6.13 Precision- Recall curve of the proposed evidence combination

methods .. 104

Figure 6.14 Model F-score for the different score percentage threshold 104

Figure 6.15 Recall, Precision, Accuracy and F-score Comparison for the

proposed methodology percentage thresholds ... 105

Figure 6.16 Malware type detection ratios for the dataset used. 105

xv

LIST OF ALGORITHMS

Algorithm 5.1 MalScore- Heurisitic scoring ... 79

Algorithm 6.1 Algorithm for Populating database of Hashes 89

Algorithm 6.2 Algorithm for Hash Comparison .. 90

Algorithm 6.3 Algorithm for populating Detection Rates 92

Algorithm 6.4 Combination of Hashes Based Detection Mechanism 96

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

The internet has revolutionised the way the world manages information and data

in academia, industry or individually. The evolution of the internet of things means

that even the way of life is changing through the integration of technology use in

everyday activities. With all the positives of having information at the fingertips,

self-driven cars, smart homeware comes the downside of having compromised

systems. The internet of things has already proved to be a very successful

resource of a DDOS attack against KrebsonSecurity website [1] by “Mirai” [2]

botnet malware. The DDoS attack set the highest record traffic known yet against

a website on 620Gbps. The same botnet is also known to have been used to

arguably take Liberia off the internet [3]. Cybercrime which is powered by

criminals having access to compromised systems and information cost United

Kingdom businesses over £ 1 billion and United States of America businesses

over $3.8 billion in 2015 [4], [5]. Having already seen an increase of 200% in the

last five years [6], cybercrime is expected to cost the world $ 6 trillion by 2021 [7]

making it one of the most lucrative businesses. One of the biggest banking theft

heists of 2016 was the $81 Bank of Bangladesh swift attack where malware was

used to compromise a poorly configured network switch [8]

Malware is still one of the main vectors used to compromise networks and

computer systems. With the expected growth in cybercrime, the fight against

malware as a need in order to build a more resilient cyber space will continue to

be challenging for both the industry and research community. The statistics where

almost 600 million malware have been collected in 2016 [10] as of writing this

report indicate that analysis and thereafter detection of these samples is bound

to be a daunting task.

There is a scarcity of cyber security expertise [9], [11] which implies that there is

not enough skilled people in the world to manage the ever growing cyber

incidents, later on perform in-depth malware analysis. Automation of the malware

analysis processes and detection of malware similar to already detected malware

allows for the reduction of the ever widening gap created by the growing malware

samples collected [12]

2

Many of the anti-malware solutions are fighting to keep up with the evolution of

malware [13] and there is a continuous looming challenge of not having malware

analysis and detection methods that are fast enough. Malware signatures that

utilise a lot of resources and file scanning as a step in malware detection end up

requiring a lot processing power [14]. Present day systems are high performance

and resource-aware and therefore having an anti-malware scanning process like

sandboxing which requires a lot of time is not optimal in these systems [12]

especially when dealing with the huge number of samples discovered daily.

Malware; the ever-evolving threat to the cyberspace, provides an interesting

challenge and therefore this study was undertaken to find a working solution that

can strengthen the anti-malware community. For the rest of this chapter, we

define proposed solutions in section 1.2, the aims and objects in section 1.3, our

contributions in section 1.4 and scope of the work in section 1.5. We then provide

an overview of the presentation structure of this thesis in section 1.6.

1.2 Proposed Solutions

The growing need for advanced secure systems implies that new, efficient and

faster malware detection algorithms are required. Therefore, better alternatives to

present day methods must be developed or existing methods need to be optimised

with new approaches. Malware analysis and detection has been a topic of interest

in the research community and a lot of advancements have been achieved in

many of the malware analysis methods [15]. Unlike signature based detection

methods, heuristics utilise different features in the malware and have proven to

be better at unknown malware detection [16]. Heuristic based detection in the

anti- malware research is used to describe effective algorithms used in malware

detection which do not necessarily provide an optimum solution [17]. Combining

multiple features to make a decision is seen in heuristic engines which use

machine learning with malware attributes to provide improved detection [18]–[21].

This work proposes utilising the theory of multiple attribute based decision

making, evidence combinational mathematical models and heuristic analysis to

automate and improve malware analysis and detection. We propose measuring

the malicious intent of a file by attaching a calculated score based on uncertainty

models and probability scoring. The proposed solutions are:

3

a) We use probabilistic scoring and combine evidence from different

heuristic anomaly features of PE files to measure the file’s malicious

intent. File format anomalies as some of the known heuristic indicators of

compromise. Although the anomalies have been used in heuristic engines

as a way of detecting malware [22] , there is no defined approach and

scoring mechanism that can allow of a more universe file malicious intent

score. We proposed using probability theory to make an intelligent

algorithm that scores the file based on known anomaly chances in clean

vs malicious files. Using a sample dataset, the anomaly scores are

calculated and then used on another dataset for validation. CHAPTER 5

5 details the proposed method in achieving the scoring system. The

developed algorithm automates the analysis and detection process while

also attaching a quantifiable metric. The metric is used for better cognitive

based decision making of the user thus improving their confidence in their

decision on whether the file is clean or malicious.

b) We look at statically computed similarity hashes as heuristic feature

representatives and investigate the effect of similarity hashes in relation

to malware detection. Statistics from AV- test institute [10] show that only

12% of malware samples collected by the end of 2015 were new malware

samples. This implies that similarity of the different sections and the files

can be a measure of file maliciousness and therefore malware detection.

The initial stage of triaging the malware to cluster the samples is a well-

known step that normally uses hashing as a methodology. Although

hashing faces the issue of high false negatives, a combinational approach

could lead to better results. Our study in chapter 6 focuses on how to

combine known similarity hashing methods in order to produce effective

malware detection results. The similarity in the files detected by the

hashing functions is used as the attribute similarity factor for a sample

dataset and multiple attribute decision making and evidence combination

mathematical models are applied to attach a score representing the

malicious intent of the file. This automates the malware analysis and

detection process and presents the system user with a quantifiable metric

4

that improves the confidence in their decision making about the malicious

state of the file.

1.3 Aims and Objectives

The main aim of this thesis is to design and implement two heuristic malware

scoring approaches that make for a more efficient malware detection framework

in Portable Executable files. Efforts towards achieving this aim led to the following

objectives:

• Evaluate three prominent, open source automated malware static analysis

tools focusing mainly on the analysis of Portable Executable files.

• Use the best automated static analysis tool to perform a study of PE file

feature anomalies.

• Formulate approaches towards providing a malware scoring mechanism

for improved confidence level in decision making for a standard computer

user.

• Design, implement and test a heuristic scoring approach that uses the

identified anomalies for detection of malicious portable executable files.

• Identify a fast and light heuristic based similarity hashing functions that can

be combined for better malware detection rates in portable executable

files.

• Carry out an investigation into the effect of the application of evidence

combinational theory to the hashing analysis for more efficient malware

detection and design, implement and test an approach that uses these

techniques for more efficient malware detection.

1.4 Contributions

The main contribution of this work is the design of the approaches for a heuristic

feature based quantification framework for efficient malware detection. The

process of achieving this main contribution lead to:

1. An evaluation study of three prominent automated malware static

analysis tools. This study provides an in-depth analysis of three prominent

tools and leads to table that compares the various features of the different

tools so that the reader can make an informed decision on which tool is

better depending on their requirements. This study also identifies features

5

that are later incorporated into the design and implementation of the

proposed approaches. Using a dataset of 2620 malicious samples, the

study provides important statistics that are extracted using the tools and

are detailed in chapter 4

2. MalScore: This is the first proposed approach that uses heuristic

anomalies and attaching a probabilistic score so that the file’s malicious

intent can be quantified. This approach utilises a combination of Bayesian

probability theory and the theory of total probabilities to generate the

anomaly scores. Statically extracted features for Portable Executable files

are compared malicious files vs the clean executables as a training phase

in the design of the scoring method. The resulting file score can be used

as a detection strategy or as a customised score to filter large datasets.

Chapter 5 details the design, implementation, testing and analysis of this

approach.

3. MalHaScore: This is the second approach and it introduces and

investigates how different similarity hashing techniques can be combined

to achieve better malware detection rates. Initially, this study explores 4

different hashing techniques that are currently used in malware analysis.

Although each hashing technique produces interesting results

independently, two evidence combination theory based methods are

applied in order propose a novel way of combining the results achieved.

The results achieved show that the detection rates are improved when

evidence combination techniques are applied. Chapter 6 details the

design, implementation, testing and analysis of this approach.

1.5 Thesis Scope

This work focuses on the use of automated static analysis and the features

extracted to design and implement approaches that can provide efficient malware

detection. This implies that dynamic analysis based approaches are not covered

and are outside the scope of this work.

Using file heuristic features requires that file structure is uniform so the scope of

this work covers only Portable Executable (.exe) files. We focus on designing

approaches for improving the malware detection rates in PE files with the

expectation that these approaches can be replicated for other file formats.

6

Replication of the approaches for other file types is outside scope and is not

covered herein.

The implemented methods are tested on a dataset of known malicious files and

clean files that are specified in section 2.5.2. Since our objective was to improve

malware detection through scoring the malicious intent of the file, tests using a

different dataset should achieve similar malware detection trends but different

results.

1.6 Thesis Structure

The rest of this thesis is structured as follows:

• CHAPTER 2. BACKGROUND: This chapter covers the introduction to the

world of malware by briefly discussing the various malware types, the

evolution and the number growth trends seen in the last decade. It then

also discusses the Portable File format structure, the evaluation methods

employed in this study and the dataset preparation process.

• CHAPTER 3. LITERATURE REVIEW: This chapter discusses malware

analysis techniques, the evasion techniques used by present day malware

to thwart analysis and detection and the known malware detection

techniques. It then delves into relevant recent literature related to the study

that forms the foundation of the work presented in this thesis.

• CHAPTER 4. EVALUATION OF AUTOMATED STATIC ANALYSIS

TOOLS FOR MALWARE DETECTION IN PORTABLE EXECUTABLE

FILES: Three new automated static analysis tools are evaluated in this

chapter. The intention is to identify the tool that extracts information

needed for the study. The work presented in this chapter provides insight

into how the evaluation was carried out, the results achieved, observations

made and how the challenges faced were overcame.

• CHAPTER 5 MALSCORE: AN ANORMALY HEURISTIC FEATURE

BASED PROBABILISTIC SCORING METHOD FOR DETECTION OF

MALICIOUS PORTABLE EXECUTABLES: This chapter covers the

design, implementation and analysis of the first proposed approach;

MalScore. The details pertaining to all the steps taken to achieve and test

the proposed scheme are discussed in detail and the results are presented

and analysed. Arguments for this approach are discussed in the chapter.

7

• CHAPTER 6 MALHASCORE: MALICIOUS PORTABLE EXECUTABLE

STATIC SCORING METHODOLOGY USING EVIDENCE

COMBINATIONAL THEORY WITH HEURISTIC FEATURE

CALCULATED HASHES.: This chapter discusses in the detail the design,

modelling, implementation and testing of the second approach proposed.

It further discusses the analysis results achieved for this approach and the

reasons as to why this method works.

• CHAPTER 7 CONCLUSION This chapter presents the conclusion of the

thesis and the known limitations of the proposed approaches. We also

discuss some of the interesting areas that have been identified for future

work in association to this study.

8

CHAPTER 2. BACKGROUND

Malware, short for Malicious software is a program code that is hostile and often

used to corrupt or misuse a system [12]. Introducing malware into a computer

network environment has different effects depending on the design intent of the

malware and the network layout. The internet and the worldwide web have given

great advancement in how society communicates and the face of business. This

has also given rise to the number of propagation avenues available to malware.

Introduction of malicious code in one node can create a chain reaction across all

the nodes accessible through the network, the node seats on. With organisations

and countries heavily relying on network technologies, the commercial value of

computer networks implies that exploitation of the vulnerability of the business

network can cripple its operations and provide access to intellectual property and

personal information to cyber criminals. This creates a commercial opportunity

for malware and anti-malware ventures and therefore it is no surprise that it is

estimated that cybercrime is expected to raise.

Malware has been a persistent problem across all computer networks and

detection of malware is quite vital in securing a networking environment. The

common used form of malware detection is signature based detection where a

malware “signature” is constructed from unique patterns and characteristics

derived from the malware code and the file contents. This is the technique used

in most commercial anti-malware systems and the malware signature is relied

upon because already discovered malware always tend to keep in circulation [22].

This implies that if an analysed malware is identified to have a form of an already

known signature in its characteristics, it can be isolated or the program can be

deleted from the system without knowing what other system changes it could

have targeted.

With more than 91% [23] of computer users still using Windows Operating

Systems based computers, more efficient detection of malicious files in the

windows environment is of paramount importance. Moreover, the introduction of

Windows 10, the cross-platform compatibility across different devices leads to the

expectation that the analysis of the PE structure will play a big role in future

endpoint security as the Internet of Things (IoT) evolution takes off.

CHAPTER 2

9

Figure 2.1 OS Market Share [23]

The fact that malware is software means that it follows a standard format required

for it to be executed on the target. Portable Executable (PE) is the format for

Microsoft binary executables and is very well document in [24]. Heuristic based

detection uses distinct file features identified to be specific to malware for more

efficient malware detection like the file compile time. Over the years, malware has

evolved to add detection evasion methods also called obfuscation techniques.

This has led to the introduction of semantic based detection where malware is

detected based on the information obtained during the behavioural analysis of

the malware sample. This chapter explores malware as an evolving topic and the

structure of the Portable executable file with respect to heuristic based malware

detection which is the focus of this study.

2.1 Malware Overview

Malware is defined as "any code added, changed or removed from a software

system in order to intentionally cause harm or subvert the intended function of

the system" [25]. The fact that malware can bring down a system which can

cause loss of information and therefore money as well as life [26] represents a

big threat to technology advancements. Recent developments in computer

systems have seen a corresponding if not higher growth in variants of malware

and their functionality. To understand what the malware is intended for in the

system therefore identifying it, there is need to understand what class it falls

under. The classification of malware depends on execution characteristics of the

program. Malware is also classified depending on its payload, how it exploits or

makes the system vulnerable and how it propagates [27]. This enables the

malware to be subdivided into different types as further discussed below.

CHAPTER 2

10

Virus

A virus is self-replicating malicious program. It exists as an executable and

spreads by copying itself to other host systems. It is passive and needs to be

transferred through files or media files or network files. Depending how the

complex the code is, it can modify the replicated copies of itself [26], [28], [29].

Viruses can be used to harm host computers and networks, steal information,

create botnets, render advertisements, and steal money among other malicious

activities.

Worm

This is a self-replicating and active malicious program that can spread over the

network by exploiting various system vulnerabilities. It uses targeted

vulnerabilities in the operating system or installed software. It contains harmful

routines but can be used to open communication channels which serve as active

carriers. The Worm consumes a lot of bandwidth and processing resource

through continuous scanning [28] and makes the host unstable which can

sometimes cause the system to crash. It may also contain a payload that are

pieces of code written to affect the computer by stealing data, deleting files or

create a bot that can lead the infected system being part of a botnet. While viruses

require human activity to spread, worms have the ability spread and replicate

independently.

Trojan horse

Commonly referred to as Trojan, this is a program that presents as a legitimate

software which when downloaded and executed embeds malicious routines or

files on the host [29], [33]. In most cases, the Trojan horse when executed will

install a virus or may have no payload. It cannot self-replicate and relies on the

system operators to activate. It can however give remote access to an attacker

who then can perform any malicious activity that is of interest to them. Trojan

horse programs have different ways they affect the host depending on the

payload attached to them and are usually spread through social engineering [30].

Spyware

This is a malicious program that uses functions in an operating system with the

intention of spying on user activity. They sometimes have additional capabilities

like interfering with network connections to modifying security settings on the

CHAPTER 2

11

system on the infected host. They spread by attaching themselves to legitimate

software, Trojan horse or even taking advantage of known software

vulnerabilities. Spyware can monitor user behaviour, collect keystrokes, internet

usage habits and send the information to the program author [31].

Adware

Adware which is short for advertising supported software, automatically delivers

advertisements seen especially in website pop-up ads and displayed by software.

Most are designed to serve as revenue generating tools by advertisers. Some

adware may come packaged with spyware which then makes this very dangerous

as it can track user activity and steal user information [31], [32].

Root Kit

This is a program that employs a set of tools to avoid detection in a system. The

tools are very advanced and complex programs written to hide within the

legitimate processes on the computer infected therefore are very invasive and

are difficult to remove. They are designed with the capability of taking full control

of the system and gaining the highest privileges possible on the machine among

other possible malicious activities [22], [28]. Because of the evasion techniques

used by rootkits, most security vendor solutions are not effective in detecting and

removing them and therefore, their detection and remove rely heavily on manual

efforts. These may include but not limited to monitoring computer system

behaviour for abnormal activities, storage dump analysis and system file

signature scanning.

Bots

Bots are programs designed to perform specific operations. Bots are derived from

'robots' which were first developed to manage chat channels of IRC- Internet

Relay Chat a text based communication protocol that appeared in 1989 [33]–[36].

Some bots are used for legitimate purposed like video programming and online

contest among other functions. Malicious bots are designed to form botnets. A

botnet is defined as a network of host computers (zombies/bot) that is controlled

by an attacker or botmaster as seen in Figure 2.2. Bots infect and control other

computer which in turn infect other connected computers thus formulating a

network of compromised computers called a botnet. Bots are very commonly

used as spambots, DDOS attacks, webspiders to scrape server data and

CHAPTER 2

12

distributing malware on download sites. CAPTCHA tests are used by websites to

guard against bots by verifying users as humans.

Figure 2.2 An Example of a Botnet layout [37]

Ransomware

Ransomware is a program that infects a host or network and holds the system

captive while requesting a ransom from the system/network users. The program

normally encrypts the files on the infected system or locks down the system so

that the users have no access. It then displays messages as seen in Figure 2.3

that force the users to pay to have access to their systems again.

Figure 2.3 Ransomware display messages [38], [39]

Ransomware uses the same propagation means as a computer worm to spread

and therefore user awareness and system updates are important mitigation

measures.

CHAPTER 2

13

2.1.1 Evolution of Malware

Malware has evolved from the days when it was an exciting prank/experiment

gone wrong or uncontrolled to now when malware is used for commercial gain by

exploiting and stealing user information. There are various documented instances

of malware created within a laboratory setting like the 1962 Darwin game, 1971

Creeper, 1974 Rabbit Virus and 1975 Pervading Animal [28]. However, all the

mentioned malware were kept within a laboratory environment and never

escaped to the wild. The first virus known to have been able to escape its creation

environment was the Elk Cloner introduced in 1981, six years after the first

personal computers [40]. Elk Cloner infected Apple DOS 3.3, spread by attaching

to disks introduced to the system and once triggered, it run a poem shown in

Figure 2.4. After the success of this prank gone wild, Brain the first Microsoft PC

virus was seen in the wild in 1986 [28] and like Elk Cloner, it was more annoying

than harmful. However, it is the first virus known to conceal its existence on the

disk thus evade detection. The next malware that would get out of hand and

change the propagating properties of malware would be the Morris worm written

in 1988 as an experimental, self-propagating, self-replicating program which was

released on the internet [41].

Figure 2.4 Elk Cloner Poem seen on infected Apple computers in 1981

In 1990, Yisreal Radai coined the term malware, short for malicious software that

would thereafter be used to as a generic umbrella term for all software with

undesired intent within a system [34]. The following decades saw an evolution in

malware that is best defined as a two-dynamic evolution; the growth in complexity

and malware sample numbers.

CHAPTER 2

14

Figure 2.5 The evolution of generations of malware over the years

The growth in complexity is defined by the different generations of malware seen

over the years [28], [30], [42] shown in Figure 2.5:

• The first generation (DOS Viruses) of malware mainly replicate with the

assistance of human activity.

• Second generation malware self-replicate without help and share the

functionality characteristics of the first generation. They propagate through

files and media.

• Third Generation utilise the capabilities if the internet in their propagation

vectors leading to big impact viruses.

• Fourth Generation are more organisation specific and use multiple vectors

to attack mainly anti-virus software or systems due to the

commercialisation of malware.

CHAPTER 2

15

• Fifth Generation is characterised by the use of malware in cyberwarfare

and the now popular malware as a service.

These generations group the various types of malware that were earlier identified

and described. Each jump in generation is characterised by increase in

complexity of the malware seen and more propagation vectors. The complexity

in the malware discovered over the years always seem to follow the evolving

trends in technology [28]. With the commercial value attached to having access

to exploited systems or the ability to infiltrate a network, the malware writers do

not want their malicious creations detected, analysed and rendered useless. This

has led to the birth of malware samples which are very evasive when it comes to

their analysis and detection. The known methods seen in malware to evade

analysis and or detection are discussed in the next chapter.

The evolution of the malware sample numbers is best reflected by the number of

malware samples collected by AV-test institute over the last decade as shown in

Figure 2.6 [43]. From the trends seen in the graph, although the total malware

samples collected are growing in number, the percentage of the total that is new

malware shows a decreasing trend over the last 3 years. This percentage shift

enables us to predict that if old malware can be detected and eliminated from the

samples automatically, then the analysis time spent on the discovered samples

can be greatly reduced.

Figure 2.6 Malware sample statistics for the last decade

CHAPTER 2

16

2.2 Portable Executable File Format (PE)

The Portable Executable (PE) format is an independent file structural format used

for 16 bit and 32 bit windows systems. Pietrek [44] best describes the PE file

format in a construction analogy “a PE file is like a prefabricated home. It's

essentially brought into place in one piece, followed by a small amount of work to

wire it up to the rest of the world (that is, to connect it to its DLLs and so on).” PE

file format were introduced as part of the original specifications for Win32 with the

release of Windows NT 3.1 in 1993 and was derived from the earlier Common

Object File Format (COFF) [44]. It allows the Windows Operating system loader

to manage the compiled executable code.

The PE file types are referred to as image files in [24] and the two types; DLL and

EXE files are solely differentiated at the semantic level. DLL (Dynamic- Link

Library) type files are used to export data or functions that other programs use.

The functions are defined based on their intended use; internal or exported [45].

Internal functions are used with the DLL where they are defined while exported

functions are used by other modules as well as with the DLL in which they are

defined. A modular format provided by the design of the DLLs allows for easier

modification and reuse in the ever evolving windows environment [24]. DLLs have

various file extensions; .sys, .dll, ocx, .cpl, .fon, and .drv EXE type files (.exe)

when launched run within their own process, not loaded into existing processes

of other programs unlike DLL type files [46].

The creation and usage of EXE and DLL files is defined by the linker and loader

as shown in Figure 2.7.

Preprocessor

Source Code

Libraries

CompilerPreprocessed Code

Assembler

Assembly Code

Linker

Object Code

Loader Executable Code

Debugger

Figure 2.7 Relationship between the linker, executable(Image) and loader

CHAPTER 2

17

A linker is a process that collects and combines different pieces of data and code

into an executable file that can be loaded into memory. The linker combines

libraries and object files into an executable code /image file. This processes leads

to an image also called the portable executable file [24]. The loader is the

program that loads the executable into main memory and an example is the

windows installer.

Being Relocatable is one of the most important characteristics of the PE type files

and this means that addressing during the loading process and therefore how

internal address is handled in an PE file is important [46]. The addressing of the

PE file is defined by the physical address, Base Address and the Virtual

Addresses; relative or absolute. Physical addresses are used to access PE file

parts that must be read from the storage disk. The base address stored in the

field called ImageBase is the address of the first byte where the image file is

loaded into memory [47]. The address specified in the ImageBase is always the

preferred address although it is possible during the loading process of the image

that this address might not be available in memory. This leads to the relocation

of the module where another base address is chosen [46]. Relative virtual

addresses (RVA) are offset addresses into the file that are used while the image

file is loaded in memory. The loader calculates the required absolute address for

the specific instruction by adding the base address to the RVAs. Using RVAs that

are independent of the base address allows for the relocation of the image without

having to re-calculate all the addresses. Although Virtual addresses are defined

in [24] as absolute in-memory addresses , they are actually used relative to the

BaseImage specified address. Addressing is important because malicious files

tend to have anomalies in PE address field as intentional malformations,

obfuscations mechanisms or malicious intent. These can be used as detected file

vulnerabilities or indicators of compromise in malware prevention and detection.

The PE file Format has evolved over the years of the MS-DOS to the Win32

specifications to the now Win64 specification. Only a few changes have been

introduced with each new specification because there is always need for

compatibility across the operating systems and it makes sense for developers to

use already existing and working file formats. The basic PE file format is best

defined by Figure 2.8.

CHAPTER 2

18

Figure 2.8 Generic PE File Structure [48]

Figure 2.9 The PE File details in PEiD

This known specification of the PE file allows for deeper file analysis based on its

structure. For example, Figure 2.9 shows a file’s structural details using PEiD;

one of the many static parsers for the PE file format. However, the extract of the

PE file details in PEiD in Figure 2.9 is quite limited based on the PE file detailed

structure. There is more to explore in the PE file format and to do that, there is

need to understand the standard structure as discussed in the next section.

2.2.1 PE Standard Structure

The PE Standard structure is a collection of different subdivisions which are

necessary because the memory manager treats each differently when the file is

loaded. Each subdivision contains different file content that are important for

CHAPTER 2

19

proper execution of the file. A normal PE standard file consists of the MSDOS

Stub, PE File Header, and sections. Any other optional data is appended to the

file also called an overlay [24] . Some applications use the overlay to store data

without having to worry about the PE format or sometimes to prevent the data

from being loaded into memory by the operating system.

As seen in [24], [44], [47], the PE file structure shown in Figure 2.10 starts with

the MS-DOS Stub which is an application that has the ability to run in MS-DOS

and is mainly supported for backward compatibility. The stub contains the file

format signature; “MZ” in its magic feature and prints out the message “This

program cannot be run in DOS mode“ if there is an attempt to run the image in

DOS. This stub is ignored when the program is loaded in operations systems of

higher versions. Next in the format is the PE File Header which consists of the

PE signature (‘PE\0\0’), the COFF File Header, the Optional Header, and the

Section Table. Compatibility of the PE file format to the operating system is

specified by the certain signatures found within the file structure and always

defined at the very beginning of the file. The PE signature is placed after the MS-

DOS-Stub and its offset is defined in the e_lfanew field of the MS-DOS Stub.

Figure 2.10 PE file stucture [49]

CHAPTER 2

20

After the PE signature, the COFF file Header is located at the fixed offset relative

to the start of the PE signature. Some of the features in this subheader are

important in terms of anomaly analysis as a means for malware detection. Like

all the substructure before, one of its features helps define the next chunk;

SizeofOptionalHeader defines the size of the next subheader. The Optional

Header which appears right after the COFF file Header is subdivided into 3 import

chunks; Standard COFF Field, Windows Specific Fields and Data Directions.

Some of the fields in these different subdivisions are later examined for the

possibility to be heuristic indicators of compromise in case of detection of

anomalies. After the optional Header, the Section table that contains the section

headers; each defining the properties of related section found within the PE

image file.

The sections as a chunk appear next and are subdivided based on the sections

contained with the PE file. Each section defined as ‘basic unit of code or data

within a PE or COFF file’ contains information specific for certain applications but

not relevant to all. The naming convention of the sections allows for identification

of the purpose of the section. However, since this naming convention is not strict,

many malicious files and some legitimate packers and compile do not follow it.

Misuse of section names is one of many anomalies is an interest in heuristic

based detection despite the possibility of high false positives. Some of the section

names that follow the standard convention are .text - a section that contains the

executable or object code, .data- a section which consists of variable, uninitialized

data, .bss – this section is typically used for program-wide initialized, global data,

.rsrc – the resource section that consists of the embedded items.

2.3 Hashing algorithms

Hashing algorithms are computed digests of a file that are unique to the sequence

of the file binary contents and structure [50].

2.3.1 Cryptographic Hashing algorithms

The cryptographic hashes like MD5, SHA1 and SHA256 shown in Figure 2.11

have been very popular in malware identification for integrity checking [51]. Since

they are so unique, they are used when there is a need to have 100% match in

the compared files as seen on most legitimate software distribution websites. An

exact match of the file download shows that the file has not been compromised

CHAPTER 2

21

and is, therefore, safe before it is executed [22]. Whilst this is a safety measure

that works for files where care is taken during file installation, sometimes, files

are downloaded and installed in a hurry or without the knowledge of the computer

user.

Figure 2.11 The Cryptographic Hashes of a malware Sample

These are the cases where detection of malicious or compromised files is very

important. Although the different file hash types might not be very useful in such

cases since a simple bit change in the file affects the hash digest computed, they

have been repurposed and become useful in other methods. For example,

section md5 and SHA hashes can be used to detect types of packing [52] and in

some cases classification of malware families [53]. For this study, these specific

hashes are not used, however, the work focuses on fuzzy hashing and feature

specific file, section hashes that are further discussed in detail in the next

subsections.

2.3.2 Fuzzy Hashing algorithms

Fuzzy hashing algorithms are designed to compare two different files and

produce a percentage measure that represents the similarity between the files

[54]. In this work, we review fuzzy hashes of interest that have been designed for

malware detection and used in different studies focused on malware classification

and detection.

2.3.2.1 Ssdeep Hash

Also known as Context Triggered Piecewise Hashing(CTPH) [54] or fuzzy

hashing was first introduced in anti-spam research to detect similarity in files.

Ssdeep one of the most famous methods of fuzzy hashing is a freeware, open

source program that generates fuzzy hashes that when compared one against

another, a similarity percentage score between the files is returned with a very

high confidence of 99. The original idea of fuzzy hashing was developed by

CHAPTER 2

22

combining the piecewise hashing (Fowler/Noll/Vo –FNV hash) and the rolling

hashing to produce a none cryptographic hash that is then used by a comparison

algorithm that uses Levenshtein Distance to compare any 2 generated hashes

for sequence similarity [50], [55]. The score is normalised to a range of [0-100]

and the 50 is noted to be a reasonable threshold for a good match for spamsum

algorithm.

Figure 2.12 Calculating the Ssdeep Signature

Figure 2.13 Ssdeep Signature Form

Kornblum [54] adopted it for Ssdeep for the purposes of forensic science and this

application was extended to malware by the Mandiant cybersecurity firm with the

purpose of providing the malware analysts [56] with information to guide their next

step in the file analysis. An Ssdeep signature of a file takes the form shown in

Figure 2.13 which also includes an extract of an Ssdeep hash of a file. When two

hashes of two different files are compared, a similarity percentage score between

the files is returned with a very high confidence of 99.

It is now a very crucial step in static analysis with many analysis tools attaching

this hash next to the cryptographic hashes in any malware analysis report. This

string is used to provide the similarity percentage [0-100] when compared with

another hash from another file. The percentage of similarity attached to any two

files can be sometimes the justification why the files are the same or in the same

family of malware. In this work, the file Ssdeep hash and the resource section

Ssdeep hash are considered.

Blocksize: Block_Signature:Double-Block_Signature

6144:tkDtqNp95Ltuj5K2gvuHqeYPYg31eaJq1DWBEU/e:utUpDtqKmw/LqJW

CHAPTER 2

23

2.3.2.2 Imphash

First proposed by Mandiant cybersecurity firm [57], Imphash is a hashing

method that is calculated from the digest of the import section of the executable

file. With many researchers focusing on the imported APIs as a way of

understanding how the file would interact with the system based, the Import table

which holds the APIs under traditional conditions provides added insight into the

expected behaviour of the file. Its algorithm is implemented following these

stages:

• Extract the structure of the PE file.

• Populate the imports in the order {API, Function (dll or sys or ocx)} for APIs

found.

• Return the MD5 digest of the import strings populated.

Imphash matching allows the analyst to cluster malware based on the order and

the contents of the import table. This means that a change of order in the imports

in table compromises this hash value and packers can also be used to overcome

this hash as a detection method since the import table is sometimes hidden.

However, Imphash is still very useful considering that most malware share some

common behaviour on how they interact with systems which allows for clustering

and detection of similar structured malware. Imphash has been incorporated in

many static analysis tools like VirusTotal.com, Peframe and Pefile among others.

2.3.2.3 PeHash

It is a function that generates the binary cryptographic hash value of the structural

data found in the file header and executable’s sections [58]. Apart from the

structure of the file, it also uses bzip2 compression ratio as an approximation for

Kolmogorov complexity for obfuscated data in the sections. With the possibility

that some malware repeat the use of specific encryption techniques, different

instances of the malware sample can result in the same Kolmogorov complexity

thus creating a clustering mechanism. The algorithm first creates 2 classes of

hash buffers; global properties and Section hashes buffer. The structural features

whose hash is included the calculation of the hash buffers in Table 2.1.

CHAPTER 2

24

Hash Buffer Structural Features used

Global properties Image Charactersitics, Subsystem, Stack Commit

Size and Heap commit size.

Section Virtual Address, Raw Size, Section Characteristics

Table 2.1 PE file features included the PeHash Calculation

The bzip2 compression ratio for each section is included in the calculated

section’s hash buffer. The PeHash that is the result used is the SHA1 value of

the overall hash buffer of the file. The analysis of this hash shows that this metric

hash provides good clustering matches for instances of similar polymorphic

malware samples. PeHash has not been fully extended into most static analysis

tools since it is file type specific. However, since this work focuses on PE type

files, this hash is considered.

2.4 Evidence Combinational Theory Methods.

These are methods used for decision support when there is uncertainty in the

data being used to make the decision [59]. The introduction of uncertainty works

well for malware detection as with each new sample analysed, there is always a

degree of ignorance. This is mainly true because each file is deemed non-

malicious until confirmed to be malicious. In malware analysis, analysts are more

likely to obtain uncertain information from different analysis methods. Based on

their expertise, they make decisions on the malicious status of the file. Evidence

combinational theory provides a way to automate this process. If there are two

different pieces of evidence with two different degree of belief (X with Degree x

and Y with degree y) that support the hypothesis (M) that the file is either

malicious or not, the result heavily depends on the degree of belief placed on the

different pieces of evidence. Methods of how to combine the different evidence

is what is needed to be applied in the systems to make better informed decisions

about how malicious the file is. However, with the need to keep the already

designed systems working as they are modified to do better, there is need to look

at building the frameworks using the existing and new tools to keep the malicious

files out of the computing systems. In this study, likelihood of a file being malicious

is based on different results of the hashing analysis. Using the fuzzy set union

operators T-conorms introduces logical connectives to design the reasoning

CHAPTER 2

25

system [60] based on the degrees of belief. Strict Archimedean t-conorm are used

because they can approximate every continuous t-conorm that takes the value in

the range [0-1] [60]. This section discusses the two identified methods; fuzzy logic

and the certainty-factor model that can be used to provide mathematically

supported uncertain based decisions.

2.4.1 Fuzzy Logic

It is used in decision making where there is no deterministic data on which to rely

the decision. The theory based on fuzzy sets was introduced in 1965 [61]and the

resultant the fuzzy logic approach follows that the end result is only true if and

only if either of the support evidence is true. Considering the initial hypothesis of

Maliciousness (M), the degree in belief of this hypothesis using fuzzy logic

approach defines the function:

x*y in M (2.1)

Using the important class of “strictly Archimedean” t-conorms of fuzzy logic [62]

the algebraic sum is given by:

yxyxyx 

 (2.2)

This is the sum that used to assign a new percentage belief on the overall degree

of belief in the hypothesis.

2.4.2 The Certainty Factor model

A reasoning method that manages uncertainty in rule based systems which was

developed in 1975 for MYCIN expert system [63]. MYCIN was a rule based

expert system that was designed to diagnosis infections due to bacteria [64]. To

compute the overall belief in the hypothesis, an expert represents the uncertainty

in the rule by using a single Common Factor (CF) for every rule. The CFs work

as the degree of belief attached to each rule. Following the T-conorms, the

degree of belief in the overall hypothesis using two supporting evidence is always

higher or equal to the degree of belief in M obtained from one piece of evidence

[65]. Using the notation defined, the overall belief is given by:

yx

yx
yx






1 (2.3)

CHAPTER 2

26

2.5 The Challenge of Evaluating Anti-Malware Solutions

Building an “anti-malware algorithm” that perfectly determines whether a PE file

is malicious or not with 100% accuracy [66] is challenge that is yet to be

overcome. To evaluate that the designed methods work, they should be trained

and tested by a dataset. In this section, we discuss our dataset preparation and

the evaluation metrics used to validate the designed systems.

2.5.1 Proposed solutions evaluation method

In this study, we use the binary classification matrix to test the proposed solutions.

Evaluating the proposed algorithms follows the same approach where the

achieved detection rates are calculated using the confusion matrix in Table 2.2.

The objective is to achieve high true positive detection rates while keeping the

false positive detections very low [43]. Therefore, the confusion matrix based

metrics are computed for all the proposed algorithms to evaluate the

effectiveness of the proposed methods. Based on the metrics achieved, the

proposed method is analysed and discussed.

 Analysis Results

Actual

Sample

State

 Malicious Clean

Malicious True Positive(TP) False Negative (FN)

Clean False Positive (FP) True Negative (TN)

Table 2.2 Confusion Matrix

The options in the confusion matrix describe the different detection rates in the

system and metrics are defined as [67]:

 True Positive (TP): files that form part of the malicious dataset that are identified

by the method as malicious.

 False Negative (FN): files that form part of the malicious dataset that not flagged

as malicious by the method.

True Negative (TN): files that form part of the clean files dataset that not flagged

as malicious by the method.

 False Positive (FP): files that form part of the clean files dataset that are flagged

as malicious by the method wrongly.

False Positive Rate (FPR): a measure of the negative samples flagged as

positive.

CHAPTER 2

27

FPR = FPTN

FP

 (2.4)

Recall/ True Positive Rate: a measure of the actual positive samples detected.

Recall = FNTP

TP

 (2.5)

Precision/ Positive Predictive Value (PPV): a measure of the actual positive

samples for all the positive detections.

Precision/ PPV = FPTP

TP

 (2.6)

Accuracy: a measure of the true detections.

Accuracy (ACC) = FNFPTNTP

TNTP





 (2.7)

F1 score is defined as the harmonic mean of precision and recall and calculated

by:

F1 = RecallPPV

RecallPPV



2

 (2.8)

2.5.2 Dataset preparation

In training and evaluating anti-malware solutions, there is need to test them

against malicious files and clean files to achieve the best true positive vs false

positive trade-off. The dataset of choice in our experiments a set of malicious files

and a control dataset made up of clean files.

Dataset Total Files

Malicious files 104528

Clean files 1638

Table 2.3 The Experiment Dataset

Malware dataset samples were downloaded from different online repositories,

captured using our own honeypots over a period and downloaded from the

malware repository at Nettitude Ltd, UK. All the collected malicious files (104528)

were run through ClamAv engine version 0.99.2 [68] to ensure that they were all

indeed malicious files. The malware family distribution datasets used in the study

extracted from the ClamAV scan results are as shown in Table 2.4. The clean

files were collect from fresh new installations of Windows XP, Vista, 7, 8 and Win

10 by running a customised batch script to collect all .exe files. The total dataset

CHAPTER 2

28

is shown in Table 2.4 Malware type distribution in the Malware Dataset and this

dataset subdivided into various sub datasets per the requirement of the algorithm

designed and under test.

Malware Type Percentage Malware Type Percentage

Trojan 66.84% Dropper 0.65%

Adware 22.30% Virus 0.29%

Worm 9.03% Spyware 0.11%

Downloader 0.71% Exploit 0.08%

Table 2.4 Malware type distribution in the Malware Dataset

2.6 Chapter Summary

This chapter has introduced the world of malware by briefly discussing the various

types, the evolution and the number trends of malware seen in the last decade.

We then discuss the Portable File format structure, the hashing algorithms,

evidence combinational methods, the evaluation methods employed in this study

and the dataset preparation process. This chapter has provided the background

information to the study carried out in this thesis. The next chapter will review the

literature works that were explored during this study.

29

CHAPTER 3. LITERATURE REVIEW

Present malware detection especially commercial anti-malware solutions

struggle to keep up with the evolving landscape of malware [69]. Despite the

various breakthroughs in malware detection research, it is always a game of

“catch me if you can” with malware writers deploying new techniques to thwart

the devised analysis and detection methods [70]. Malware use various

techniques in order to survive as long as possible in the wild thus creating more

revenue for the writers [71]. The anti-malware community both in the industry and

academic continue to build systems that are targeted at fighting malware as a

way of ensuring that our cyberspace is more resilient. In this chapter, we review

the known malware analysis techniques, the various evasion techniques

observed in malware samples and malware detection techniques. Applying

selective reference to existing literature on malware detection, we present an

extensive review of previous research work using heuristic based detection as

defined by the scope of study.

3.1 Malware Analysis Techniques

Malware analysis describes how information about a malware sample is

gathered. When a malicious PE sample is discovered in the wild or on a machine,

it is usually an executable which has been compiled and therefore presented in

machine language [30]. The main goal of malware analysis is to extract as much

information from the discovered sample. This information is used to understand

the malicious threat associated with the sample in order to contain the damage,

reverse it where possible and build a method to guard systems against future

infection by the same type of malware [11]. There are two types of analysis; static

and dynamic which can be carried out at a basic level or advanced level based

on the tools and methods used. These two can be combined in various stages of

malware analysis for optimum result. We adopt and define malware analysis

based a combination of the 4 stages of malware analysis proposed by Zeltser

[72] and common analysis strategies used in software analysis as shown in

Figure 3.1. The skill level required in the analysis stages increases with increase

on the vertical axis.

CHAPTER 3

30

This multistage analysis allows for the analyst to stop at any of the four stages as

long as they can make a conclusive decision on the file malicious status; whether

malicious or benign. After fully analysing the malware, its signature can be

modelled so that it can be used in future to detect similar malware in other

systems.

Reverse Engineering

H
ar

d
e

r Dynamic Analysis

Basic Static Analysis

Full Automated
Analysis

Figure 3.1 Stages of presentday Malware analysis

3.1.1 Fully Automated Analysis

Today, the landscape of malware analysis has evolved due to the development

and release of open source, online and or readily available automated malware

analysis tools. Automated static analysis tools like Peframe [73], Pyew [74] and

Mastiff [75] provide sample analysis reports very easily that can help a malware

analyst with the much needed initial results. They are limited by the requirement

that the user should learn how they are used and the requirement to step up a

simple analysis laboratory. Automated dynamic analysis tools like cuckoo [76],

Anubis [77] and ThreatExpert [78] among other provide malware analysis reports

on submission of the malware sample without the need for a laboratory.

However, some of the reports require specialised skill and knowledge to full

comprehend and therefore can be quite limiting to a user. A tool like VirusTotal

[79] that uses over 50 antivirus engines to analyse uploaded malware samples

provides a free report after analysis. Sometimes, the reports from these

automated systems can lead to very conclusive decisions about the malicious

status of the file.

CHAPTER 3

31

Figure 3.2 Virus Total Report of a malicious sample

3.1.2 Basic Static Malware Analysis

Static Malware analysis is when the malware is examined without executing it

[30]. Many automated static analysis tools are available and although we include

them in the full automated analysis stage, their main purpose is to perform static

analysis. The tools use known syntax or structural properties of the malware

code to extract information from the file. Sometimes, an analyst uses the

conventional command line based analysis to extract information. The

information collected during this type of analysis is very simple and not always

sufficient for a conclusive decision on the malicious intent of the file. It is however

advised to start with this type as it can provide information to direct the next step

in analysing that specific malware sample [11]. One of the basic static malware

analysis methods is string analysis in Figure 3.3

Figure 3.3 Basic String analysis command in a Linux Enviroment

CHAPTER 3

32

The extracted information is analysed for any interesting information that might

lead to understanding its intent like, APIs, URLs, IPs, Passwords and usernames

to mention but a few. This information can be used for detection signatures.

However, analysis evasion techniques like packing and encryption normally lead

to this analysis step providing incorrect information or information that is not

useful.

3.1.3 Dynamic Malware Analysis

Dynamic Malware analysis involves analysing the program while it is running on

a system [80]–[82]. The malware is run in a “safe” and controlled environment

also called sandboxing to avoid transference of the malware to other systems

or networks.

Basic dynamic malware analysis involves observing how a collected sample

interacts with system. Normally, virtualisation is used where a snapshot of the

original state of the machine is taken, the malware is then introduced into the

system and executed. The new state and the original state are compared for

changes. The observed changes are then used to remove the infection from

infected systems and/or modelling effective signatures. Like basic static malware

analysis, it is an important initial step of malware analysis though it does not

provide exhaustive information on the malware [16], [22], [30], [46]. This is mainly

due to the fact that there is no investigative analysis done during the execution

process of the malware to understand how it changes the system and the

changes are made.

Advanced dynamic analysis involves using tools to examine the state of the

executed malware as it is running. The internal state of the malicious code is

examined to obtain more detailed information about the malware. This technique

provides information that would normally be impossible to gather when using

other techniques [30]. The analysis is always run in a controlled environment to

ensure that all the inputs and output of the system are known and their effects

can be accounted for. Various tools used at this stage will monitor the APIs,

system function calls invoked, files created and/ or deleted, registry changes and

the data processed by the program under analysis as it interacts with the system.

Analysis of the parameters used during the API and function calls allows for the

functions used to be grouped semantically while analysis of the data processed

CHAPTER 3

33

and propagated within the system gives an understanding of the files used and

produced by the malware. These lead to the identification of the tasks that the

malware undertakes to fulfil its functionality [83]. Advanced dynamic malware

analysis is very helpful in identification of malware variants and obfuscated

malware techniques as detailed analysis can provide behaviour profiles that can

be correlated to existing malware families.

Automated dynamic malware analysis tools exist which give reports that can be

used to group the malware according to behavioural properties [76], [83] and

have been explored in the fully automated analysis section. However, most

automated tools report require skill to understand and sometimes information

gained from the manual advanced dynamic analysis and the analysis tools

provide a clear understanding of the malware behaviour. The extracted

information can then be used to develop counter measures and model the

malware signatures to be used for future detection and system recovery.

3.1.4 Reverse Engineering

Reverse engineering, also called advanced static malware analysis involves

loading the executable into a disassembler to loop through its execution process

and then examining the instructions to understand what the program does [30],

[42], [46]. In order to understand the instructions and flow the execution path of

the program, one requires an understanding of the operating system that is being

used or that was targeted and specialised knowledge of disassembly, the

instruction codes/set and architecture of the system [46]. Debugging tools like

IDA Pro [84], OllyDbg [85] and WinDbg [86] are few of the tools that are normally

used at this stage to describe the execution process path followed by the

malware. The Control Flow Graph which describes all the possible paths the

program can take is normally extracted from these programs and can be used to

detect malware variants. Information gathered during advanced static analysis/

Reverse Engineer can be used in building advanced protection mechanisms [83].

Since Reverse Engineering uses static analysis, analysis evasion techniques like

instruction replacement can produce ambiguous results and malware that needs

input information that cannot be statistically determined for example time and

date can be hard to analyse using this technique [22], [30].

CHAPTER 3

34

 In almost all malware analysis instances, most of the techniques described

above are combined to obtain as much information about the malware sample as

possible. There is no defined specific order that an analyst follows to obtain the

needed information [72]. It is normally up to experience and skill and known data

that the decision about the malicious intent of the file is made.

3.2 Malware Evasion of Analysis and Detection Evasion.

The first malware to exhibit detection avoidance was the Brain virus, written in

1986 by the Farooq Alvi brothers [28]. Any attempt to read the virus infected disk

section led to the computer displaying clean data [71] instead of the infected lot.

This was the start of a fresh breed of malware written with the idea that they could

work around the anti-virus systems employed in computer systems. The

advancements seen in newly discovered piece of malware all point to the fact

that the survival is the number one priority since the longer the malware is

undetectable, the more profitable it is to the malware writer [71].

For the piece of malware to survive in any system, it must avoid being detected

by the many security measures employed by the systems which include anti-virus

software, firewall, and intrusion detection systems among others. Therefore, the

evolution of these techniques adds another dimension to the challenge of fighting

against malware [28]. Some of the known malware analysis and detection

evasion techniques mainly target avoiding being fully analysed or being detected

while other serve to evade both analysis and detection.

Originally, anti-reverse engineering was used in legitimate software as a way of

protecting intellectual property by software companies and individuals [22], [30].

Malware writers then adopted the idea of anti-analysis, the tools and also created

customised versions to evade detection by security solutions [30]. This evolution

has led to the development of a new generation of malware and the birth of

various variants of the same malware. In this section, we explore some of the

known malware analysis and detection evasion techniques which we have

classified into 2 categories; Anti-Analysis and Obfuscation techniques. Since the

purpose of utilising the described techniques is to produce malware variants that

are harder to detect and analyse, we later describe the various types of malware

variants known.

http://en.wikipedia.org/wiki/Farooq_Alvi_Brothers

CHAPTER 3

35

3.2.1 Anti-Analysis Techniques:

No malware writer would like to have their program analysed, reverse engineered

or detected. Therefore, modern malware use tricks to hinder the analysis process

of the malware files [87]. If the anti-analysis tricks are undetected by the analyst,

they can lead to dead ends, wrong information or being stuck in an infinite

execution loop. In this section, we explore some of the known anti-analysis

techniques seen in malware samples.

3.2.1.1 Anti- File Processing

File parsing is one of the methods used in malware analysis and detection where

malware detectors use the known file structure to parse the file contents. This

method is called file processing [88] and is shown in Figure 3.4. This allows for

detection of malware using heuristic based analysis where extracted file features

are used to determine if the file is malicious or not.

Figure 3.4 File Processing in Anti-virus systems [88]

Malware employ anti-file processing method to thwart scanners that rely on

known file formats leading to the file parsers throwing errors instead of extracting

the file features [89]. There are two identified exploits in this technique [88]:

• Chameleon attacks: This attacks the file interference stage of the file

processing where it exploits the heuristic variations. It leads to the file

appearing as one file type to the file parser while appearing as a different

type to the target operating system.

CHAPTER 3

36

• Werewolf attacks: This creates malformations in the file format that leads

to the file parser being unable to extract information. The file under

analysis appears to be of a different structure and this is common in

executables and application specific formats.

3.2.1.2 Anti- Debugging

Anti-debugging techniques can be deployed by hooking to various interrupts,

using interrupts to generate new decryption keys, through the use of runtime code

checksums, checking debugging API routines loaded, checking various registry

keys (according to a particular debugger software), using registers and stacks

[30], [42], [46].

A debugger is a program that allows one to observe the rendered code as it runs

and the most basic features include the ability to set breakpoints and trace

through the executable code [46]. Some of the common debuggers are IDAPro

[84], OllyDbg [90], Immunity Debugger [91] and WinDbg [86]. These tools are

used because compiled programs are too complex for the human eye to be able

to trace and predict all the possible execution paths. Malware writers try to

frustrate such efforts by writing the malicious program to detect the presence of

debuggers and then either give the wrong output or unexpected events [92].

Some of the APIs used in antidebug are CheckRemoteDebugger,

DebugActiveProcess, FindWindow, GetLastError, GetWindowThreadProcessId,

IsDebugged, IsDebuggerPresent, NtCreateThreadEx, NtGlobalFlags,

NtSetInformationThread, OutputDebugString, pbIsPresent, Process32First,

Process32Next, TerminateProcess, ThreadHideFromDebugged,

UnhandledExceptionFilter and ZwQueryInformation [22], [28], [42], [46], [73], [87]

3.2.1.3 Anti- Virtual Machine

Running malware in a virtual machine is common and considered a safe method

used to analyse the behaviour of the malware as it theoretically infects the virtual

machine and never the host [42].

CHAPTER 3

37

Figure 3.5 Some of the Anti- Vm tricks seen in Peframe [73]

Virtualisation or malware sandboxing also enables faster analysis times than

installing new hosts every time one needs to examine a new malware sample. To

thwart the analysis of samples inside a virtual machine malware include anti-VM

protection or they simply exit when malware is run in an isolated environment.

Anti-VM techniques can be deployed by detecting whether they are running in a

virtual machine or not. Some of the known anti- VM techniques identified by

Peframe analysis tool is shown in Figure 3.5. This is achieved either by looking

at VME artefacts in processes, file system, registry and memory or by looking for

VME-specific virtual hardware, processor instructions and capabilities [22].

3.2.2 Obfuscation Techniques

Sometimes, once a program (P) is written, the program lines can be re-ordered

or lines can be replaced without affecting the intended behaviour resulting into an

equivalent but transformed program (P’) [30] as shown in Figure 3.6. This

transformation is called obfuscation. Obfuscated malware performs the same

function as the original malware only that the signature is changed due to the

applied changes without affecting the semantic functions.

Figure 3.6 Program Obfuscation

Obfuscation techniques server as anti-disassembly techniques since they try to

thwart the reverse engineering process once the sample is loaded into a

Obfuscation Technique
P P′

CHAPTER 3

38

debugger [46]. These are some of the techniques identified under malware

obfuscation.

3.2.2.1 Binary Obfuscation

Binary obfuscation techniques are methods of detection avoidance that are

applied after the program has been compiled [93]. They enable the malware

program to be packed or encrypted so that the malicious code cannot be

accessed until it is in the system memory.

3.2.2.1.1 Encryption

Malware encrypt the original code or blocks of the original code transforming the

code into blocks of code that do not make sense to the human eye. Malware

writers are known to use existing encryption techniques for example the bitwise

XOR base operator was used in ZeroAccess as shown in Figure 3.7. Since more

encryption techniques like the base64 encoding and ROT operators can be

decrypted once the pattern is realised, malware writers complicate their patterns

by customising their patterns for example creating their own alphabets [94].

Figure 3.7 Extract from Zero Access Self decoding Subroutine

3.2.2.1.2 Entry point obfuscation

The Entry point obfuscation (EPO) techniques is implemented by the malware

scanning the host file and then changing the pattern of certain API especially the

ExitProcess to point to the beginning of the malicious execution code[95], [96].

This way, the program relies on a function call to get executed and not on the

operating system loader. The malicious code is embedded safely inside the host

file at a random location which this then called by the function call. Once it is

executed, it passes the call routine control back to the actual subroutine.

Examples of these types of malware are Rainsong, Zmit and Zhengxi [82].

CHAPTER 3

39

3.2.2.1.3 Packing

The most common and default feature of packers is compressing the file into a

smaller size. The packer works as an envelope that hides the program from any

outside sources until it is run in the system. It also pre-pends the unpacker to the

newly formed program which is the encrypted original program stored as data in

the new executable [30]. This was initially developed by commercial software

companies when disk size was of prime importance [52]. However, malware

writers have adopted it and misused it. An example of a basic packer software is

UPX as shown in Figure 3.8. In the analysis of malware especially when trying to

reverse engineer the program, a packed program is easy to detect using analysis

tools. With the introduction of custom built packers, reverse engineers must

manually unpack the code using debuggers because of lack of the original packer

information.

Figure 3.8 Malware sample details packed with UPX (a) and after unpacking (b)

3.2.2.1.4 Stealth

A stealth malware is a type of malware that tries to remain undiscovered by hiding

the infection events [28], instead of trying to obfuscate its code. It achieves this

by restoring certain original properties of the host file for example, timestamps. It

also intercepts system calls to hide any other resulting changes like the increase

in the size of the host file. Other techniques used are creating alternate data

streams (NTFS) [94] for infected files with malware in the alternate data streams.

Alternate Data Streams is a feature developed by Microsoft NTFS to enable

Windows support Macintosh Hierarchical File System (HFS). Files use multiple

forks which allows the program to store the code and icons separately. Although

the feature is intended for internal use, it can be used to hide files and therefore

malware can be attached to a legitimate file and go undetected for a while.

CHAPTER 3

40

3.2.2.1.5 Condition based Execution

Some Malware require specific inputs and unless these inputs are met, it does

not execute. Some of the conditions are specific days or presence of specific

features on the system. Unless these inputs are known previously and emulated,

analysis of this malware normally leads to incorrect information [42] or the inability

to perform a full analysis.

3.2.2.2 Code Obfuscation

Code Obfuscation techniques are applied to the program during the writing of the

code itself [93]. These enable the code to have a confusing structure to the eye

and the antivirus systems but the code will still perform the same function as an

originally simple structured code. In other words, these methods are employed to

change the syntax of the program without changing the semantics of the program.

Some of the known methods are[93], [97]–[99]:

• Dead-Code Insertion; where "trash-code" lines are added in the program

without changing the behaviour of the code.

• Code Transposition where the code is shuffled so that the binary order is

different from the execution order.

• Register Reassignment which uses the replacement of registers with

others within a specific code live range.

• Instruction Substitution where equivalent instructions are used to replace

existing ones.

• Code Integration where the virus code is interweaved into the code of its

target program.

3.2.3 Types of Obfuscated Malware

Obfuscated malware is defined by the structural and syntactic similarities and

differences to already existing malware. These are grouped into 4 groups;

packed, oligomorphic, metamorphic and Polymorphic malware depending on the

detection evasion technique used.

3.2.3.1 Packed Malware

Most malware writers apply packers or even multiple packers to produce different

variants of the same malware code. Perdisci, et al [52] states that more than 80%

CHAPTER 3

41

of the new malware discovered are actually packed versions of already existing

malware. Packers compress the file into a smaller size and sometimes

encryption is applied to the compressed version of the file to make the unpacking

process more difficult. "The packer program automatically transforms an

executable into a syntactically different but semantically equivalent

representation” [83] as seen in Figure 3.9. Some packers are custom built by

malware writers and these can be used to actually detect that the file is malicious

without the need for further analysis while commercial packers that are readily

available online are seen in many malware variants [94].

Figure 3.9 Structure of a Packed PE File[100]

3.2.3.2 Oligomorphic Malware

These malware also sometimes called ‘Semipolymorphic’ [31] employ multiple

decryption routines which are chosen randomly at infection as a way of avoiding

signature based detection. The Whale virus was the first malware to use this

technique and it carried a few dozens of different descriptors and picked one

randomly [82]. More malware were subsequently seen employing the same

methods however the decryption engines grew in number. This led to the birth of

a new type of malware; polymorphic malware.

3.2.3.3 Polymorphic Malware.

Polymorphic malware like oligomorphic malware, use decryption routines to

change the look of the execution codes for every infection [101]. They have a

wide range of decryption engines since they tend to use mutation engines. The

mutation engines perform all the logic computations in rearranging the code to

prevent detection by signature matching. The decryptor is run first once the

CHAPTER 3

42

malware is copied to the machine and it enables the execution of the malware.

When the malware replicates itself, it encrypts the new malware with a different

key and encloses the new decryption routine in the new code. It can however

only generate up to a few hundred decryptors so it can be detected [98].

3.2.3.4 Metamorphic Malware

In this type of malware, the malicious code body is changed by using a

combination of various obfuscation techniques. By using dead-code insertion,

register reassignment and code transposition, the body of the code is changed

into a new generation but it works the same way [98], [99]. This way, every

generated variation of the malware looks different and therefore signature

generation and signature based detection is very hard. Unlike most polymorphic

malware which decrypt to a single constant code body in memory, metamorphic

can have varying codes which makes their detection in memory rely on

algorithmic scanning [28]. Metamorphic malware can also insert and interweave

their code into the host program which makes the malware harder to detect [99].

3.3 Existing Malware Detection Techniques and Solutions

Malware detection is the process of identifying malicious code from benign code

so that the system can be protected or recovered from any effects the specific

malware. Malware detection requires the knowledge of the malware sample and

therefore heavily relies on the analysis process retrieving correct and sufficient

information. Detection techniques utilise a combination of the analysis techniques

for a more conclusive answer about the malicious code [28], [30], [80], [82].

3.3.1 Integrity Checker

Compromising a computing system or network requires that some changes be

made within the target environment. Integrity checkers are used in intrusion

detection on the premise that a file which exists within the uncompromised

operating environment is used as a measure to counter any future changes [28].

A hashing function like the MD5sum. SHA1or SHA256 is used to calculate the

digest of the program or file and stored in the database [102]. When necessary,

the digests of the program/ file are re-calculated and then compared against the

originally calculated hash to check if the file has been modified. The challenges

that this method presents are:

CHAPTER 3

43

• The system initially used to calculate the stored hashes must be deemed

clean and this is sometimes hard to guarantee.

• System updates and patches that are very prevalent in computer systems

do modify system files and programs which means that the database of

hashes needs to be updated for every update or there will very high false

positives affecting the detection method.

• There is need to ensure that the reference database of hashes is stored

offline and safely otherwise it presents a single point of failure in the

detection mechanism. If the database is compromised, then all the

resultant comparison checks are compromised as well. Hackers gaining

access to the database implies that the database can be changed to

include the hashes of the malicious programs.

Integrity checking is still considered quite important in malware detection and

detection of any system modifications performed by a malicious program. It is

however more of an incident recovery process method than malware infection

prevention method [82].

3.3.2 Signature Based Detection

Signature based detection uses specific byte code sequences that are identified

to be unique to a sample of malware in a specific family or variant and using them

to detect the presence of similar coded files in the system [28]. This method is

the most significant methods used by commercial anti-viruses. The unique byte

of code sequence are saved in the anti-virus database as signatures and are

developed by a group of malware experts after detailed analysis a significant

number of malware [25]. Any file being scanned by the antivirus that is found to

contain the signature of the unique byte code sequence is deemed to be

malicious. This implies that a database of signatures must be maintained by the

antivirus and updated every time new signatures are generated in order detect

new malware. This creates one of the major challenges faced by system users

as updating these signatures requires access to networking resources that might

not be readily available all the time. Lack of optimisation of the signatures can

also lead to the method being plagued by a high rate of false positives [82].

CHAPTER 3

44

Research has proved that metamorphic can evade this type of detection using

obfuscation techniques which implies that this method is susceptible to high false

negative in present day environments [103]. However, the study in [104] shows

that the mutation engine signatures can be used to detect metamorphic malware

as a way of extending the signature based detection by successfully tracking

variants of W32.Evol. Chouchane and Lakhotia argue that given known

parameters of a mutation engine, the proposed technique can detect malware

that has been generated using the engine and suggest that the method can be

further extended to detect malware produced by specific toolkits. This work

however fails to address the content growth of the signature database which

implies more storage requirements and therefore resource utilisation. This

suggested approach can also lead to false negatives if a syntactic change is

applied to the mutation engine.

3.3.3 Semantic Based Detection.

Semantics-based malware detection is a detection approach which looks to

identify the malware by deducing the logic of the code and matching it to already

known malicious logic patterns. It follows the semantics of the code instructions

within the file instead of looking at the syntactic properties unlike signature based

detection [105]. This allows for the semantic based detection approaches to

overcome obfuscation and can improve the detection of unknown malware since

logic pattern is used. An overview of semantic based detection approaches is

provided in [106].

3.3.4 Behavioural Based Detection

Behaviour-based detection techniques focus on using specific system/

application behaviour and activities that are observed during dynamic analysis of

the sample to form patterns that can be used to identify software that invoke

similar patterns. Although these techniques are largely immune to obfuscation,

their applicability is limited by their performance as dynamic analysis requires

time [107]. A survey of behavioural based malware detection is provided in [108].

Filiol present that one of the major challenges that is faced by behavioural based

approaches is the difficulty associated with establishing the rule set of what is

considered normal behaviour that a software invokes within a controlled

CHAPTER 3

45

environment. This implies that without the inference point of the expected normal

behaviour, determining the unsafe activities and behaviour within the

environment becomes an evolving challenge [108].

3.3.5 Heuristic Based Detection

Heuristic in computing is defined as “Proceeding to a solution by trial and error or

by rules that are only loosely defined” [109]. The main idea behind heuristic based

detection is that there is no need to know so much about the inner structure or

logic of the program being scanned and the main aim to reach as close to a

conclusive decision as possible using the best optimal path [110]. Therefore,

heuristic based detection approaches use algorithms and or rules that scan for

known patterns to identify malicious programs within an environment. The first

heuristic approaches are known to have been built in1989 to detect DOS viruses

[17]. Most antivirus programs today use a combination of heuristic engines and

signature based scanners. Heuristic based detection have the following

advantages [17], [28], [82]:

• They are fast because they are static analysis based which means that

they scan the file without executing it unless emulation based analysis is

included in the design of the engine.

• The heuristic rules and algorithms can be changed, customised and

optimised based on the files being scanned, the operating environment

and any new rules/ indicators identified by malware analysts.

• Since heuristic scanning is not predefined and evolves based on the

requirements of the operating environment, targeted evasion is quite had

to achieve.

Heuristic based approaches also have some limitations which are:

• They are plagued by high rates of false positives and false negatives if

they are not properly fine-tuned, validated and optimised.

• Has access to limited information especially if relying on static based

analysis and therefore there is need to use a combination of different

features or applying integrated approaches to scanning for better results.

Heuristic based malware detection is achieved in 2 phases [82]:

CHAPTER 3

46

Phase 1: Train the malware detector using a dataset so that important

characteristics can be captured. In this training phase, sometimes, there

is always need to use both the malicious dataset and the clean/benign

dataset as a control measure. In other cases, the engine is trained with

normal activity so that the engine can detect any abnormal activity.

Phase 2: Test and validate the heuristic engine to ensure that it is making

decisions that are in line with what is expected.

Recent research in the use of datamining for malware detection [111] are

considered heuristic based detection approaches. Since the study in this thesis

uses heuristic detection based techniques, the next section explores related

research works that were reviewed as foundation areas to this study.

3.4 Recent Heuristic Based Malware Detection Research Solutions

Our work examines how PE anomalies can be scored for more efficient malware

detection and extends the functionality of file hash similarity functions. Therefore,

using selective literature review, we focus on studies around; file hash similarity

functions are used in malware analysis and detection, malware detection using

PE anomalies and how multiple feature based decision making has been utilised

to improve malware detection rates in various instances. We also explore some

of the malware scoring methods that have been proposed.

Hashing functions are used for malware clustering and triaging in many malware

analysis scenarios. Since there is no predefined meaning to the file similarity

achieved between two malicious files, the interpretation of the hashing result is

better left to the deduction skills of the analyst. Many studies have been

conducted on the clustering sensitivity of hashing methods. A section of a

technical report by DigitalNinjas [112] provides an initial study of hashing

similarity. The work shows promise for the detection of the different families of

malware that provides a level of confidence of 67% using only the Ssdeep hash

technique. Although this work serves as a baseline, there is no comparison study

against clean files as a control. This work is further extended by French and

Casey [113] who carry out a study on the different fuzzy hashing methods

available, Ssdeep and Sdhash. French and Casey provide insight into how and

why fuzzy hashing works, validate the use of hashing in clustering families of

malware and call for a cost benefit analysis of the hashing methods. Choi [114]

CHAPTER 3

47

proposes a methodology to use Imphash for malware clustering which was first

introduced by Mandiant in [57]. New fuzzy hashing methods are introduced in

[50] as new clustering algorithms that provide higher sensitivity rates for the

clusters. Although the results show higher sensitivity matching, hashing is still

restricted to clustering of the malware samples. Furthermore, [50], [53], [57],

[112]–[115], [58] all use one hash to study each clustering experiment without

looking at the potential increase in detection rates one could achieve combining

different hashing methods.

Combining file features and file relations in order to improve malware detection

results is introduced in [20] and thereafter the work develops a file verdict system

called “Valkyrie”. The authors build a semi-parametric classifier model to perform

the combination and test the model against a dataset of 39,138 malware samples.

The work states that the system has been incorporated into the scanning tool of

Comodo Anti-Malware software. Although this work shows high detection rates,

the use of file relations introduces an interesting but ever evolving concept in

malware detection. The comparison of their model against Kaspersky Anti- virus

and McAfee Virus scan along with tools show their model outperforming the tools

for both the detection and time efficiency. This is questionable as the latest tests

on AV-test institute show that Kaspersky antivirus outperforms Comodo antivirus

[10].

Kolter & Maloof in [18] examine the results of various classifiers on malware

detection through a simple heuristic based technique of text classification, known

as n-grams. The proposed approach tests the techniques including Naïve Bayes,

decision trees, support vector machines and boosted variants. This approach not

only uses multiple methodologies to train and test the algorithm, it also shows

good detection rates, between 95-98%. However, the experiment used a limited

dataset of 1971 malware which is a very small dataset compared to the malware

samples collected nowadays. This method requires a lot of computational

overhead which with our proposed method, we work to overcome by using

hashes and implementing it using light weight methods.

The MaTR [15] approach combines static heuristic file features and decision tree

machine learning algorithm to propose a method of improved malware detection.

The work initially recreates the experiment environment of the approach in

CHAPTER 3

48

[18], highlights it’s weaknesses which are then used to build a better and efficient

detection algorithm. Experimentation using a dataset of 31193 clean malicious

and 25195 clean files leads to 99.9 accuracy in the detection rates. Although this

approach shows near ideal malware detection results, there is a possibility that

malware obfuscation could introduce a limitation in the method as this is not

addressed in the work.

Xinjian et al, [19] propose combining both statically and dynamic features to

improve malware classification. The method proposes using classifiers and

adopting the prediction if and only if the output is the same. They test the

proposed method on 282 samples which achieves high detection rates. The small

size of the test dataset creates a challenge for the method in addition to the

method not being tested against other known techniques.

Combining features using evidence combination methods was introduced in the

detection of android malware in [116] where the authors propose treating each

feature statically extracted from an android applications as an information source

and using Dempster-Shafer theory of evidence combination to combine the

information sources. Using a dataset of 1580 malware samples the method

achieves a detection accuracy of 97% and a false positive rate of 1.9%. The

results show that combining different features does indeed improve malware

detection rates and our work follows the same approach. We apply and extend

this method to PE files and use basic static based hashes as representatives of

heuristic features which reduces the used resources, cost and effort used in the

proposed method in [116].

Studies towards attaching a malicious score to a file as a method of malware

detection has been an evolving topic in security research. Taking the approach

of the CVSS (Common Vulnerability Scoring System), MAEC project is

introducing the concept of malware threat scoring system which uses predefined

categories to attach a threat score to a file [117]. RSA, the security division of

EMC has introduced the RSA Security Analytics Malware Analysis scoring

categories [118]. The work is presented as a module but does not present a

working prototype or a method on how to design the scoring mechanism. Both

the MAEC and RSA categories look at Static analysis as a required category.

Kumar et al [119] propose attaching a heuristic score to a PE file based on the

CHAPTER 3

49

features extracted. Using 10 static features and a dataset of 1360 malware and

1230 clean files, the proposed model achieves an accuracy detection rate of 85%.

Although the detection rates are not high, the scoring approach proposes a

method of allowing a malware analyst in classifying malware based on urgency.

The initial results achieved by Kumar et al provide a foundation in file malicious

scoring in a quest to build a more resilient cyber space. And the work presented

in this thesis further explores and expands this initiative achieving an easier way

of scoring and providing more detailed approaches on how to achieve the file

malicious score.

3.5 Chapter summary

In chapter, we discuss malware analysis techniques, the evasion techniques

malware use to thwart analysis and detection and the known malware detection

techniques. We then review relevant literature of recent research approaches to

malware analysis and detection. Using this foundational information as reflection

point, the next chapter evaluates three known popular automated static analysis

tools whose functionalities are analysed. This allows for development of the

framework approaches that are the contributions of this thesis.

50

CHAPTER 4. EVALUATION OF AUTOMATED STATIC ANALYSIS TOOLS

FOR MALWARE DETECTION IN PORTABLE EXECUTABLE

FILES

4.1 Introduction:

Malware detection requires both static and dynamic analysis. However, static

analysis is always considered the best first step when dealing with malicious files

because it allows for malware to be analysed without the need to execute it [120].

The work by Egele et al [83] covers most of the present day dynamic analysis

techniques and discusses the different analysis programs and tools that use

these techniques. Although Ligh et al [42] provides insight into many static

analysis tools, there is still a need for a detailed evaluation of some of the more

recent prominent tools available today. The recent release of numerous

automated static analysis tools which have given the cyber security community a

much needed boast towards efficient static malware analysis requires additional

exploring. This is especially true given that the rate at which malware samples

are released is much higher than the rate at which malware analysts can fully

investigate. The malware statistics from AV- test institute show that the number

of malware samples collected each year keeps increasing as cybercrime takes

advantage of increased dependency on technology due to the big drive towards

the Internet of Things. There is a need for faster detection to reduce the impact

of malware if people are to benefit from the evolution of the Internet of Things.

This chapter evaluates three prominent, open source malware automated static

analysis tools focusing mainly on the analysis of Portable Executable files. It

provides an overview of the automated static analysis tools in the first section,

the test environment in the second section and the 9 test scenarios with emphasis

on PE features to perform a comparison of the tools and extract information from

the samples. It also presents the findings of the scenarios and the tool feature

comparisons and present a summary of the fingerprints found which can be used

as indicators of compromise in executable files.

CHAPTER 4

51

4.2 Overview of automated Static Analysis tools.

This section provides summarised overviews of the automated static analysis

tools that are being evaluated in this study.

4.2.1 Peframe

Peframe is an open source, command line based static malware analysis tool

written by Gianni Amato that extracts information from Portable Executable files

[73]. It is written in python and uses the pefile module written by Ero Carrera [73]

and the Anti-Virtual Machine Signatures written by Joxean Koret [74]. In its folder

called …\peframe\signatures, there are 3 lists of signatures that are used to

identify different characteristics present in the application being analysed.

alerts.txt: a list of APIs that peframe flags as suspicious in an application

antidg.txt: A list of APIs that peframe uses to identify the presence of

debugger detection in the application

userdb.txt: A list of data block signatures used to flag the presence of

packers detected, anti- VM and anti-debugging tricks. Peframe searches

through the hex-dump of the file for the specified sequence of data block

and if it is matched, the packer shown in the square blanket is identified

as the packer used by the file under analysis.

Figure 4.1 Hex-Dump of entrypoint of file md5-

a3c5e50c55c901767b0c3b7749a48c9b

The file is analysed as a hex-dump and the signature highlighted in

Figure 4.1 is identified to be identical to the signature in the userdb.txt. In the

results, it returns that it has identified the presence of the packer UPX 2.93 as

shown in the extract of the report below:

Figure 4.2 Peframe Report Extract of the file

CHAPTER 4

52

Although the results are described in the command line, it provides the option of

printing the results to a text file which can be manipulated further for analysis.

4.2.2 Pyew

Pyew is a static analysis framework written by Joxean Koret that performs file

and code analysis on PE, PDF, ELF and OLE2 file types [74]. It is mainly

command line based although the tool bokken which has a GUI can use it as a

backend to provide better user interaction. Pyew uses the standard Pefile.py

module to read the file contents of the PE File. This enables it to read PE structure

and display the contents depending on the command used. It also provides

debugger properties without the need to install a debugger. The scripts of interest

for a malware analyst are found in the folders:

…\pyew\plugins

Vmdetect.py contains some signatures of known anti-VM tricks which are

used to detect the presence of these tricks in the file.

Virustotal.py is the script that searches the virustotal website for a report

on the file being analysed using the MD5 and prints out the report it

retrieves.

UserDB.txt: It is a copy of the PEiD packer detection signatures used by

Packer.py to detect the presence of a packer.

 …\pyew

gcluster.py; A new module that is not seen in any of the other tools which

uses the graph vertices to compute the similarity between the call graphs.

graph.py: The script that retrieves the call graph of the file and an example

of the extract can be seen in the Figure 4.3

Figure 4.3 Call Graph of a sample malware

Using Pyew analysis is limited as it requires additional scripting to allow for

automated multi analysis and requires for changes to be applied to the modules

CHAPTER 4

53

to get output logs that can be further manipulated as the information saved in the

SQLite database is very limited and not of great value during the analysis.

4.2.3 Mastiff

Mastiff is a framework developed in python that performs static analysis of files

and is command line based. It is designed to extract the characteristics of the file

by automatically identifying the type of file being analysed and using the right

techniques to analyse it. Mastiff relies on plugins which makes it easy to be

extended for further use and can be used as a building block in the design of

other frameworks.

Figure 4.4 Mastiff Work Flow [75]

Mastiff functions and workflow as seen in Figure 4.4 are further documented by

Hudak [75] with details on how the different modules work together to provide an

in-depth analysis of the file. Mastiff supports the analysis of different file formats

but the plugins of interest are found in the folders

…\mastiff\plugins\analysis\EXE and …\mastiff\plugins\analysis\GEN:

EXE-peinfo.py which is the script that extracts and dumps information the

PE header and the structure of the executable.

EXE-resources.py extracts the information on the PE Resources directory

EXE-sig.py extracts the PE digital Signatures in the file.

EXE-Singlestring.py extracts single byte strings found in the file.

GEN-fuzzy.py which extracts the fuzzy hash of the file and files in the

sample that match.

GEN-String.py extracts and decodes any of the embedded strings found

in the code.

Mastiff provides an option of using the Virus Total API so that the files uploaded

can be analysed by the virus total website and the report generated downloaded.

CHAPTER 4

54

4.3 Test Environment

This section discusses the steps taken to setup the analysis environment to

ensure validity and reliability of the results. It also describes the evaluation and

analysis approach used in the study. Table 4.1 provides the details of the different

machine specification, environment, files and tools used.

Tool Specifications/ Details

Computer Dell 745, CPU – Intel duo core @ 2.13GHz, RAM 2GB.
Hard Disk – 150GB

 Host Machine OS Windows 7 Professional N Service Pack 1 (64 bit)

Virtual Machine
Manager

Oracle VM VirtualBox Manager Version 4.3.20 r96997

Virtual Appliance Honey Drive 3 – Royal Jelly installed with 80 GB vmdk
space

Tools of analysis Pyew version 3X
Mastiff version 2.0
Peframe as seen on the GitHub accessed April 2015.

Dataset 2620 samples of malicious PE files were downloaded
from http://www.nothink.org/honeypots/malware-
archives/http://www.nothink.org/honeypots/malware-
archives/

Data management
tools

SQLite Studio version 3.0.6.
Python IDLE version 2.7.9

Table 4.1 Experiment Setup Specifications for the evaluation of automated

static analysis tools

4.3.1 Comparison, Analysis and Evaluation Approach

The dataset was downloaded and analysed to pick only PE type files. Since the

dataset included many malware samples which could only be analysed one at a

time by any of the tools it was necessary to write scripts to automate this process.

With all the malware files saved into a single folder, each file as analyse and the

results were dumped as a text file into another folder. By modifying the script

written by tekdefense in [121] different scripts were written to enable auto multi-

file analysis for Mastiff, Pyew and Peframe. The script used for Pyew also utilised

its call graph module and call graph clustering module to obtain results necessary

for this evaluation. Data analysis was performed on the information retrieved to

obtain meaningful results. Figure 4.5 shows the study approach taken during this

study.

http://www.nothink.org/honeypots/malware-archives/
http://www.nothink.org/honeypots/malware-archives/
http://www.nothink.org/honeypots/malware-archives/
http://www.nothink.org/honeypots/malware-archives/

CHAPTER 4

55

Automated Static
Analysis Tools

Analysis of Extracted
Features

PE Suspicious Feature
Extraction

Mastiff

Pyew

Peframe

Download
the files

Identify and save PE
type files

Malware
Data set

Tool Feature
Comparison

Figure 4.5 Pictorial representation of evaluation study Approach

4.4 Test Scenarios

The test scenarios were formulated based on the information required to be

extracted from PE files to detect any suspicious characteristics and the additional

features that the tools provide that add value to the detection process. This

section discusses the test scenarios chosen and the reasons to why they were

deemed important.

4.4.1 File Identification:

Fields that identify the files such as the Filename, File size, MD5, SHA and

SHA256 are important to extract because these can be used to check the integrity

of the file downloaded. In addition to being used as identifiers when performing

further analysis, they can be used to query existing databases for known

malware.

4.4.2 Detection of Obfuscation Techniques

Obfuscation is a major characteristic of many malware as they try to evade

detection or slow down analysis. Detection of some of the signatures that show

that an application is using one or more of some of the obfuscation techniques

may lead to detecting a malicious file. For this test scenario, three common

methods applied in the binary obfuscation techniques as seen in malicious files

are investigated. With the tricks discussed in chapter 3 known, analysts have

developed signatures that detect specific packers, anti- VM and anti-debug

obfuscation techniques. So, the results obtained from the tools will be analysed

to determine the ability of the tool to detect; packers, Anti-VM and Anti- debug

tricks in the file information. The tools are also expected to identify the specific

CHAPTER 4

56

packer type where possible which should assist in the next step where unpacking

is required.

4.4.3 Analysis of APIs

The API calls extracted from a PE file can highlight the expected behaviour and

characteristics of the file [46]. Some APIs may indicate that the file employs some

obfuscation technique and how the file would interact with the system.

Some of the APIs used for anti-debug detection for example are [122]

IsDebuggerPresent: This function checks whether the application is being

debugged by returning a non-zero.

NtQueryInformationProcess: Returns internal Operating System

structures related to the process passed. This function is no longer

available for newer versions of Windows but it can still be seen in some

malware samples

CheckRemoteDebuggerPresent: Returns a non-zero value if the process

passed to the function is being debugged.

OutputDebugString: The function sends the debugger a string to display.

Some other notable characteristics are if the file expects to connect to the

internet, how it will execute and/or how it accesses memory. Depending on the

APIs clustered, files can be partially grouped into clusters of predicted behaviour

so extraction of APIs is a very important feature of an analysis tool. For this field,

two sub-definitions are considered; the extracted suspicious APIs per the tool and

the general extracted APIs.

4.4.4 PE file feature analysis

Many of the PE file fields have specific standards set by Microsoft [24] so changes

in these standards might indicate that the file is suspicious [42], [87], [100]. In this

scenario, the test focuses on how much of the PE file field information is extracted

by the tools or if used, whether the tool provides suspicious alerts for the fields

that have invalid information in the fields or identification of any anomalies in

relation to the PE structure formation.

4.4.5 Ssdeep hashing and Malware clustering

Cryptographic hashing computes a hash value on a data block and any changes

in the data block produces are different hash value. If one file has the same

cryptographic hashing value as a known malware sample, then it is concluded

CHAPTER 4

57

that the file is a copy of the known malware. Since malware variants tend to

change some bit values of the original malware code, normal cryptographic

hashing like the MD5 fails to detect the similarity of such files. So, to counter this

limitation, fuzzy hashing uses a rolling window to produce a continuous stream of

hash values. These hash values can be compared to produce a percentage score

of similarity between the files compared which enables malware analysts to

detect malware variants. Many hashing algorithms; Ssdeep, imphash and others

have been investigated in different works [53], [115], [123] to show how they

improve the accuracy of detection when used. This scenario looks at analysing

what file hashes are computed and how they are used in file clustering.

4.4.6 Call Graph Extraction and Comparison

A call graph is a directional graph with nodes (N) that represent the functions that

are interconnected with function calls represented by edges (E (i, j) where i to j

define the execution path taken as shown in Figure 4.6. Extraction of a call graph

represented by G = (N, E) provides a graphical representation of the execution

process of the program.

Start

N1

N2

N4
N3 N5

ES1

E41
E13

ES5

E12

Figure 4.6 Call Graph (G) Structure

Call graphs have been used in different research works to show how they can

predict the behaviour of the file [29], [30]. The work carried out by Kinable [124]

shows that call graph matching and clustering can be used to detect malware

variants. Availability of such information from a tool provides a way to increase

the accuracy of the malware detection. The fields analysed in this scenario look

at the extraction of code call graphs and comparison capabilities of code call

graphs performed by the tool.

4.4.7 String Analysis

Strings obtained from a file during static analysis when not encrypted can provide

a lot of information for a malware analyst, like URLs, executable files, registry key

CHAPTER 4

58

paths, command line options, passwords and IP addresses. Similarity in the

information across different samples may be used to cluster them. However, it is

important to note that sometimes, the malware obfuscates the strings and may

also provide misleading information in the strings.

4.4.8 Third Party Plugin

The ability of the tools being evaluated to support the integration of third party

tool as this enables the additional of new features during the analysis of malware

is also analysed.

4.4.9 Usability

Although this is not a metric that would lead to determining how malicious a file

might be, the ease of use for an analysis tool is an important feature to consider.

This section is broken down into 2 subsections:

 User Interface: Command line, Graphical User interface and online

analysis presence are what are considered as the measure for these tools.

 Output data management: During analysis, the most important factor is

how easy it is to handle to information one gets from the analysis tool.

The observations made during the use of the tools in analysing the malware

samples collected are further discussed; the technical skill level required and

availability of tools that supplement the analysis of the output files.

4.5 Feature Comparison, Analysis and Evaluation.

Once the dataset of malware were analysed by the tools, the output data is

analysed and results from the three tools are compared against each other

including the tool features and usability as observed during the experiments.

4.5.1 Tool Feature Comparison

This section shows the comparison of the kind of information that the tools

extracted and the additional features of the 3 tools. Table 4.2 provides the

summary that would be important to know when deciding which tool would be

best depending on the depth of static analysis required to be done on a file

sample. This information was collected by observation during the analysis phase

of this study.

CHAPTER 4

59

4.5.2 Analysis and Evaluation

This section discusses the observations made during the study and provides a

more detailed breakdown under each subsection.

Metric Peframe Pyew Mastiff

General File
Details

Filename ✓ ✓ ✓

File size ✓ ✓

MD5 ✓ ✓

SHA ✓ ✓

SHA256 ✓ ✓

Obfuscation
Technique
Detection

Packer ✓ ✓

Anti- Vm ✓ ✓

Anti-Debug ✓ ✓

APIs General APIs Extraction ✓ ✓ ✓

Suspicious API extraction ✓

Calculated
Hashes

SsDeep hash ✓

imphash ✓

File Clustering based on hash ✓

PE File
Details

Header ✓ ✓ ✓

Sections ✓ ✓ ✓

Section Entropy ✓

Exports ✓ ✓ ✓

Imports ✓ ✓ ✓

Hex- Dump ✓ ✓ ✓

Call Graph Generation ✓

Cluster Comparison ✓

U
s
a

b
il
it

y

User
interface

Command line ✓ ✓ ✓

Graphical User Interface ✓

Online Analysis option ✓

Output
Data.

.txt files ✓ ✓ ✓

.json files ✓ ✓

.db output ✓ ✓

Additional
Features

String Extraction ✓ ✓ ✓

Virus Total API utilisation ✓ ✓

Disassemble ✓

File metadata ✓ ✓

Extension by plugin ✓ ✓ ✓

Table 4.2 Static Analysis Tool Feature Comparison

4.5.2.1 File Identification:

The tools considered in this study provide different information that identifies the

file. While mastiff logs the file results in a folder identified by the file name, it does

not provide the MD5 or other hash values for the whole file. It instead computes

CHAPTER 4

60

the MD5 for each section and appends it at the beginning of each section. The

Pyew module provides the option for the tool user to request for the filename,

hash values and file name using a script called runme.py that can be edited to

automate the request for each analysis. Peframe provides the most information

for file identification. The comparison of the file identification information provided

by the tool is shown in Table 4.2 in the general File details section. This shows

that Peframe and Pyew are the stronger of the tools when there is need to

immediately get file identification information upon analysis.

4.5.2.2 Detection of Obfuscation Techniques.

For this scenario, only Pyew and Peframe are considered. Pyew detects packers

and anti-vm using known signatures while Peframe detects packers, anti-vm and

anti-debug based on the signatures provided in the signature folder. Peframe

allows for better extension options than Pyew especially for anti-vm and anti-

debugging techniques as the text files used as comparison signatures can be

edited. Pyew’s signatures save for the packer signatures are hard-coded in the

module. Analysis the results obtained from the tools based on the dataset and

the comparison of the detection percentages are presented in the Figure 4.7.

Figure 4.7 Comparison of Obfuscation Detection

4.5.2.3 Analysis of APIs

All the three tools extract the APIs that are identified in the file during analysis.

While Peframe allows for only APIs deemed as suspicious based on the signature

saved in its comparison file, Mastiff returns string.txt that contains all the strings

in the analysed file which contains the APIs and Pyew returns a list of all the APIs

when the command to return imports and exports are called. There is a variation

CHAPTER 4

61

in the top APIs detected by the different tools which can be explained by the fact

that Peframe is heavily affected by packing where some packers led to the tool

throwing an error and it returns only APIs it has matched to be suspicious in its

signature database. Pyew and mastiff extract all the APIs and Pyew can perform

deep code analysis to retrieve more APIs than Mastiff. For this scenario, in the

future work, API calls will be extracted from a set of benign executables to

perform a comparison on these functions.

4.5.2.4 PE header analysis

Here, the information given by the tools that can be used to detect if a file is

suspicious or not is analysed. For example, Peframe extracts the compile time

and an extract from a report of a malware sample analysed

6ec7e5c29b87c724735fea3c98b10288 shows that the file has an invalid date

and it is also a good example of abnormal section names. Figure 4.8 shows that

the compilation year analysis of the malware samples.

Figure 4.8 Compile year analysis of the files analysed

Figure 4.9 Pyew Report

CHAPTER 4

62

Figure 4.10 Peframe report

Figure 4.11 Mastiff Report

Figure 4.9, Figure 4.10, Figure 4.11 show the various report samples from the

three different tools of the same sample- 6ec7e5c29b87c724735fea3c98b10288.

By analysing the three reports, the information provided by the various tools

defers in the level of detail. Pyew provides the shortest file report with the section

CHAPTER 4

63

names, the section addresses and sizes which are important when deeper

analysis is required. Peframe provides detailed information about the header with

the important field of the compile time and flags it because it detects that the time

given is indeed invalid, it then also flags the 3 sections that have names that are

unknown together with the hash values. These hashes can be used for hash

matching during further detailed analysis.

The mastiff report provides findings in more detail even providing alerts based on

the discrepancies it has detected. For example, like the file having an address of

Entry Point that lies outside the section’s boundaries which a known indicator that

the file is malicious, a rawdata size that is larger than the actual file size. The

mastiff report also provides more warning details like the section characteristic

flag warnings, section field warnings, section entropy and directory warnings that

can be used by analyst to deduce that a file is malicious based on PE header

analysis than the other two tools. However the information from all the three tools

is equally important to improve detection accuracy.

4.5.2.5 Ssdeep hashing and Malware clustering

Mastiff is the only tool of the three that calculates the Fuzzy Hash of the file and

compares the hash against the hashes of the files already in the database to give

similarity percentage in the files. Figure 4.12 shows an extract of one of the

reports.

Figure 4.12 Mastiff Fuzzy Hashing results

CHAPTER 4

64

4.5.2.6 Call Graph Extraction and Comparison

Only Pyew has the modules that are responsible for generating call graphs and

call graph comparison. However, the tool was unable to produce call graphs for

packed malware and could only do so once the malware was unpacked.

To measure if the call graphs produced are good enough, call graphs generated

by this tool and the ones generated by IDA Pro are analysed. The nodes identified

by Pyew are fewer, however, it still produces a call flow that can be used to

classify the malware based on the graph clustering module in the tool. This

module was analysed next to measure the accuracy of its findings against the

results obtained using Ssdeep hashing. Using the report shown in Figure 4.9, the

graph clustering module was used to analyse the original file against 3 of the files

in the extract. Analysis of the similarity detection was further performed using the

file identified with MD5: 5f232bc72932b846855cdddc8d86a01 and its’ fuzzy hash

matches from Mastiff. The files were uploaded in the graph clustering similarity

module in pyew and Figure 4.13 shows the comparison of the results achieved.

The results obtained from the module in Pyew gave 100% similarity across all the

files for expert, Alist and Primes as shown in Table 4.3 and then in Figure 4.13

which argues against the module’s accuracy in graph cluster matching.

 File MD5

Mastiff Pyew

 Expert Alist Primes

dfc4b5f3559ffbccaf7d003fbf5577f4 97 100 100 100

4623c45a08d8ecc8e6646437ab3c7771 85 100 100 100

78d9013678a334bf52a93b0f24680a2d 74 100 100 100

Table 4.3 Comparison of Mastiff Similarity detection vs Pyew cluster graph

similarity analysis

Mastiff gives more defined answers than pyew results although the difference can

be seen in one file. While the graph clustering module in Pyew is a very good tool

to be used in conjunction with other information extracted, it is not best to use it

as a reliable tool but rather combine it with other tools to build a framework with

better detection accuracy.

CHAPTER 4

65

Figure 4.13 Similarity Detection Comparison

4.5.2.7 String Analysis

All the three tools extract strings. Using Peframe, URLs were extracted and a

count was used to see how many times each URL appears in the dataset and the

top 10 are listed in Table 4.4

Top 10 URLs No.

http://ocsp.thawte.com0 43

http://nsis.sf.net/NSIS_Error 40

http://crl.thawte.com/ThawteTimestampingCA.crl0 39

http://ts-aia.ws.symantec.com/tss-ca-g2.cer0 39

http://ts-crl.ws.symantec.com/tss-ca-g2.crl0 39

http://ts-ocsp.ws.symantec.com07 39

http://crl.thawte.com/ThawtePCA.crl0 31

http://www.usertrust.com1 31

https://d.symcb.com/cps0% 28

https://d.symcb.com/rpa0 28

Table 4.4 Top URLs extracted

The URLs extracted can be used as fingerprints to detect if a file is malicious and

they can also be used to group what kind of malware they are.

4.5.2.8 Third Party Plugins

Using the virus total plugin, the detection across the samples gives good results

because the samples are older than one year. However, from the analysis, even

CHAPTER 4

66

given that the samples are old, Table 4.5 has a list of files where the Anti-Virus

engines that Virus Total uses return a detection rate of 0 %.

Sample MD5 %

f2d69c64f6e98deb05243213e5561bf6 0%

6c55b3c4d59420b2f4198b2b2ea32d25 0%

7e7deb713a16c0ad00f3a7f7a9ae3eca 0%

77cfb9a441eb8516943da23dbd035cba 0%

e97143b1c63caf1db8e4a3ca086c3834 0%

049630bfdfa9f2d19aa9f9073352012d 22%

345004633174388211c2475cedb6de9a 54%

Table 4.5 VirusTotal analysis results giving 0% detection of known malware

This shows that even some malware are not detected by a collection of anti –

virus engines and therefore there is a need to fill this gap. The overall detection

analysis obtained from virus total is shown in

Figure 4.14.

Figure 4.14 Virus Total Detection Analysis of the samples

Vigna [13] notes that relying on Anti-viruses to detect malware is not a good

solution even a year after malware has been discovered. Vigna further argues

that some engines would not detect the malicious files while detection of the

malware on the day of discovery is limited to 51% of the engines sometimes and

there are some cases where it takes up to 2 days before the anti-viruses can

even detect a new malware sample. These statistics do not favour the reliance

CHAPTER 4

67

on the protection offered by anti-virus engines and particularly for virus total.

There is always a time delay of 10 minutes between upload and retrieval of the

report. However, the information offered by Virus total is a great addition for

malware analysts when detecting malware in systems.

4.6 Chapter Summary

In this chapter, 3 new static analysis tools that provide advanced static analysis

statistics are evaluated. Although most of the tools provide the same information,

mastiff is more detailed than the others and Pyew introduces new modules which

can improve the detection and clustering rates while Peframe provides a simple

but straight forward report. During the experimentation, some of challenges faced

that allowed us to develop scripts that allow for better automation of the analysis

process and analysis output log manipulation and management. Some of the

limitations of the tools that were identified were that not all indicators of

compromise in a PE file are been fully explored in all the tool. This is a window

that provides opportunity for newer automated static analysis tools.

The evaluation of the three tools provides a foundation for the next phase of study

that looks at using information for the tools together with scoring methods to

provide a quantifiable metric for the maliciousness of a file.

68

CHAPTER 5. MALSCORE: AN ANORMALY HEURISTIC FEATURE BASED

PROBABILISTIC SCORING METHOD FOR DETECTION OF

MALICIOUS PORTABLE EXECUTABLES

5.1 Introduction

In 2015, Forbes reported that it takes about 46 days for reported cyber incidents

to be resolved [125] . One contributor to this big mean time to recover is that most

incident responders are faced with the challenge of figuring out which files on the

system could be malicious over those that are not. Given the ever-changing

environment on a computer, such a determination is very challenging. Numerous

static analysis methods provide the initial information required for an experienced

analyst to deduce the intention of the file as long as the analyst has the expertise

to use the tools. No matter how experienced the analyst is, analysis of high

volumes of files will always require a lot of time. This challenge has led to the

growth of automated static analysis tools whose results still require the use

malware analysis expertise to deduce the intent of file under analysis. For most

PE static analysis tools, file anomalies are some of the information used to decide

if the file is malicious or not. Various studies show that anomalies in file features

extracted can be used as indicators of compromise [52], [126]–[128]. Attaching

a scoring method to anomalies as heuristic indicators of compromise (HIoC)

could allow for a faster and more efficient automated static analysis while

increasing the decision-making confidence level even to a standard system user.

Following the evaluation of the 3 tools in chapter 4, this chapter proposes a

method of measuring the malicious intent of file based on the identified heuristic

anomalies by using probabilistic scoring. We initially present interesting heuristic

anomalies observed from the analysis data of 1.6 million malware samples in

section 5.2. Section 5.3 details the used test environment, the method design and

the implementation process. 5.4 presents and analyses the achieved results and

finally we conclude and summarise the chapter in section 5.5.

CHAPTER 5

69

5.2 Heuristic observations from the static analysis data of 1.6 million

malware samples and discussion.

During this study, we had access to data from Nettitude Research and Innovation

Department’s analysis of 1.6 million malware samples using a customised version

of Peframe static analysis tool. For security reasons, the experiment setup of this

analysis is not included in this work. We however, present the interesting

observations made from this data.

Top 20 Malware Families in the Sample by ClamAv.

Win.Adware.Imali-17 Win.Adware.Multiplug-60223

Win.Adware.Multiplug-5 Win.Trojan.Vilsel-4621

Win.Adware.Domaiq-1 Win.Trojan.Madangel-1

Win.Trojan.Antifw-171 Legacy.Trojan.Agent-1388596

Win.Trojan.Ramnit-1847 Win.Adware.Multiplug-53339

Win.Trojan.Agent-1388669 Win.Worm.Allaple-5

Win.Adware.MultiPlug-1 Win.Spyware.78636-2

Win.Adware.Multiplug-3 Heuristics.W32.Parite.B

Win.Trojan.Agent-1388655 Win.Trojan.Redir-13

Win.Trojan.Agent-1388676 Js.Malware.Autolike-1

Table 5.1 The top 20 malware types identified during analysis

In instances of file analysis using static analysis tools, it is possible for the

analysis process to fail due to file malformations or anti- analysis techniques.

Some of the errors obtained from the analysis data are shown in Figure 5.1.

Figure 5.1 Peframe errors based on failed file analysis

The compile time analysis as shown in Figure 5.2 shows that there is some

questionable compile times for example a file having been compiled in 2055 and

seen in 2016. We see that about 19% of the files were compiled before the year

CHAPTER 5

70

2000. Given that most legitimate software providers always work to update their

software, it is reasonable to flag such a compilation timeline.

Figure 5.2 Malware compile time

Packer
Malware
Samples

% of total
sample

Microsoft Visual C++ 8 408013 25.5%

Nullsoft PiMP Stub -> SFX 73572 4.6%

Microsoft Visual C# / Basic .NET 72610 4.5%

Borland Delphi 3.0 64234 4.0%

Microsoft Visual C++ v6.0 52572 3.3%

PECompact 2.x -> Jeremy Collake 36672 2.3%

UPX 2.93 (LZMA) 16901 1.1%

Microsoft Visual Basic v5.0 16307 1.0%

Microsoft Visual C++ v7.0 15839 1.0%

AHTeam EP Protector 0.3 (fake PCGuard 4.03-
4.15) -> FEUERRADER 11106 0.7%

MingWin32 GCC 3.x 9671 0.6%

Microsoft Visual Basic v5.0 - v6.0 7668 0.5%

MSLRH V0.31 -> emadicius 7347 0.5%

UPX v0.80 - v0.84 5981 0.4%

UPX -> www.upx.sourceforge.net 5521 0.3%

ASProtect V2.X DLL -> Alexey Solodovnikov 4091 0.3%

Microsoft Visual C++ v6.0 DLL 2486 0.2%

Microsoft Visual C++ 5.0 2294 0.1%

ACProtect 1.3x - 1.4x DLL -> Risco Software Inc. 1809 0.1%

Safeguard 1.03 -> Simonzh 1611 0.1%

Table 5.2 Top 20 identified Packers

Based on these results, compile time is a heuristic feature worth comparing when

building a heuristic scanner. Another feature that was extracted from the samples

was the top 20 packers identified as shown in Table 5.2. Next, we analyse data

about the file sections and Figure 5.3 shows the distribution of the number of

CHAPTER 5

71

sections in the files while Figure 5.4 shows the 20 most popular section names

extracted from the data and Figure 5.5 shows the distribution of the calculated

section entropy.

Figure 5.3 The Distribution of the number of sections in the analysis data

Figure 5.4 Top 20 Section Names in analysed sample

Figure 5.5 The Section Entropy distribution

The most common libraries seen in the malware samples were populated as

shown in Figure 5.6. Peframe as a tool has API signatures that are deemed

suspicious when seen in analysed files. The top 20 anti-debug APIs extracted are

CHAPTER 5

72

shown in Figure 5.7 are extracted and Figure 5.8 shows the distribution of the top

20 suspicious APIs seen.

Figure 5.6 Top DLLs in the Analysed sample

Figure 5.7 Top 20 Anti-debug APIs indentified

Figure 5.8 Top 20 Suspicious APIs indentified

CHAPTER 5

73

One of the most important extracts from the file are the strings which can

sometimes lead to initially understanding what the file functions are. Therefore,

analysing the strings extracted from the analysis data was very relevant. The

first step was to extract any data related to the filenames that could be extracted

from the strings. The filenames shown Figure 5.9 are what were extracted.

Figure 5.9 Filenames extracted from the data

Today, malware are known to try and connect to the outside world to either

establish command and control, retrieve other files or even send data [80].

Therefore, any strings that look like URLs or emails can be very useful.

Performing this analysis on the sample led to populating Table 5.3 and Table

5.4 which show the top 20 email addresses and top 20 URLs respectively.

Email Addresses

support@getwebcake.com info@mbsoft.gr

support@mitcsoftware.com jdeb@autoscript.com

support@rjlsoftware.com pop@harzing.com

support@yontoo.com sales@totusoft.com

71174.2675@compuserve.com sandy-cyf@163.com

Soft@leinao.com supermca@yandex.ru

csli534@ctimail3. support@buzzdock.com

huidawo@hotmail.com support@bytessence.com

support@puffinwarellc.com support@mypropertyprogram.com

Table 5.3 Email Addresses extracted from the data

CHAPTER 5

74

Top 20 URLS

http://ocsp.thawte.com

http://crl.thawte.com/ThawteTimestampingCA.crl

http://ts-ocsp.ws.symantec.com

http://ts-aia.ws.symantec.com/tss-ca-g2.cer

http://ts-crl.ws.symantec.com/tss-ca-g2.crl

https://www.globalsign.com/repository/

http://crl.globalsign.net/root-r3.crl

https://www.globalsign.com/repository/

http://crl.globalsign.com/gs/gscodesignsha2g2.crl

http://ocsp2.globalsign.com

http://secure.globalsign.com

http://www.w3.org

http://ocsp.comodoca.com

http://bi.downthat.com

https://secure.comodo.net

http://crl.comodoca.com/COMODOCodeSigningCA2.crl

http://crt.comodoca.com/COMODOCodeSigningCA2.crt

http://nsis.sf.net

http://schemas.microsoft.com/SMI/2005/WindowsSettings

http://ocsp.usertrust.com

Table 5.4 Top 20 URLs extracted from the analysis data

5.3 Methodology Design and Implementation

The proposed method design and implementation are discussed in this section.

The different steps and algorithms built and used are described herein. The

approach is broken down into steps with the aim of obtaining a scoring method

for PE files based on the anomalies identified during the study.

5.3.1 Test Environment and Dataset formulation.

The test bench environment is built to allow for fast analysis with output

information being saved to a single file log for malicious files analysed and

another for the clean files to allow for easier data analysis. The algorithm uses

the prepared dataset that is subdivided as shown in Table 5.5 and the tools used

are described in Table 5.6.

Dataset
Number of files

Use in the system
Total Clean Malicious

A ⟵ {Am, Ac} 50654 698 49956
Aggregate and score the
Heuristic Indicators of
Compromise

B ⟵{Bm, Bc} 55373 940 54433
Detection Scoring -method
evaluation phase.

Table 5.5 MalScore datasets formation and their uses

CHAPTER 5

75

Tool Specifications/ Details

Computer Dell T1700, CPU – Intel Xeon@ 3.1GHz,
RAM 32GB. Hard Disk – 500GB

Machine OS Linux Mint 17.1 (#64 – Ubuntu SMP)

Analysis and detection
tools

Scripted in Python using some from Pefile [129],
Peframe [73] and Pescanner [130] integrated
with customised functions specific to this study.

Table 5.6 Malscore Test Bench Specifications

5.3.2 Aggregation of the Anomalies.

Creating a list of anomalies to consider in this study required extracting file

features of the sample PE files both clean and malicious and aggregating them.

For this we revisited work in Chapter 4. The anomalies are defined in this work

as values with in the PE file that do not conform to the predefined values in the

PE specification document [24]. Analysed malicious file extracts are used and the

features of clean files are extracted as a control measure using dataset A.

PE File Feature Analysis

Load PE File
Read PE

Structure

Parse

Structure to

Logstash

Load to

Elasticsearch

Get Query Result

on Kibana

Figure 5.10 PE file Feature Analysis Component Layout

ANORMALY PROBABILISTIC SCORE GENERATION MODULE

Feature Correlation

&

Anormaly Probability

Score Calculation

File

HIoCs - Scores Set

Clean Files Malicious Files

Extract

PE File features
Extract

PE File features

File Static Analysis

Figure 5.11 Pictorial representation of the Heuristic anomaly probabilistic score

generation module

CHAPTER 5

76

A customised PEparser based Python tool is used to parse PE files and the

extracted information in Json format is passed to an ELK (Elastic Search,

Logstash and Kibana) server [131] for better aggregation and visualisation of the

data. The Clean PE file features are also analysed to extract corresponding

information. The Heuristic features extracted of the Malicious and clean files are

compared to obtain the Heuristic Indicators of Compromise Set (HIoCs) as shown

in Figure 5.11. This comparison allows for the defining of the scoring rules that

are used to define the trigger references.

5.3.3 Application of the Conditional Probability Theories.

Taking the hypothesis that a file is either malicious (M) or Clean (C) and A

represents the likelihood of an Anomaly being detected in a file based on the

defined scoring rule. Using Bayes’ theorem, the hypothesis that the file is

malicious given the anomaly is defined by [132]:

)(

)()|(
)|(

AP

MPMAP
AMP

•


 (5.1)

However, P(A) is not known so applying the theorem of total probabilities, it can

be broken down to known outcomes:

)()|()()|()(CPCAPMPMAPAP ••
 (5.2)

Where P(A|M) and P(A|C) are determined from the training set. In designing this

method, P(M) and P(C) are assigned a value of 0.5 each due to the principle of

indifference. It assumed that the file is either clean or malicious and therefore:

)()(MPCP 
 (5.3)

Since the hypotheses Clean and Malicious define the total probability space;

P(C) = P(M) = 0.5

5.3.4 Identification of Trigger features.

In this step, Dataset A in Table 5.5 is use to formulate the HIoC set using the

features which are shown to be more dominant in malware files as compared to

clean files are identified. A dominance rule is used to identify these trigger

features and characteristics in the dataset. We define this dominance rule as:

)) X| C P(() X| M P((X) feature (Dominant S(X) iii 
 (5.4)

CHAPTER 5

77

Where: S(X) is a set of all anomalies collected by the dominance rule.

X is a Heuristic Indicator of compromise/ anomaly, i= {1,2, 3,…}

We revisit work in [126] and perform analysis to create the scoring rules that are

used as triggers to attach the different heuristic scores during the training phase.

The top 25 dominant features that provided high dominant feature scores as

shown in Table 5.7 form the HIoCs based score.

5.3.5 Formulation of the Individual Anomaly Score.

With the triggers of HIoCs set, scoring the anomaly means attaching a

probabilistic score so that the overall file score is a quantifiable metric measuring

file maliciousness.

Once the probability of the file being malicious given a specific anomaly is

detected is known for each of the selected 25 HIoCs, there is need to normalise

the probabilities so that the total anomalies score of the file adds up to 100. This

requires defining the principle score attached to each anomaly detected

individually S(Ai) as:

%
)|(

)|(
)(




n

n

i
i

AMP

AMP
AS (5.5)

Where: S(A) is a score of the anomaly A, n is the total number of

anomalies used in the study (n = 25), i= {1,2, 3,…}

The different anomaly scores are populated in a set S_Anom_set which are used

by MalScore algorithm to score files under analysis.

5.3.6 MalScore: The Heuristic Scoring Algorithm.

In this algorithm, the file is analysed by Pefile and the file features are extracted.

MALSCORE

FILE SCORE (%)

MALSCORE MALWARE DETECTION AND SCORING ENGINE

Attach Scores to Flagged Features

File Feature

Matching

File

HIoCs - Scores Set

STATIC

ANALYSIS

Extract

PE File features

File

Figure 5.12 Pictorial representation of the MalScore approach

CHAPTER 5

78

P(M) = P(C) = 0.5

 Features (HIoCs) Scoring Rule P(A/M) P(A/C) P(A) P(M/A) S(A)

F
il

e
h

ea
d

er
 Compile Time Year < 1992 or Year > 2016 0.361 0.004 0.183 0.989 4.24%

CheckSum Value != Calculated Checksum 0.532 0.000 0.266 1.000 4.28%

Number of Sections Value < 1 or Value >9 0.637 0.009 0.323 0.986 4.22%

Characteristics (RELOCS_STRIPPED) Value = 1 0.752 0.100 0.426 0.883 3.78%

Characteristics

(LINE_NUM_STRIPPED) Value = 1 0.820 0.351 0.586 0.700 3.00%

O
p

ti
o
n

a
l

H
ea

d
er

NumberOfRvaAndSizes Value != 0 0.351 0.000 0.176 1.000 4.28%

Size of Image

Value != SizeOfHeader + Sections

SizeOfRawData 0.400 0.000 0.200 1.000 4.28%

SizeOfOptionalHeader Value != 224 0.310 0.003 0.157 0.990 4.24%

Address of Entry Point/ File Size Value >2 0.223 0.004 0.114 0.982 4.21%

LoaderFlags Value !=0 0.525 0.000 0.263 1.000 4.28%

S
ec

ti
o
n

s

Section Entropy Value < 1 or Value > 7 0.470 0.022 0.246 0.955 4.09%

Size of Raw Data value = 0 0.930 0.005 0.468 0.995 4.26%

Pointer to Raw Data Value = 0 0.871 0.410 0.641 0.680 2.91%

Section Virtual size and Raw size Virtual size < Raw size 0.870 0.420 0.645 0.674 2.89%

Section Names Not in List 0.783 0.010 0.397 0.987 4.23%

R
sr

c Resource Section Sub-language Value = 0 0.394 0.008 0.201 0.980 4.20%

Resource Size/ file size Value > 0.05 0.120 0.002 0.061 0.984 4.21%

O
th

er
s

URLs Present? 0.486 0.005 0.246 0.990 4.24%

Anti-debug APIs Number >2 0.983 0.060 0.522 0.942 4.04%

Suspicious APIs Number >5 0.990 0.050 0.520 0.952 4.08%

File Entropy Value > 7 0.792 0.034 0.413 0.959 4.11%

Packer File Packed? 0.970 0.362 0.666 0.728 3.12%

Anti - VM Present? 0.586 0.006 0.296 0.990 4.24%

Embedded file TRUE 1.000 0.000 0.500 1.000 4.28%

File Signed FALSE 0.651 0.001 0.326 0.998 4.28%

Table 5.7 The HIoC set Scoring formulation.

CHAPTER 5

79

As shown in Figure 5.12. for each marked anomaly from the populated HIoCs

detected in the extracted features, the score corresponding to that anomaly is

attached to the total file MalScore (Fms). The Fms is returned after the algorithm

has looped through the all the extracted features matching them against the set

of HIoC as the quantifiable metric to measure the malicious intent of the file. The

pseudo code for the algorithm is described in Algorithm 5.1.

Algorithm 5.1 MalScore- Heurisitic scoring

Input: PE file f , HIoCs, S_Anom_set
Output: Fms

Overall Heuristic Scoring Phase

procedure: Malscore
 Extract
 Ff ⟵ File Features (f)
 for a in Ff do
 if a ∈ HIoCs then
 Fmsf =+ S_Anom_set (a)
 end if
 end for
return Fmsf
end procedure

5.3.7 Formation of the Heuristic Detection Score threshold.

Like any other malware detection method, the purpose of this technique is to

capture all the malicious files while letting the clean file through. However, there

is yet to be the perfect system with 100% true detection and 0% false detection.

The best strategy is always to design a system that has very high true positive

detection while keeping the false positive rates very low. The true positive – false

positive trade-off creates a need for creating a threshold percentage above which

the file is said to be malicious and below which the file is labelled clean.

5.4 Proposed Scoring and detection Method Results and Analysis

The validation of the designed method involved scoring both malicious and clean

files. Using Dataset B in Table 5.5, the results achieved are as discussed here

in. The MalScore file score area covers in Figure 5.13 show that most of clean

files scored in the lower half of the scoring range while most malicious files score

above it. Further analysis involved determining the MalScore threshold which

determines at which point the file is deemed suspicious. We define this threshold

CHAPTER 5

80

as: File Score≤ 45%; File is clean and File Score > 45%; File is malicious. Using

Figure 5.14, 45% provides a trade-off of 97.6% true positive detection vs 0.6%

false positive detection. It is our recommendation based on the dataset tests that

45% is the threshold. To evaluate the fitness of the designed model, Figure 5.15

provides the ROC curve of the model which plots the true positive rate against

the false positive rate. The trend of the ROC curve shows that this model is good

fit and therefore, it can be used for efficient malware detection.

Figure 5.13 MalScore Malicious and Clean files Score Area curves

Figure 5.14 False and True Positive Detection Rates against the MalScore file

scores

CHAPTER 5

81

Further analysis of the method based on the malware family distributions in the

dataset as seen in Figure 5.16 shows that the method performs better for some

malware types; adware, Trojan and worm in comparison to other type. The

average analysis time for each file for this method achieved in this study is 6

seconds which makes the method fast.

Figure 5.15 The Malscore ROC curve

Figure 5.16 The detection ratio of the malware types in the test Dataset

5.5 Chapter Summary

This chapter presents the study strategy taken to design a heuristic anomaly

based scoring approach MalScore that is one of the contributions of this thesis.

CHAPTER 5

82

Initially, statistics and observations from the static analysis of 1.6 million malware

samples using a customised Peframe are presented and discussed. Using these

observations, we explain the design and implementation process of the heuristic

malware detection approach proposed that uses anomaly probabilistic scoring.

The results obtained from the testing process are presented and discussed and

this approach allows for quantifying the file’s malicious status. The results

achieved at the suggested threshold 45% of 97.2% true positive detection vs

0.6% false positive detection provide a basis for arguing for this approach. The

method is built using python scripts that can be customised, are very light which

makes for a light but effective solution.

83

CHAPTER 6. MALHASCORE: MALICIOUS PORTABLE EXECUTABLE

STATIC SCORING METHODOLOGY USING EVIDENCE

COMBINATIONAL THEORY WITH HEURISTIC FEATURE

CALCULATED HASHES.

6.1 Introduction

Malware detection is an area with a lot of uncertainty especially in cases where

we need to rely on the human factor for the better part of the analysis and

therefore detection. Malware analysis is a challenge especially given the big

number of malware that analysts must handle to build signatures. For instance,

as of writing this report, nearly 600 million malware have been collected according

to AV-Test Institute compared to the almost 500 million malware collected last

year, 2015 [43] of which only 12% were new malware.

Figure 6.1 Old malware and New malware statistics

The evolution of networking technologies implies that malware delivery channels

are readily available. The high-performance systems used today require similarly

high performance security methods and therefore new optimised malware

detection techniques that can perform real-time detection with very low effect on

the performance of the system are needed. This automatically limits the use of

dynamic analysis based detection methods. Dynamic analysis requires setting a

time frame for the execution and observation of the file under analysis which can

be quite time consuming. Fuzzy hashing is a known technique first developed for

anti-spam research that is used to find the measure of similarity between two files

[133]. It has been adopted in malware analysis and detection to speed up the

processes given the exponential increase in malware samples discovered daily.

CHAPTER 6

84

File similarity is used to cluster malware into families whose common signature

can then be designed. However, Hashing has not been fully implemented to be

used in malware detection because it can easily be evaded by applying a simple

obfuscation technique such as packing. This challenge has limited the usage of

hashing to triaging of the samples based on the percentage of similarity between

the known and unknown. Various publications on the different fuzzy hashing

methods show promising results mainly for the clustering of malware [50], [53],

[56], [113], [134]. Although hashing faces the issue of high false negatives, a

combinational approach could lead to better results. By focusing on files of the

same type, structure as a discerning factor is eliminated. The introduction of

various hashing functions that have been tested include some that overcome

obfuscation allows this design and implementation of this approach as a means

of better malware detection.

Most expert systems show low errors in decisions that are based on uncertainty

because of the different mathematical theories developed and implemented [59].

Although reasoning under uncertainty introduces interesting concepts that can be

applied to malware detection, there is need to better integrate these theories into

the systems that are mainly dedicated to malware detection. Many reasoning

models based on uncertainty have been developed to enable expert systems to

make decisions based on unreliable data [59] and this theory is used in this study

to propose a new approach to malware detection.

If the similarity in the files detected by the hashing functions is used as the heuristic

attribute similarity factor for a sample dataset for the decision-making process of

malware detection, multiple attribute decision making and evidence combination

mathematical models are applicable in the automation of this process.

The proposed method is appealing because:

• Hash functions are easily calculated during the basic static analysis of a

malware sample. This implies that the deployment cost and manual effort

required for dynamic analysis and advanced static analysis are avoided.

• It is scalable and can be customised to needs of a malware analyst and the

algorithms can be adopted to other file types using file similarity matching

hashes.

CHAPTER 6

85

• Considering the different hashes as heuristic file attributes reduces the

storage capacity required by the system making it very light and therefore

not impacting system resources heavily.

• We combined tried and tested similarity matching hashes that are popular

in the field of malware detection that are provided in almost all automated

static analysis tools like Peframe and Virustotal.

In this chapter, we explore the different ways fuzzy hashing can be used to detect

similarities in a file by investigating hashes of interest. Each hashing method

produces independent but related interesting results which are presented herein.

The application of two different methods of combining the hash values to improve

the detection rates is presented. The results show that the detection rates are

improved when evidence combination techniques are used. File and section

Ssdeep hashing, PEHash and Imphash techniques are used to calculate the

similarity of the Portable Executable files. The similarity in the files detected by

the hashing functions is used as the Heuristic content similarity factor for the

sample of the dataset used.

6.2 Design choice of Hashes in scope

The choice of hashes used in the design of this method relied on their current use

in similarity matching and the various file sections used to calculate the hashes.

Table 6.1 shows the reasons as to why the various hashes were chosen. PeHash

design purpose argument is that it works to overcome polymorphic malware.

Imphash is proven to classify malware based on the import table. Ssdeep Hash

is used to calculate both the overall file similarity and the resource section. File

Ssdeep hash is a very common hash used for similarity matching in common

automated static analysis tools like Mastiff.

 Hash Type Reason

PeHash (PeH) Overcoming Malware Obfuscation

Imphash (ImpH) Classification by API

File Ssdeep Hash (FuzH) Overall File similarity

Resource section Ssdeep Hash

(ResFH)

PE Resource section file similarity.

Table 6.1 Argument for in scope Hashes

The resource section (.rsrc) of a PE file is known to contain the information about

any names and or types of embedded resources [80]. By combining the various

CHAPTER 6

86

aspects of the file sample using the 4 various hashes, the overall achieved score

is intended to represent the file’s similarity to already known malware samples.

6.3 Modelling and implementing the proposed method design.

Our approach is presented in this section and we describe the model design and

implementation of the different algorithms that form the proposed method. Table

6.2 shows the notations used in the design of the different algorithm with the

approach which is divided into 6 different Step. While designing the methodology

for this study, the PE format [24] and the work in [135] are revisited.

Notation Meaning

DB Database

ImpH Imphash

PeH PeHash

FuzH File Ssdeep Hash

ResFH Resource Section Ssdeep Hash

Xi Set of elements of i attribute

MD5 MD5 sum

CFH(a, b)
Ssdeep Hash Comparison Function to detect similarity
percentage of a and b hashes.

HashFlag_set (H) The Hash flag setting function for H type of hash

𝝅𝒊(DB) All the tuples in DB of attribute i

 DBba Generalised selection of all tuples in DB where a= b

Pop_MASHDB Populate Malware Sample Hash Database Function

MALHACompare(f
)

Malware Hash Compare Function for file f

Mal (f) Malicious Measure of File f

i
Hash i where: i = {1, 2,3,4} ⟺ { ImpH, PeH, FuzH,
ResF}

FST Fuzzy Logic Combinational Metric

CFM Certainity Factor model Combinational Metric

TDR True Detection Rate

CFi Common Factor of Attribute i

SFi Evidence Support Factor of Attribute i

FuzzyLogicSum The Fuzzy Logic Algebraic sum function

MYCINSum The Common Factor (MYCIN) Algebraic sum function

Table 6.2 The Algorithm Notations

CHAPTER 6

87

By focusing on only the hashing aspect of static analysis, we investigated ways

in which the different hashes that define PE fields of interest can be used to detect

the malicious samples in the dataset.

6.3.1 Single File Hashing Study

This was initial study done on one clean file (arp.exe) found in Windows systems.

The file hashes including the cryptographic, peHash, Ssdeep hash for all the

sections and for the file were calculated. Then the file was edited using Radare

[136] to write “?a” characters into the file which is then saved with a different

name. The hashes for the new file were also calculated. The hashes from the two

files; the original and the edited version were compared as shown in Figure 6.2

so that the differences would provide a baseline for the next phase of the study.

Figure 6.2 The single file Hashes Study

6.3.2 Collecting the Datasets

Using the files collected as discussed in section 2.5.2, each file was saved as its

MD5 sum to ensure that there was no duplication of files in the dataset. The files

were also clearly labelled clean or malicious and were kept in separate folders

depending on the known status of the files. The malicious files dataset was split

into 3 different subsets with the sets; A, Bm and Cm and the Clean files into 2

subsets; Bc and Cc which were used for different steps as shown in Table 6.3.

CHAPTER 6

88

Figure 6.3 The pictorial representation of the system

CHAPTER 6

89

Dataset Use in the system

A Training phase.

B ⟵ {Bm, Bc} Baseline-Creation phase and CFI generation.

C ⟵ {Cm, Cc} Detection-method evaluation phase.

Table 6.3 Datasets Formation and their uses

6.3.3 Populating the Database of Hashes Signatures

The database of hashes (DBFH); the malicious hashes that are used as the initial

signatures are populated with the randomly selected malware samples in dataset

A using the process described by Algorithm 6.1.

The design of this framework also allows for this database to be updated should

more signatures be identified that are not already saved in the database of

hashes. The imphash, peHash, file Ssdeep hash and file resource section hash

were computed and saved into an SQlite managed database with the file MD5 as

the key identifier.

6.3.4 Hashes Similarity Based Criteria Factor Index (CFI) Formulation.

Once the training database was populated, the next phase involved determining

how the individual hashes perform in terms of malware detection and how they

can be combined to optimise the malware detection rate. Dataset B which

comprises of both malicious files and clean files is used at this stage. The clean

files are used as a control in this training stage. MD5 hash is ignored at this stage

because the file MD5 gives us absolute certainty that the files are similar and thus

the file would be malicious. Since we initially saved all the files in the datasets

Algorithm 6.1 Algorithm for Populating database of Hashes

Input: Malware Dataset A
Output: Flagged Hashes Database DBFH

 procedure: Pop_MSHDB
for malware m in A do
 Extract the file hashes
 Hashes (m) ⟵ {MD5, ImpH, PeH, FuzH, ResF}
 If Hashes(m) ∉ DBFH then
 add Hashes to DBFH
end for
end procedure

CHAPTER 6

90

with their calculated MD5 as their identifiers, there was no possibility of

duplication of a file in the dataset. This step was broken down into 2 sub-steps;

6.3.4.1 The individual performance of the hashes in relation to malware

detection.

The initial stage of determining the individual performance of the hashes involved

comparing the hashes calculated for files in dataset B against the DBFH. This

was done by formulating the HashFlag_set where each of the 4 hashes had a

specific position. The algorithm designed to set the HashFlag_Set fields is

described by Algorithm 6.2 and Figure 6.4.

Algorithm 6.2 Algorithm for Hash Comparison

Input: PE file f and DBFH
Output: HashFlag_set

procedure: MALHACompare(f)
Extract
 Hashes(f) ⟵{ ImpH, PeH, FuzH, ResFH}
 return Hashes(f)

ImpH Comparison Phase

ImpHf ⟵ Hashes(f) ImpH

XImpH ⟵ 𝜋𝑀𝐷5 (𝜎 "𝐼𝑚𝑝𝐻=𝐼𝑚𝑝𝐻𝑓"(𝐷𝐵𝐹𝐻))

if XImpH ≠ null then
 HashFlag_set (ImpH) = true
 else
 HashFlag_set (impH) = false
end if

PeH Comparison Phase

PeHf ⟵ Hashes(f) PeH

X PeH ⟵ 𝜋𝑀𝐷5 (𝜎 "𝑃𝑒𝐻=𝑃𝑒𝐻𝑓"

(𝐷𝐵𝐹𝐻))

if X PeH ≠ null then
 HashFlag_set (PeH) = true
 else
 HashFlag_set (PeH) = false
end if

FuzH Comparison Phase

FuzH f ⟵ Hashes(f) FuzH
XFuzH ⟵ 𝜋𝑚𝑑5,𝐹𝑢𝑧𝐻 (𝐷𝐵𝐹𝐻)

if Max(CFH (FuzH,∀x1 ,({x0,x1}∈ XFuzH)) > 0 then

 HashFlag_set (FuzH) = true
 else
 HashFlag_set (FuzH) = false
end if

ResFH Comparison Phase

CHAPTER 6

91

ResFH f ⟵ Hashes(f) ResFH
XResFH ⟵ 𝜋𝑚𝑑5,𝑅𝑒𝑠𝐹𝐻 (𝐷𝐵𝐹𝐻)

if Max(CFH (ResFH,∀x1 ,({x0,x1}∈ XResFH)) > 0 then
 HashFlag_set (ResFH) = true
 else
 HashFlag_set (ResFH) = false
end if
return HashFlag_set
end procedure

Figure 6.4 Flow chart for Algorithm used to set the HashFlags

For each file in Dataset B, the 5 respective hashes are computed and 4 different

queries were run against the database. Each query returns a set of tuples;

PE file - f

Start

Extract PE file Hashes

(Hashes(f) {} ⟵MD5f, ImpHf, PeHf, FuzHf, ResHf)

Database

of Hashes

 XImpH ⟵ Pull

∀MD5 , ImpH = ImpHf

XPeH ⟵ Pull

∀MD5 , PeH = PeHf

 XResFH ⟵ Pull

∀(MD5 , ResFH)

 XFuzH ⟵ Pull

∀(MD5 , FuzH)

Is XImpH null?

Is Max(CFH (FuzH,∀x1
,({x0,x1}∈ XFuzH)) > 0?

Is XPeH null?

Is Max(CFH (ResFH,∀x1

,({x0,x1}∈ XResFH)) >0?

Set the HashFlag_set(ImpH)Yes

No

Stop

Set the HashFlag_set(PeH)Yes

No

Set the HashFlag_set(FuzH)

Yes

Set the HashFlag_set(ResFH)

Yes

Return the HashFlag_Set {}

No

No

CHAPTER 6

92

 XHi ← {md5, Hi} (6.1)

Where; Hi = {PeH, ImpH, FuzH, ResFH}

During the comparison of PeHash and Imphash, only the hashes similar to the

calculated hash were pulled from the database. If the set Xhi was Ø (null), the

HashFlag_set position corresponding to the hash of type i was not set. It was set

otherwise. While for resource Ssdeep hash and file Ssdeep hash, all the hashes

were pulled from the database and an Ssdeep similarity match was done for the

file hashes and the respective database populated hashes.

Algorithm 6.3 Algorithm for populating Detection Rates

Input: ds ⟵B , DBFH
Output: DetectionRates

Overall Hash Based Detection Rate Phase

procedure: HaBaDR
for file (f) in B do
 H_flagset f
for i = 1 → 4 ⊳Loop through the hashes set ids
 if f ∈ B then
 if H_flagset fi then
 TPi = +1

 else
 FNi = +1
 end if
 end if
 if f ∈ Clds then
 if H_flagset fi then
 FPi = +1

 else
 TNi = +1
 end if
 end if
 Update DetectionRatesi ⟵{ TPi, FNi, FPi, TNi}
 end for
return DetectionRates
end procedure

If the maximum similarity percentage calculated was greater than zero, the

HashFlag_set position corresponding to the hash of type i was set. It was not set

otherwise. Each file corresponds to one set of HashFlag_set. The second phase

entailed populating total count of instances where the flag position of the hash is

set. For the malicious subset (True Positive –TP if set. False Negative –FN if not

CHAPTER 6

93

set), Clean subset (True Negative – TN if not set. False Positive – FP if set) as

shown in Algorithm 6.3.

6.3.4.2 Calculate the CFI of all the individual hashes.

The detection rates obtained in the above sub-step are used to calculate the CFI

of each hash which is used as a measure of belief for each hash detection factor.

True detection rates are used as a measure of the hash methodology accuracy

to minimise the error incorporated in the support factors. To make the detection

rates compatible with the combinational theories, the positive detection rates are

normalised to probabilities that add up to 1. The normalised detection rates take

the form of the degree of belief in the uniform range [0, 1]. Simple Additive

weighting [137] is applied to the detection rates so that the degree of belief/

Criteria Factor Index (CFI) for each Hash method is defined as:

CFIa = a

-1
4

1

TDR *








n

nTDR (6.2)

Where TDRa =
DatasetBinNumber

TNTP aa

__



These CFI values are used as the expert factors for the respective hashing

techniques to support the hypothesis that the file is malicious.

6.3.5 Application of Evidence Combination Theory Approach

The CFI values obtained in step 6.3.4 are inputs to Algorithm 6.4 for the

combinational approach application to the analysis as further shown in Figure

6.5. The MD5 comparison phase is used as a known malware filter for the

designed method. This phase is a redundancy step introduced to avoid replication

of the malware samples in the evaluation experiment. The Hashes comparison

phase uses the file calculated hashes and compares them against DBFH. The

query in equation 6.1 is used in this phase too. The support factors for the hashes

are computed from the results obtained from the respective queries. For Pehash

and Imphash, if the resulted set is not null, then the corresponding Support Factor

(SF) is equivalent to the CFI of the respective hash. Otherwise the hash’s SF is

set to zero. For Resource Section Ssdeep hash and file Ssdeep hash, the

corresponding SF is equivalent to the CFI multiplied with the maximum similarity

percentage achieved from comparing the file and the hashes in the database.

CHAPTER 6

94

The Calculated SF values of the various hashes are combined using the evidence

combinational models to get the algebraic sum for the overall hypothesis. The

result is feed into the TLBSA (Traffic Light Based Scoring Assessor) which returns

the calculated quantitative file status measure and a recommendation for the

user.

6.3.6 Generation of the Traffic Light Based Scoring Assessor (TLBSA)

Thresholds.

The calculated malware detection rate evaluation values provide a way of

identifying how well the designed method works. However, to ensure that there

is as high true positive detection vs very low false positives trade-off, we need to

design thresholds. Therefore, the resultant percentages from the combined

hashing technique are compared to add an overall “Traffic Light Based Scoring

Assessor” (TLBSA) that evaluates the score attached to the file to give the user

a recommendation based Table 6.4

TLBSA
Colours

Deduced Malicious
intent of the file

System Recommendation

Red Definitely malicious Do not Install

Amber Medium Suspicion
Highly encouraged to submit it for further
analysis

Green Low Suspicion May submit it for further analysis

Table 6.4 The TLBSA Colour definitions

The TLBSA threshold percentages are defined by best effort True positive- false

positive trade-off. Since the system does not completely guarantee that the file is

safe, the final decision is left to the user. The system however, ensures that the

user is informed with the file malicious score and the system recommendation so

that the human factor risk is controlled.

CHAPTER 6

95

Figure 6.5. Flow chart showing the calculation of the MalHaScore for file samples.

CHAPTER 6

96

Algorithm 6.4 Combination of Hashes Based Detection Mechanism

Input: PE file f , CF and DBFH
Output: Mal(f)

Extract file Hashes Phase

procedure:HaBCoMalD(f)
Extract
 Hashes(f) ⟵{MD5, ImpH, PeH, FuzH, ResFH}
 return Hashes(f)

MD5 Comparison Phase

MD5f ⟵ Hashes(f) MD5

 XMD5 ⟵ πMD5 (σ "MD5=MD5f"

(DBFH))

 if XMD5 ≠ null then
 Mal(f) = 100%
 end procedure
 else
 goto HashComp
end if
return Mal(f) ⊳provide a system recommended action for the user
end procedure

Hashes Comparison Phase

HashComp:
 ImpHf ⟵ Hashes(f) ImpH
 PeHf ⟵ Hashes(f) PeH
 FuzH f ⟵ Hashes(f) FuzH
 ResFH f ⟵ Hashes(f) ResFH

 XImpH ⟵ 𝜋𝑀𝐷5 (𝜎 "𝐼𝑚𝑝𝐻=𝐼𝑚𝑝𝐻𝑓"(𝐷𝐵𝐹𝐻))

 if XImpH ≠ null then
 SFimpH = CF impH * 1.0
 else
 SFimpH = 0
 end if

 X PeH ⟵ 𝜋𝑀𝐷5 (𝜎 "𝑃𝑒𝐻=𝑃𝑒𝐻𝑓"

(𝐷𝐵𝐹𝐻))

 if X PeH ≠ null then
 SF PeH = CF PeH * 1.0
 else
 SF PeH = 0
 end if

XFuzH ⟵ 𝜋𝑚𝑑5,𝐹𝑢𝑧𝐻 (𝐷𝐵𝐹𝐻)
 if X FuzH ≠ null then
 SFFuzH = CFFuzH * (Max (CFH (FuzH f , ∀x1 ,({x0, x1} ∈ XFuzH))))
 else
 SFResFH = 0
 end if

XResFH ⟵ 𝜋𝑚𝑑5,𝑅𝑒𝑠𝐹𝐻 (𝐷𝐵𝐹𝐻)
 if XResFH ≠ null then

CHAPTER 6

97

 SFResFH =CFResFH * (Max (CFH (ResFHf , ∀x1, ({x0, x1} ∈ XResFH))))
 else
 SF ResFH = 0
 end if

MalHaScore(f)FST = FuzzyLogicSum(SF PeH , SFimpH , SFResFH, SFResFH)* 100%
MalHaScore(f)CFM = MYCINSum(SF PeH , SFimpH , SFResFH, SFResFH)* 100%
end procedure

6.4 Dataset preparation and test environment.

We initially test the method on smaller dataset containing a total of 22988 files

and these were prepared as seen in Table 6.5.

Dataset A B C Total Files

Malicious files 7124 7355 7269 21748

Clean files 623 617 1240

Table 6.5 The Initial (St.1) Study Dataset

We then extended our study after collecting more files and the final total dataset

was prepared as shown in Table 6.6 for the different required sub-datasets.

Dataset A B C Total Files

Malicious files 34224 32844 37460 104528

Clean files 698 940 1638

Table 6.6 The Final (St.2) Experiment Dataset

The test environment uses the tools specified in Table 6.7. We use a Linux-based

operating system because the files under analysis are .exe files. The algorithms

are scripted in python and some functions from Peframe and Pefile are extended

to compute the file hashes under consideration; Ssdeep, PeHash, and Imphash.

The algorithms are python scripts and the database of Hashes is managed using

SQLite.

Tool Specifications/ Details

Computer Dell T1700, CPU – Intel Xeon@ 3.1GHz,

RAM 32GB. Hard Disk – 500GB

Machine OS Linux Mint 17.1 (#64 – Ubuntu SMP)

Static Analysis tool Study specific Static Analysis Tool

 calculates the Ssdeep, Resource Section

Ssdeep hash, Pehash, and Imphash

Data management tools SQLite Studio version 3.0.6.

Python IDLE version 2.7.9

Table 6.7 Test Bench Specifications

CHAPTER 6

98

6.5 Experimentation results and analysis

The result log is formulated to be interpreted as follows: The first column is the

filename. The second column the calculated hashes flags of the file that found

to be similar to those already existing in the database where I – Imphash, P –

PeHash, F – File Fuzzy hash and R – Resource section fuzzy hash. The Third

column gives either one value; “Unknown” if there is no database hash matched

or two values; Fuzzy logic method score and Common factor method score.

Figure 6.6 Result Log showing the Analysis results of 6 different files

6.5.1 Observations from the single file study test

The results from the single file test shown in Table 6.8 validate the interest in this

study for similarity matching. Since obfuscated malware tend to reorganise their

code to evade detection, these changes can be reflected in similarity matches.

The results show that a small change in a file can greatly affect the results of

similarity matching in some hashes while having very little to no effect in others.

This justifies the investigations further carried out in this study on the hashes that

return a similarity score greater than 0%.

6.5.2 Malware detection performance of the individual in-scope Hashes

and calculation of the CFI.

In the second phase of the study, the main aim was to design a method to

calculate the CFI metrics of the hashing techniques used. Dataset B is used in

this step not only to set the CF metrics for the framework, the results obtained

are also used to evaluate detection rates of the different hashing techniques as

shown in. The counts of the hash fields in HashFlags_set for each achieved

similarity match are tallied to obtain the confusion matrix performance metrics for

all the hashes. The graphs in Figure 6.7 show how various hashes stack up

against each other in detection rates.

CHAPTER 6

99

Hash Type Original File Value Edited File Value Score(%)

MD5 33f9b0e02d9d93f920605d02fb53f3fd accd6591b8b8dad5f7f1470c90971e75 0

SHA1 4a22e401ad5adb7b3de8f819e86d8461d764d195 06b98e35c1f92f844b57376ee467ee977cc074bd 0

SHA256 1f4c090dfa389b3c6b16eb42299fb815f24efac7ca54

1bb60821e3da0131b8f6

bd4f056223439e83f2fffbe3c463e178da8465fabe

b51243c04a3d2922de8fa2

0

Ssdeep-File 384:5u3Smmq6aYaBpYFAfjhXrToHWS4mW4sme9

V:Avmq6affYFAfjhr8sgE

384:5u3Smmq6aYaBpYFmfjhXrToHWS4mW4s

me9V:Avmq6affYFmfjhr8sgE

99

PeHash 5515f8e47661c7e170aee948cca7c8dc6198c08f 5515f8e47661c7e170aee948cca7c8dc6198c08f 100

Imphash 880bb6799a6e1a5ff7b4f022ff4003a9 880bb6799a6e1a5ff7b4f022ff4003a9 100

Ssdeep -

Resources

96:8EWS1pEmWwOh/VsBgtAb88caS5Ur9I5fa9VW

PBMXsmrC9V:NWS4mWNJXCu6Xsme9V

96:8EWS1pEmWwOh/VsBgtAb88caS5Ur9I5fa9

VWPBMXsmrC9V:NWS4mWNJXCu6Xsme9V

100

Table 6.8 Comparison of Hashes from the Single File Study

CHAPTER 6

100

Malware detection performance of the individual in-scope Hashes and calculation of the CFI

 Recall (%) PPV (%) ACC (%)
F-score

(%)

Detection Rates
CFI (%)

TRUE (%) FALSE (%)

 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2 St. 2 St. 1 St. 2 St. 1 St. 2 St. 1 St. 2

ImpH 97.2 85.6 99.4 93.3 96.9 89.7 89.3 96.9 85.7 3.1 14.3 25.6 27.0

PeH 96 82.8 100 100 96.4 91.4 90.6 96.4 83.1 3.7 16.9 25.4 26.2

FuzH 95.21 76.2 100 100 95.6 88.1 86.5 95.6 76.7 4.4 23.3 25.3 24.1

ResFH 88.97 71.7 99.9 99 89.9 85.5 83.2 89.9 72.3 10.2 27.7 23.7 22.7

Comparative analysis of the individual hashes

against the proposed Combined Hashing

Methods.

Comparative analysis of the performance of the proposed method after

application of the TLBSA.

 Detection Rates
 PPV (%) Recall (%) Acc (%) F-Score (%) TRUE (%) FALSE (%)

 St. 1 St. 2 St. 1 St. 2

ImpH 97.2 84.6 2.8 15.4 ImpH 74.2 84.9 77.7 79.2

PeH 96.3 82.7 3.7 17.3 PeH 99.7 82.3 91 90.2

FuzH 96.1 75.6 3.9 24.4 FuzH 79.9 75.5 78.2 77.6

ResFH 90.4 71 9.6 29 ResFH 60.5 71.5 62.4 65.5

Combined

Hashing

Methodology

(CHM)

98.2 93.2 1.8 6.8

FL_GTP (< 25%) 99.2 92.2 91.6 95.5

FL_ATP (≥ 75%) 99.9 70.5 71.2 82.7

CF_GTP (< 25%) 99.2 92.1 91.6 95.5

CF_ATP (≥ 70%) 100 69.8 70.4 82.1

Table 6.9 Experimentation Calculated Metrics

CHAPTER 6

101

Figure 6.7 The Hashes Detection Rates using Dataset B for the final study

6.5.2.1 Comparative analysis of the individual hashes against the proposed

Combined Hashing Methods.

Data C is used to calculate the overall file malicious percentage to validate the

proposed framework. The output logs of the large-scale detection are analysed

with the confusion. The results achieved for the proposed method are compared

against the results achieved for each individual hash in Figure 6.8 and Figure 6.9

in the two studies. To further analyse how the methodology scores the clean and

malicious files, there was need to investigate the different curves defined by the

clean and malicious file scores for the two proposed methods. Figure 6.10 and

Figure 6.11 show the file scoring area curves of each adopted method for the 2

studies which shows that most of the malicious files score higher than the clean

files. The repeatability of the experiment using various datasets and observing

similar trends in the end result file scores provides an argument for the proposed

approach.

6.5.2.2 Performance of the proposed method after application of the TLBSA.

Since the aim of this study is to devise an optimum malware detection

methodology, we investigate the true positive and false negative trade-off of the

two proposed evidence combination methods. The following comparisons are

made based on the results from the final study. The true positive rate against

CHAPTER 6

102

false positive rate curves of the two proposed methods are compared in Figure

6.12 and the precision against recall plots are compared in Figure 6.13. Since F-

score is known to be a weighted measure of precision and recall, it is plotted

against the file score threshold in Figure 6.14.

In Table 6.9, we compare the two proposed methods to determine the best

TLBSA threshold percentages.

Where FL – Fuzzy Logic Method.

 CF – Common Factor Model Method.

 GTP – Green Threshold Percentage.

 ATP – Amber Threshold Percentage.

Figure 6.8 Comparing the individual hashes against the proposed combined

method for the initial study

Figure 6.9 Comparing the individual hashes against the proposed combined

method for the final study

CHAPTER 6

103

Figure 6.10 The Combined Hash Score Clean and Malware

file Area curves (a) Common Factor method and (b) Fuzzy

Logic Method from the initial study

Figure 6.11 The Combined Hash Score Clean and Malware

file Area curves (a) Common Factor method and (b) Fuzzy

Logic Method from the final study

CHAPTER 6

104

Figure 6.12 True positive rate vs False positive rate curves for Evidence

Combination methods

Figure 6.13 Precision- Recall curve of the proposed evidence combination

methods

Figure 6.14 Model F-score for the different score percentage threshold

CHAPTER 6

105

Figure 6.15 Recall, Precision, Accuracy and F-score Comparison for the

proposed methodology percentage thresholds

Further analysis of the detection ratios of the malware types in the datasets is

done in Figure 6.16 which shows that proposed method performs well for specific

malware types. Given the deviation between the detection achieved in this

method and the one in the earlier proposed method provides an argument for

situations where they can be used in combination.

Figure 6.16 Malware type detection ratios for the dataset used.

6.6 Results Discussion of the proposed Evidence Combination of

Hashes methods for malware detection.

This study proposes and evaluates two methods for combining the individual

hashes results for malware detection. The initial study of the single file analysis

provides the foundational argument for this investigation. Having created a small

CHAPTER 6

106

change in the contents of a clean PE file, the fact that the hashes return different

similarity results substantiates the premise that similarity matching using hashing

can overcome obfuscated malware. In the second phase of the study, the

individual hash results achieved further support this argument. The introduced

resource section hash matching gives the second precision value in the 4

algorithms. From the comparison in this phase of the study, PeHash is the best

performing of the 4 hashes. In the third phase of the study, normalising the log

so that the files which return a no similarity match score have a 0% score. This

allows for easier analysis of the results as earlier mentioned. Analysis of the logs

to validate the Combined hashing methodology results into achieving an overall

false detection rate of 6.8% and a true detection rate of 93.2 %; the best

performance values in comparison to the results achieved by the individual

hashing algorithms. This shows that the proposed methodology out performs all

the individual methods. However, reviewing the true positive to false positive

detection trade-off for this proposed method shows that this technique is

susceptible to very high false positive of 60% this required evaluation of the model

to achieve a better trade off. We therefore introduce the TLBSA assessor at this

stage so that the file status has 3 zones; Green zone where the file is less likely

to be malicious, Amber zone where the file is likely to be malicious and the Red

zone where the file is most likely to be malicious. Creating the percentage

thresholds for these zones in this method required the analysis of the two

proposed and evaluated methods. The initial analysis at this stage involved

evaluating the analysed dataset clean file scores vs malicious file scores for the

two evidence combination methods. Both curves in Figure 6.11 show that 83% of

the malicious files obtain a malicious score above 50% while 78% of the clean

files have a malicious score less than 50%. We then analyse the two proposed

performance results against each other to gain an understanding of the better

performing technique.

The main aim for this analysis is to increase the overall true positive detection

rates while decreasing false positive detection rates. Therefore, Figure 6.12

compares how the two methods measure up against each other and the curves

show that Fuzzy Logic provides a better performance of 65% True Positive Rate

(TPR) to 0% False Positive Rate (FPR) vs 60% TPR to 0% FPR of the Common

CHAPTER 6

107

Factor method initially and then both methods follow the same trend thereafter.

For further evaluation, Figure 6.13 evaluates the methods’ precision to recall and

to pinpoint the thresholds that would work best for this method, Figure 6.14

compares the F-score achieved for both methods across the different malicious

file scores of the tested dataset. With the thresholds obtained as discussed earlier

and shown in Table 6.9, we evaluate how well our method works against the

individual hashing algorithms in Figure 6.15. The Amber threshold percentage

(ATP) which marks the percentage above which the file is said to be in the red

zone out performs all the individual hash techniques. However, since this

percentage creates a very low TPR of 70% for the Fuzzy logic method and 62%

for the Common Factor Model method, there is need to analyse the needed

Green threshold percentage (GTP). GTP marks the percentage below which the

file is said to be in the green zone and above which it is said to be in the amber

zone. It creates a much-needed raise in TPR of 92% for both the proposed

techniques. With this integrated design to detecting malicious files based on the

Traffic Light Based Scoring Assessor (TLBSA), the number of files detected is

higher. The threshold percentages that allow optimum trade-offs and enable the

system provide a user with information that helps protect their system with an

accuracy of at least 92% achieved in this study.

6.7 Chapter Summary.

This chapter introduces a heuristic malware detection approach that successfully

combines the hashing results to provide an overall best performing recall of 92%,

a precision of 99%, an accuracy of 91% and an F-score of 96% which are higher

than the detection rates for the independent hashes. The method can also be

open sourced to allow for customised manipulation and extension of the

algorithms by malware analysts. Since the technique uses static analysis, it is

safe against malware that evade sandboxes and dynamic analysis environments.

As a way of controlling the risk introduced by the human factor in security system,

we present a quantitative measure for the malicious status of the file. The

limitation of this system is that one needs a starting baseline of the database of

malicious file hashes. However, the use of a simple database working with light

weight analysis scripts reduces the impact of this limitation. In this study, the

database of hashes created with 34224 rows of hash signatures only occupied

CHAPTER 6

108

18MB. The methodology designed also allows for easy update of the signatures

so the built model’s performance increases with the number of hashes signatures.

The results achieved in this study show that the proposed methodology provides

a way of building an efficient integrated malware detection system. Our system

was designed using light weight tools which makes it fast. In malware detection,

the objective is to build a filter like system and with this work, we introduce a way

of detecting malicious PE type files without the need for dynamic analysis unless

the result is inconclusive.

109

CHAPTER 7. CONCLUSION

7.1 Findings

This work proposes two approaches of building a heuristic feature based

framework that quantifies the malicious intent of a file. Our approaches are

designed to be light, fast, and efficient and at the end attach a numerical score to

how malicious a file is deemed to be to the system. This numeric values is

intended to ensure that even a standard computer user can decide with high

confidence levels about the effect the file might have on the system. We limit our

scope to Portable Executable files to design the schemes and use multiple

attribute based decision making and evidence combination theory. We also limit

the amount of storage resources required by the signatures by using similarity

hashes that are calculated values and probabilistic scoring heuristic anomalies

so that the approaches are not resource heavy.

Our MalScore study introduces a technique for scoring file feature anomalies by

attaching a probability score to identified PE heuristic anomalies. The designed

approach achieves a true positive detection rate of 97.6% to a false positive

detection rate of 0.6% trade-off at a threshold score of 45%

The MalHaScore study successfully introduces a way of combining the similarity

hashing results for a more efficient malware heuristic detection approach that

provides an overall best performing true detection rate of 93.2%, a false detection

rate of 6.8%. Recall of 92%, a precision of 99%, an accuracy of 91% and an F-

score of 96% which are higher than the detection rates for the independent

similarity hashes.

These approaches can be further customised based on the file type and extended

based on the requirements of the malware analyst.

7.2 Comparison of the two proposed approaches

In this work, we designed two approaches that attach scores to PE files to

measure the malicious intent of the file. We took a two-dimension approach

where we designed methods that can be used by a standard computer user and

a malware analyst by focusing on reducing the analysis time and providing a

metric measure for file maliciousness.

CHAPTER 7

110

The two approaches perform differently and have various strengths over each

other as compared in Table 7.1 and Table 7.2 and can therefore, also be used in

combination.

Feature MalScore MalHaScore

Average PE File
detection time

6.1 Seconds 4.3 Seconds

Signature Storage
Usage

15KB (This is for the 25
top features)

18MB (Varies based on the
number of hashes stored)

Detection Rates
TPR– 97.6%, FPR –
0.6%

TPR- 93.2%, FPR - 6.8%

Recommended
for

Standard Computer
User

Malware Analyst

Table 7.1 Comparing the two proposed methods

The comparisons show that while MalHaScore is faster than MalScore, it requires

more signature storage as MalHaScore relies on having a populated database of

Hashes as its signature. MalScore out performs MalHaScore in terms of the

detection rates. Therefore, we recommend that MalScore is more suited for the

standard computer end user while MalHaScore can be used by an analyst since

there is also an option for the analyst to revisit the similar files hashes that lead

to the file score. The malware type detection rates show that MalScore

outperforms MalHaScore in all the categories expect the Downloader malware

type.

MalScore MalHaScore

Detected unDetected Detected unDetected

Trojan 97.8% 2.2% 92.3% 7.7%

Adware 98.5% 1.5% 94.9% 5.1%

Worm 97.9% 2.1% 94.6% 5.4%

Downloader 75.5% 24.5% 88.7% 11.3%

Dropper 96.7% 3.3% 93.3% 6.7%

Virus 92.7% 7.3% 93.9% 6.1%

Spyware 81.8% 18.2% 55.0% 45.0%

Exploit 85.7% 14.3% 25.0% 75.0%

Table 7.2 Comparing the malware type detection ratios for the two proposed

methods

7.3 Limitations and Challenges

Although the framework approaches achieve efficient malware detection rates, it

has some limitations. During the design phase of this study, we limited our study

CHAPTER 7

111

to only Portable Executable files and therefore the designed heuristic methods

were trained and tested on files of PE format only. This implies that it would not

work for other file types although it is our belief that if the same processes are

followed, the approaches can be adopted for other file types.

During the validation stage of our study, we intended to compare our work against

already existing tools and approaches. However, after extensive research, we

were unable to find a finished system that scored files and therefore these tests

were not possible. Testing the methods against other anti-virus systems that do

not achieve the same end output as our approaches would not yield results fair

to our approaches.

 Since the intent was to design a fast heuristic approach, we limit our malware

analysis techniques to static based analysis to perform the feature extraction and

hash function calculations. This allows the proposed methods to be very fast and

not resource intensive. However, this also implies that heavily obfuscated

malware might be able to evade detection by this framework.

One of the main challenges of this study was collecting the training and testing

dataset. We actively searched and collected malware and clean files during the

study in that the initial studies were fully explored using the large dataset that we

had in the end. This led to the replication of various studies.

7.4 Future work

In this work, we present a quantification framework for efficient malware detection

in portable executable files by proposing two approaches. These can be further

extended to include some additional features. Some of the identified extensions

are:

a) Combining the designed approaches: we propose using evidence

combinational methods that would not be affected by the use similar

theories in the component approaches. Investigating the achieved

results could lead to an overall file score as one metric for measuring

malicious status.

b) Adopting the methods for other file types: One of our hypotheses is that

the designed approaches can be adopted for other file type for both

mobile and Personal Computer malware. So, it would be worth

CHAPTER 7

112

exploring and testing the adoption of the approaches for android based

malware and other file types like .pdf, macro malware among others.

c) Integrating n-gram code based analysis and detection approaches in

the framework. Due to various recent research work that utilise n-gram

code malware analysis, we believe that this is an approach that can be

used in conjunction with the suggested approaches. So, it would be

worth exploring to see how an extension of this work using the n-gram

approach results would affect the detection rates achieved in this

study.

d) Further explore the effectiveness of our detection method for different

malware variants and unknown malware. Although we test the

methods against known and identified malware types, it is our

expectation that the designed methods can be used to detect variants

of known and unknown malware.

7.5 Summary

As internet use evolves and the internet of things becomes a reality, there is need

to be more vigilant about protecting networked systems from being compromised.

This is especially important as Cybercrime is expected continue to raise up to

costing the world $6 trillion by 2021 as earlier stated. Malware which is one of the

ways through which computer systems are compromised and exploited is also

expected to be a growing challenging with statistics showing that each year, the

number of malware discovered keeps growing. Protection of the end systems is

very important as they are the target due to the commercial value attached to

information, processing resources or even the ability to disrupt their use as seen

in the ransomware attacks. Anti-malware solutions available today allow for the

protection of the system however there is still more improvement needed as

systems become more high performance and computer usable becomes more

individual controlled. Providing a standard user with more cognitive information

for more efficient decision making on a file malicious intent can be the difference

between a compromised system and a safe system.

113

REFERENCES

[1] Brian Krebs, “Akamai on the Record KrebsOnSecurity Attack — Krebs on

Security,” \iIn-depth Security News and investigation, 22-Nov-2016.

[2] “Mirai ‘internet of things’ malware from Krebs DDoS attack goes open

source,” \iNaked Security, 05-Oct-2016.

[3] Hacking et al., “Mirai IoT botnet blamed for ‘smashing Liberia off the

internet.’” [Online]. Available:

http://www.theregister.co.uk/2016/11/04/liberia_ddos/. [Accessed: 10-Nov-

2016].

[4] “Cyber crime cost UK business more than £1bn in the past year,”

ComputerWeekly. [Online]. Available:

http://www.computerweekly.com/news/450298242/Cyber-crime-cost-UK-

business-more-than-1bn-in-the-past-year. [Accessed: 10-Nov-2016].

[5] “2015 Cost of Cyber Crime Study Global.” [Online]. Available:

http://www.cnmeonline.com/myresources/hpe/docs/HPE_SIEM_Analyst_Report

_-_2015_Cost_of_Cyber_Crime_Study_-_Global.pdf. [Accessed: 10-Nov-2016].

[6] “Cybercrime Costs More Than You Think | Hamilton Place Strategies.”

[Online]. Available: http://www.hamiltonplacestrategies.com/news/cybercrime-

costs-more-you-think#Paper. [Accessed: 10-Nov-2016].

[7] T. Seals, “Annual Cybercrime Costs to Double to $6 Trillion by 2021,”

Infosecurity Magazine, 01-Sep-2016. [Online]. Available: http://www.infosecurity-

magazine.com/news/annual-cybercrime-costs-double-6/. [Accessed: 27-Oct-

2016].

[8] M. Corkery, “Hackers’ $81 Million Sneak Attack on World Banking,” The

New York Times, 30-Apr-2016.

[9] “Lack of digital talent adds to cybersecurity problems,” Washington Post.

[Online]. Available: https://www.washingtonpost.com/news/federal-

eye/wp/2015/07/19/lack-of-digital-talent-adds-to-cybersecurity-problems/.

[Accessed: 10-Nov-2016].

[10] “AV-TEST – The Independent IT-Security Institute.” [Online]. Available:

https://www.av-test.org/en/statistics/malware/. [Accessed: 27-Oct-2016].

114

[11] “Kaspersky Lab - Demand for Security Talent Report.” [Online]. Available:

https://business.kaspersky.com/files/2016/07/Kaspersky_Lab_Demand_for_Sec

urity_Talent_Report.pdf. [Accessed: 10-Nov-2016].

[12] M. Neugschwandtner, P. M. Comparetti, G. Jacob, and C. Kruegel,

“FORECAST: Skimming off the Malware Cream,” in Proceedings of the 27th

Annual Computer Security Applications Conference, New York, NY, USA, 2011,

pp. 11–20.

[13] “Antivirus Isn’t Dead, It Just Can’t Keep Up.” [Online]. Available:

http://labs.lastline.com/lastline-labs-av-isnt-dead-it-just-cant-keep-up.

[Accessed: 03-Jul-2015].

[14] V. A. Batenin, “Computer resource optimization during malware detection

using antivirus cache,” US7962959 B1, 14-Jun-2011.

[15] T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers,

“Malware target recognition via static heuristics,” Comput. Secur., vol. 31, no. 1,

pp. 137–147, Feb. 2012.

[16] M. Alazab, “Profiling and classifying the behavior of malicious codes,” J.

Syst. Softw., vol. 100, pp. 91–102, Feb. 2015.

[17] “Heuristic Techniques in AV Solutions: An Overview | Symantec Connect.”

[Online]. Available: https://www.symantec.com/connect/articles/heuristic-

techniques-av-solutions-overview. [Accessed: 27-Oct-2016].

[18] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify Malicious

Executables in the Wild,” J Mach Learn Res, vol. 7, pp. 2721–2744, Dec. 2006.

[19] X. Ma, Q. Biao, W. Yang, and J. Jiang, “Using multi-features to reduce

false positive in malware classification,” in 2016 IEEE Information Technology,

Networking, Electronic and Automation Control Conference, 2016, pp. 361–365.

[20] Y. Ye et al., “Combining File Content and File Relations for Cloud Based

Malware Detection,” in Proceedings of the 17th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY, USA,

2011, pp. 222–230.

[21] “A static Android malicious code detection method based on multi-source

fusion - Semantic Scholar.” [Online]. Available: /paper/A-static-Android-

malicious-code-detection-method-Du-

115

Wang/02a539ee4f78c968f873fd02f5841a2d3f55854c. [Accessed: 21-Nov-

2016].

[22] J. Koret and E. Bachaalany, The antivirus hacker’s handbook.

Indianapolis, IN: John Wiley & Sons Inc, 2015.

[23] “Operating system market share.” [Online]. Available:

http://www.netmarketshare.com/operating-system-market-

share.aspx?qprid=10&qpcustomd=0. [Accessed: 25-Oct-2016].

[24] Microsoft Corporation, “Microsoft Portable Executable and Common

Object File Format Specification.” 2013.

[25] N. Idika and A. P. Mathur, “A survey of malware detection techniques,”

Purdue Univ., p. 48, 2007.

[26] Bitdefender, “History of Malware,” White Paper 2010.

[27] K. Mathur and S. Hiranwal, “A Survey on Techniques in Detection and

Analyzing Malware Executables,” vol. Volume 3, Issue 4, April 2013, pp. 423–

428, 2013.

[28] E. Skoudis and L. Zeltser, Malware: Fighting Malicious Code. Prentice Hall

Professional, 2004.

[29] “The Evolution Of Malware,” Dark Reading. [Online]. Available:

http://www.darkreading.com/risk/the-evolution-of-malware/a/d-id/1322461.

[Accessed: 27-Oct-2016].

[30] M. Sikorski and A. Honig, “Practical Malware Analysis,” Netw. Secur., vol.

2012, no. 12, p. 4, 12.

[31] J. Aycock, Spyware and Adware, vol. 50. Boston, MA: Springer US, 2011.

[32] F. Thomas, Adware: The Only Book You’ll Ever Need. Lulu Press, Inc,

2015.

[33] X. Wu and L. Cao, “Analysis and Design of Botnet Detection System,”

presented at the Computer Science & Service System (CSSS), 2012

International Conference on, 2012, pp. 947–950.

[34] C. C. Elisan, Malware, Rootkits & Botnets A Beginner’s Guide. McGraw

Hill Professional, 2012.

[35] R. Ferguson, “The Botnet Chronicles. A Journey to Infamy,” Trend Micro,

Incorporated, Nov. 2010.

116

[36] Z. Bu, P. Bueno, R. Kashyap, and A. Wosotowsky, “The New Era of

Botnets,” McAfee Labs - An Itel Company, White Paper, 2010.

[37] “Estonia: To Black Out an Entire Country – part one.” [Online]. Available:

http://resources.infosecinstitute.com/estonia-to-black-out-an-entire-country-part-

one/. [Accessed: 27-Oct-2016].

[38] “The Art of the Maktub Locker Ransomware,” BleepingComputer. [Online].

Available: http://www.bleepingcomputer.com/news/security/the-art-of-the-

maktub-locker-ransomware/. [Accessed: 27-Oct-2016].

[39] B. Sullivan, Columnist, and N. B. C. News, “‘Ransomware’ tricks victims

into paying hefty fines,” NBC News, 26-Apr-2013. [Online]. Available:

http://www.nbcnews.com/technology/ransomware-tricks-victims-paying-hefty-

fines-6C9621426. [Accessed: 27-Oct-2016].

[40] F. Touchette, “The evolution of malware,” Netw. Secur., vol. 2016, no. 1,

pp. 11–14, Jan. 2016.

[41] Larry Boettger, “The Morris Worm: How it Affected Computer Security and

Lessons Learned by it,” 24-Dec-2000. [Online]. Available:

https://www.giac.org/paper/gsec/405/morris-worm-affected-computer-security-

lessons-learned/100954. [Accessed: 27-Oct-2016].

[42] M. W. Ligh, Malware analyst’s cookbook and dvd, 1st ed. Indianapolis, IN:

Wiley Pub., Inc, 2010.

[44] Matt Pietrek, “Peering Inside the PE: A Tour of the Win32 Portable

Executable File Format.” MSDN Library, Mar-1994.

[45] “Dynamic-Link Libraries (Windows).” [Online]. Available:

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms682589(v=vs.85).aspx. [Accessed: 04-Nov-2016].

[46] E. Eilam and E. J. Chikofsky, Reversing: secrets of reverse engineering.

Indianapolis, IN: Wiley, 2005.

[48] Randy Kath, “The Portable Executable File Format from Top to Bottom.”

1997, Microsoft Corporation.

[48] T.-Y. Wang, C.-H. Wu, and C.-C. Hsieh, “Detecting Unknown Malicious

Executables Using Portable Executable Headers,” in Fifth International Joint

Conference on INC, IMS and IDC, 2009. NCM ’09, 2009, pp. 278–284.

117

[49] “Malware Researcher’s Handbook (Demystifying PE File).” [Online].

Available: http://resources.infosecinstitute.com/2-malware-researchers-

handbook-demystifying-pe-file/. [Accessed: 09-Nov-2016].

[50] Y. Li et al., “Experimental Study of Fuzzy Hashing in Malware Clustering

Analysis,” presented at the 8th Workshop on Cyber Security Experimentation and

Test (CSET 15), 2015.

[51] Robshaw, Matthew JB, “MD2, MD4, MD5, SHA and other hash functions,”

Technical Report TR-101, RSA Laboratories, 1995. version 4.0, 1995.

[52] R. Perdisci, A. Lanzi, and W. Lee, “Classification of packed executables

for accurate computer virus detection,” Pattern Recognit. Lett., vol. 29, no. 14,

pp. 1941–1946, Oct. 2008.

[53] C. Oprisa, M. Checiches, and A. Nandrean, “Locality-sensitive hashing

optimizations for fast malware clustering,” in 2014 IEEE International Conference

on Intelligent Computer Communication and Processing (ICCP), 2014, pp. 97–

104.

[54] J. Kornblum, “Identifying almost identical files using context triggered

piecewise hashing,” Digit. Investig., vol. 3, Supplement, pp. 91–97, Sep. 2006.

[55] “ModSecurity Advanced Topic of the Week: Detecting Malware with Fuzzy

Hashing,” Trustwave. [Online]. Available:

https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-

Advanced-Topic-of-the-Week--Detecting-Malware-with-Fuzzy-Hashing/.

[Accessed: 22-Jan-2016].

[56] Dunham Ken, “A fuzzy future in malware research,” The ISSA J., vol. 11,

no. 8, pp. 17–18, 2003.

[57] “Tracking Malware with Import Hashing,” M-unition. [Online]. Available:

https://www.mandiant.com/blog/tracking-malware-import-hashing/. [Accessed:

14-Jul-2015].

[58] Georg Wicherski, “peHash: a novel approach to fast malware clustering,”

in LEET’09 Proceedings of the 2nd USENIX conference on Large-scale exploits

and emergent threats: botnets, spyware, worms, and more, 2009, vol. 1–1.

[59] J. Pearl, “Decision making under uncertainty,” ACM Comput. Surv., vol.

28, no. 1, pp. 89–92, Mar. 1996.

118

[60] M. M. Gupta and J. Qi, “Fuzzy Logic and Uncertainty ModellingTheory of

T-norms and fuzzy inference methods,” Fuzzy Sets Syst., vol. 40, no. 3, pp. 431–

450, Apr. 1991.

[61] L. A. Zadeh, “The role of fuzzy logic in the management of uncertainty in

expert systems,” Fuzzy Sets Syst., vol. 11, no. 1–3, pp. 199–227, 1983.

[62] B. Wiȩckowski, “Review of Proof theory for fuzzy logics. Applied Logic

Series, vol. 36,” Bull. Symb. Log., vol. 16, no. 3, pp. 415–419, 2010.

[63] G. Shafer, A mathematical theory of evidence. Princeton, NJ: Princeton

Univ. Press, 1976.

[64] B. G. Buchanan and E. H. Shortliffe, Eds., Rule-based expert systems: the

MYCIN experiments of the Stanford Heuristic Programming Project. Reading,

Mass: Addison-Wesley, 1984.

[65] D. E. Heckerman and E. H. Shortliffe, “From certainty factors to belief

networks,” Artif. Intell. Med., vol. 4, no. 1, pp. 35–52, Feb. 1992.

[66] “How Symantec Antivirus system detects viruses | Symantec Connect.”

[Online]. Available: https://www.symantec.com/connect/articles/how-symantec-

antivirus-system-detects-viruses. [Accessed: 09-Nov-2016].

[67] J. Davis and M. Goadrich, “The relationship between Precision-Recall and

ROC curves,” 2006, pp. 233–240.

[68] “ClamavNet.” [Online]. Available: http://www.clamav.net/. [Accessed: 04-

Nov-2016].

[69] D. G. Vigna, “Antivirus Isn’t Dead, It Just Can’t Keep Up.” [Online].

Available: http://labs.lastline.com/lastline-labs-av-isnt-dead-it-just-cant-keep-up.

[Accessed: 27-Oct-2016].

[70] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive

Detection of Computer Worms Using Model Checking,” IEEE Trans. Dependable

Secure Comput., vol. 7, no. 4, pp. 424–438, Oct. 2010.

[71] “A Brief History of Malware Obfuscation: Part 1 of 2,” blogs@Cisco - Cisco

Blogs. [Online]. Available:

http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1

_of_2. [Accessed: 27-Oct-2016].

119

[72] “Mastering 4 Stages of Malware Analysis.” [Online]. Available:

https://zeltser.com/mastering-4-stages-of-malware-analysis/. [Accessed: 27-Oct-

2016].

[73] “guelfoweb/peframe,” GitHub. [Online]. Available:

https://github.com/guelfoweb/peframe. [Accessed: 03-Jul-2015].

[74] “joxeankoret/pyew,” GitHub. [Online]. Available:

https://github.com/joxeankoret/pyew. [Accessed: 31-May-2015].

[75] Tyler Hudak, “Mastiff Documentation.” KoreLogic Security.

[76] “Malwr - Malware Analysis by Cuckoo Sandbox.” [Online]. Available:

https://malwr.com/. [Accessed: 27-Oct-2016].

[77] “Anubis: Analyzing Unknown Binaries.” [Online]. Available:

http://analysis.iseclab.org/. [Accessed: 27-Oct-2016].

[78] “ThreatExpert - Automated Threat Analysis.” [Online]. Available:

http://www.threatexpert.com/. [Accessed: 27-Oct-2016].

[79] “VirusTotal - Free Online Virus, Malware and URL Scanner.” [Online].

Available: https://www.virustotal.com/. [Accessed: 27-Oct-2016].

[80] C. H. Malin, E. Casey, and J. M. Aquilina, Malware Forensics: Investigating

and Analyzing Malicious Code. Syngress, 2008.

[81] Michael Sikorski and Andrew Honig. 2012. Practical Malware Analysis:

The Hands-On Guide to Dissecting Malicious Software (1st ed.). No Starch

Press, San Francisco, CA, USA.

[82] Peter Szor. 2005. The Art of Computer Virus Research and Defense.

Addison-Wesley Professional.

[83] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated

dynamic malware-analysis techniques and tools,” ACM Comput. Surv. CSUR,

vol. 44, no. 2, p. 6, 2012.

[84] “IDA: About.” [Online]. Available: https://www.hex-rays.com/products/ida/.

[Accessed: 10-Nov-2016].

[85] “OllyDbg v1.10.” [Online]. Available: http://ollydbg.de/. [Accessed: 10-Nov-

2016].

[86] “WinDbg.” [Online]. Available: http://www.windbg.org/. [Accessed: 10-

Nov-2016].

120

[87] “Five Anti-Analysis Tricks That Sometimes Fool Analysts,” Malwarebytes

Unpacked. [Online]. Available:

https://blog.malwarebytes.org/intelligence/2014/09/five-anti-debugging-tricks-

that-sometimes-fool-analysts/. [Accessed: 03-Jun-2015].

[88] Jana Suman and Vitaly Shmatikov, “Abusing File Processing in Malware

Detectors for Fun and Profit.” [Online]. Available:

https://www.cs.cornell.edu/~shmat/shmat_oak12av.pdf. [Accessed: 10-Nov-

2016].

[89] Katja Hahn, “Robust Static Analysis of Portable Executable Malware,”

HTWK Leipzig Fakult¨at Informatik, Mathematik und Naturwissenschaften, Dec.

2014.

[90] “OllyDbg 2.0.” [Online]. Available: http://www.ollydbg.de/version2.html.

[Accessed: 10-Nov-2016].

[91] “Immunity Debugger.” [Online]. Available:

https://www.immunityinc.com/products/debugger/. [Accessed: 11-Nov-2016].

[92] “Anti-debugging and Anti-VM techniques and anti-emulation.” [Online].

Available: http://resources.infosecinstitute.com/anti-debugging-and-anti-vm-

techniques-and-anti-emulation/. [Accessed: 11-Nov-2016].

[93] C. K. Behera and D. L. Bhaskari, “Different Obfuscation Techniques for

Code Protection,” Procedia Comput. Sci., vol. 70, pp. 757–763, Jan. 2015.

[94] “Obfuscation: Malware’s best friend,” Malwarebytes Labs. [Online].

Available: https://blog.malwarebytes.com/threat-analysis/2013/03/obfuscation-

malwares-best-friend/. [Accessed: 24-Nov-2016].

[95] Joxean Koret and Elias Bachaalany. 2015. The Antivirus Hacker's

Handbook (1st ed.). Wiley Publishing.

[96] M. Christodorescu, S. Jha, D. Maughan, D. Song, and C. Wang, Malware

Detection. Springer Science & Business Media, 2007.

[97] W. Rui, J. Xiaoqi, and N. Chujiang, “A Behavior Feature Generation

Method for Obfuscated Malware Detection,” presented at the Computer Science

& Service System (CSSS), 2012 International Conference on, 2012, pp. 470–

474.

121

[98] Y. Ilsun and Y. Kangbin, “Malware Obfuscation Techniques: A Brief

Survey,” presented at the Broadband, Wireless Computing, Communication and

Applications (BWCCA), 2010 International Conference on, 2010, pp. 297–300.

[99] P. O’Kane, S. Sezer, and K. McLaughlin, “Obfuscation: The Hidden

Malware,” Secur. Priv. IEEE, vol. 9, no. 5, pp. 41–47, 2011.

[100] S. Han, K. Lee, and S. Lee, “Packed PE File Detection for Malware

Forensics,” in 2nd International Conference on Computer Science and its

Applications, 2009. CSA ’09, 2009, pp. 1–7.

[101] X. Li, P. K. K. Loh, and F. Tan, “Mechanisms of Polymorphic and

Metamorphic Viruses,” in Intelligence and Security Informatics Conference

(EISIC), 2011 European, 2011, pp. 149–154.

[102] “SANS - Information Security Resources.” [Online]. Available:

https://www.sans.org/security-resources/idfaq/how-is-a-tool-like-an-integrity-

checker-used-in-intrusion-detection/1/6. [Accessed: 28-Nov-2016].

[103] M. Christodorescu and S. Jha, “Testing Malware Detectors,” in

Proceedings of the 2004 ACM SIGSOFT International Symposium on Software

Testing and Analysis, New York, NY, USA, 2004, pp. 34–44.

[104] M. R. Chouchane and A. Lakhotia, “Using Engine Signature to Detect

Metamorphic Malware,” in Proceedings of the 4th ACM Workshop on Recurring

Malcode, New York, NY, USA, 2006, pp. 73–78.

[105] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,

“Semantics-aware malware detection,” in 2005 IEEE Symposium on Security and

Privacy (S P’05), 2005, pp. 32–46.

[106] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A Semantics-

based Approach to Malware Detection,” in Proceedings of the 34th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New

York, NY, USA, 2007, pp. 377–388.

[107] R. Luh, S. Marschalek, M. Kaiser, H. Janicke, and S. Schrittwieser,

“Semantics-aware detection of targeted attacks: a survey,” J. Comput. Virol.

Hacking Tech., pp. 1–39, May 2016.

[108] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from

a survey towards an established taxonomy,” J. Comput. Virol., vol. 4, no. 3, pp.

251–266, Aug. 2008.

122

[109] “heuristic - definition of heuristic in English | Oxford Dictionaries,” Oxford

Dictionaries | English. [Online]. Available:

https://en.oxforddictionaries.com/definition/heuristic. [Accessed: 28-Nov-2016].

[110] A.-S. K. Pathan, The State of the Art in Intrusion Prevention and Detection.

CRC Press, 2014.

[111] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining methods

for detection of new malicious executables,” in 2001 IEEE Symposium on

Security and Privacy, 2001. S P 2001. Proceedings, 2001, pp. 38–49.

[112] DigitalNinja., “Using Fuzzy Hashing Techniques to Identify Malicious

Code,” Apr. 2007.

[113] David French, “Beyond Section Hashing,” 2010 CERT Research Report

CMU/SEI-2012-TR-004, 2011.

[114] S. Arik, T. Huang, W. K. Lai, and Q. Liu, Neural Information Processing:

22nd International Conference, ICONIP 2015, Istanbul, Turkey, November 9-12,

2015, Proceedings. Springer, 2015.

[115] A. Azab, R. Layton, M. Alazab, and J. Oliver, “Mining Malware to Detect

Variants,” in Cybercrime and Trustworthy Computing Conference (CTC), 2014

Fifth, 2014, pp. 44–53.

[116] Y. Du, X. Wang, and J. Wang, “A static Android malicious code detection

method based on multi-source fusion,” Secur. Commun. Netw., vol. 8, no. 17, pp.

3238–3246, Nov. 2015.

[117] “Malware Threat Scoring System | MAEC Project Documentation.”

[Online]. Available:

http://maecproject.github.io/documentation/use_cases/cyber_threat_analysis/m

alware_threat_scoring_system/. [Accessed: 04-Nov-2016].

[118] “Malware Scoring Modules,” RSA Security Analytics Documentation, 05-

Mar-2014. [Online]. Available: https://sadocs.emc.com/0_en-

us/090_10.4_User_Guide/40_InvestigAnalysis/00_Investig_Flo/MaScorMod.

[Accessed: 04-Nov-2016].

[119] A. Kumar and G. Aghila, “Portable executable scoring: What is your

malicious score?,” in 2014 International Conference on Science Engineering and

Management Research (ICSEMR), 2014, pp. 1–5.

123

[120] M. Christodorescu and S. Jha, “Static Analysis of Executables to Detect

Malicious Patterns.,” Aug. 2003.

[121] “TekDefense - News - Tektip ep23 - MASTIFF with a splash of Maltrieve.”

[Online]. Available: http://www.tekdefense.com/news/2013/2/22/tektip-ep23-

mastiff-with-a-splash-of-maltrieve.html. [Accessed: 01-Jun-2015].

[122] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards an

understanding of anti-virtualization and anti-debugging behavior in modern

malware,” in IEEE International Conference on Dependable Systems and

Networks With FTCS and DCC, 2008. DSN 2008, 2008, pp. 177–186.

[123] S. Hou, L. Chen, E. Tas, I. Demihovskiy, and Y. Ye, “Cluster-oriented

ensemble classifiers for intelligent malware detection,” in 2015 IEEE International

Conference on Semantic Computing (ICSC), 2015, pp. 189–196.

[124] J. Kinable and O. Kostakis, “Malware classification based on call graph

clustering,” J. Comput. Virol., vol. 7, no. 4, pp. 233–245, Feb. 2011.

[125] “An ‘Average’ Cyber Crime Costs a U.S. Company $15.4 Million,” Forbes.

[Online]. Available: http://www.forbes.com/sites/moneybuilder/2015/10/17/an-

average-cyber-crime-costs-a-u-s-company-15-4-million/. [Accessed: 19-Oct-

2015].

[126] Joel Yonts, “Attributes of Malware.” SANS Institute InfoSec Reading

Room, 30-Jun-2012.

[127] H. Khan, F. Mirza, and S. A. Khayam, “Determining malicious executable

distinguishing attributes and low-complexity detection,” J. Comput. Virol., vol. 7,

no. 2, pp. 95–105, Jan. 2010.

[128] R. Merkel, T. Hoppe, C. Kraetzer, and J. Dittmann, “Statistical Detection

of Malicious PE-Executables for Fast Offline Analysis,” in Communications and

Multimedia Security, B. D. Decker and I. Schaumüller-Bichl, Eds. Springer Berlin

Heidelberg, 2010, pp. 93–105.

[129] “erocarrera/pefile,” GitHub. [Online]. Available:

https://github.com/erocarrera/pefile. [Accessed: 01-Jun-2015].

[130] “hiddenillusion/AnalyzePE,” GitHub. [Online]. Available:

https://github.com/hiddenillusion/AnalyzePE. [Accessed: 24-Nov-2016].

124

[131] “Elasticsearch: The Definitive Guide [master] | Elastic.” [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/guide/master/index.html.

[Accessed: 28-Nov-2016].

[132] F. Taroni, A. Biedermann, and S. Bozza, Statistics in Practice : Bayesian

Networks for Probabilistic Inference and Decision Analysis in Forensic Science

(2). Somerset, GB: Wiley, 2014.

[133] V. Roussev, “An evaluation of forensic similarity hashes,” Digit. Investig.,

vol. 8, Supplement, pp. S34–S41, Aug. 2011.

[134] David French and William Casey, “Fuzzy Hashing Techniques in Applied

Malware Analysis,” Results of SEI Line-Funded Exploratory New Starts Projects

CMU/SEI-2012-TR-004, Aug. 2012.

[135] A. P. Namanya, J. P. Disso, and I. U. Awan, “Evaluation of automated

static analysis tools for malware detection in Portable Executable files,” in 2015

31st UKPEW, University of Leeds, 2015, pp. 81–95.

[136] “radare.” [Online]. Available: http://www.radare.org/r/. [Accessed: 23-Mar-

2016].

[137] I. Kaliszewski and D. Podkopaev, “Simple additive weighting—A

metamodel for multiple criteria decision analysis methods,” Expert Syst. Appl.,

vol. 54, pp. 155–161, Jul. 2016.

	cover_sheet_thesis.pdf
	University of Bradford eThesis

